首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Steady-state calculations are performed for the daytime equatorial F2-region and topside ionosphere. Values are calculated of the electron and ion temperatures and the concentrations and field-aligned velocities of the ions O+, H+ and He+. Account is taken of upward E × B drift, a summer-winter horizontal neutral air wind and heating of the electron gas by thermalization of fast photoelectrons.The calculated plasma temperatures are in accord with experiment: at the equator there is an isothermal region from about 400–550 km altitude, with temperatures of about 2400 K around 800 km altitude. The transequatorial O+ breeze flux from summer to winter in the topside ionosphere is not greatly affected by the elevated plasma temperatures. The field-aligned velocities of H+ and He+ depend strongly on the O+ field-aligned velocity and on the presence of large temperature gradients. For the minor ions, ion-ion drag with O+ cannot be neglected for the topside ionosphere.  相似文献   

2.
Simultaneous measurements of the 6300 Å airglow intensity, the electron density profile, and F-region ion temperatures and vertical ion velocities taken at the Arecibo Observatory in March 1971 are utilized in the height integrated continuity equation to extract the number of photons'of 6300 Å emitted per recombination. After accounting for quenching of O(1D) and the electrons lost via NO+ recombination, the efficiency of O(1D) production by the dissociative recombination of O2+ is determined to be 0.6 ± 0.2 including cascading from the O(1S) state. The uncertainty includes both random measurement errors and estimates of possible systematic errors.  相似文献   

3.
Observations of the occurrence of He+ dominance in the topside ionosphere are discussed. An earlier model of the behaviour of high-latitude H+ and O+ thermal plasma (Quegan et al., 1982) is extended to include He+ as a major ion. Calculations using the extended model show that plasma convection is likely to play a key rôle in producing regions of He+ dominance. Suggested conditions for He+ dominance are listed and their applicability to observed He+ behaviour is discussed.  相似文献   

4.
A major loss process for the metastable species, O+(2D), in the thermosphere is quenching by electrons
O+(2D) + e → O+(4S) + e
.To date no laboratory measurement exists for the rate coefficient of this reaction. Thermospheric models involving this process have thus depended on a theoretically calculated value for the rate coefficient and its variation with electron temperature. Earlier studies of the O+(2D) ion based on the Atmosphere Explorer data gathered near solar minimum, could not quantify this process. However, Atmosphere Explorer measurements made during 1978 exhibit electron densities that are significantly enhanced over those occurring in 1974, due to the large increases that have occurred in the solar extreme ultraviolet flux. Under such conditions, for altitudes ? 280 km, the electron quenching process becomes the major loss mechanism for O+(2D), and the chemistry of the N+2 ion, from which the O+(2D) density is deduced, simplifies to well determined processes. We are thus able to use the in situ satellite measurements made during 1978 to derive the electron quenching rate coefficient. The results confirm the absolute magnitude of the theoretical calculation of the rate coefficient, given by the analytical expression k(Te) = 7.8 × 10?8 (Te/300)?0.5cm3s?1. There is an indication of a stronger temperature dependence, but the agreement is within the error of measurement.  相似文献   

5.
This paper examines the magnitude of downward H+ field-aligned velocities at mid-latitudes. For the isothermal, collisionless, steady-state case an analytical form is derived for the critical temperature, below which the plasma temperature must lie for there to be a possibility of supersonic H+ flow. Some simple equations are presented which yield velocity profiles and an aid to the understanding of energy distribution in the H+ gas. Very little gravitational potential energy is converted to kinetic energy. For the general case the situation is far more complicated, but we note in particular the importance of the O+ contribution to the electrostatic field. For the simpler case the flow is always subsonic regardless of the plasma temperature and it appears unlikely that supersonic flow will occur in the more general case.  相似文献   

6.
The diurnal and seasonal variations of H+, He+, N+, O+ and Ne are analyzed at 1400-km altitude. Using longitudinally averaged observations of ISIS-2 (April 1971 to December 1972), the ion and electron densities are decomposed via spherical harmonics and Fourier series into time-independent, seasonal and diurnal terms. The time-independent terms of H+ and He+ show a plateauor trough-like structure at medium to low latitudes and a strong decrease towards the poles; N+ and O+, on the other hand, yield an almost inverse picture with a density increase at high latitudes. All constituents, except He+, show at polar latitudes an enhancement during local summer conditions and a depletion during local winter conditions; He+, however, exhibits a winter bulge and a density minimum during local summer. The diurnal variations are strongly latitude dependent; while the amplitudes (relative) of H+, He+, and Ne are rather small, the heavier ions N+ and O+ show a deep minimum early in the morning and a high but flat maximum during daytime.  相似文献   

7.
The coupled H+ and O+ time-dependent continuity and momentum equations are solved within a region of the L = 3 magnetic flux tube lying between (and including) the F2-layers of conjugate hemispheres. The method of solution is an extended and modified version of the Murphy et al. (1976) method. The model is used to study the coupling between the F2-layers of conjugate hemispheres during magnetically quiet periods.The results of the calculations strongly indicate that the protonosphere acts as a reservoir, with variable H+ content, which prevents direct coupling between the F2-layers of conjugate hemispheres. However there is generally a significant interhemispheric flow of plasma. This flow is caused by conditions in the summer and winter topside ionospheres and it maintains continuity in the plasma concentration within the protonosphere. There are times when the direction of flow is from the winter hemisphere to the summer hemisphere. It is suggested that maintenance of the winter F2-layer at night is not assisted directly by the F2-layer of the conjugate summer hemisphere.It is shown that during the first few days of protonosphere replenishment after a magnetic storm there is an upflow of H+ in the topside ionosphere at all times in the summer hemisphere. There is also an upflow of H+ during the daytime in both hemispheres. A comparison with the results obtained when the interhemispheric H+ flux is held permanently at zero shows that both F2-layers are little affected by the interhemispheric H+ flux. Nevertheless both F2-layers are affected by the H+ tube content of the protonosphere. When the H+ flux at 1000 km in one hemisphere is much greater than the H+ flux at 1000 km in the conjugate hemisphere, there is a corresponding signature in the interhemispheric H+ flux.The results suggest that there is insufficient time between magnetic storms for complete replenishment of the protonosphere to occur.  相似文献   

8.
The dissociative recombination coefficients α for capture of electrons by H3+ and H5+ ions have been determined as a function of electron temperature Te using a microwave afterglow-mass spectrometer apparatus. At ion and neutral temperatures Tu+ = Tn = 240 K, the coefficient α (H3+) is found to vary slowly with Te at first, decreasing from 1.6 × 10?7 cm3/s at Te = 240 K to 1.2 × 10?7 cm3/s at Te = 500 K, thereafter falling as Te?1 over the range 500 K ? Te, ? 3000 K. These results, which have a ± 20% uncertainty, agree satisfactorily over the common energy range (0.03–0.36 eV) with the recombination cross sections determined in merged beam measurements by Auerbach et al. At T+ = Tn = 128 K, the coefficient α(H5+) is found to be (1.8 ± 0.3) × 10?6 [Te(K)/300]?0.69 cm3/s over the range 128 K ? Te ? 3000 K, with a more rapid decrease, as Te?1, between 3000 K and 5500 K. The implications of these results for modelling planetary atmospheres and interstellar clouds are briefly touched on.  相似文献   

9.
The effects of F-region neutral winds on the distribution of He+ in the equatorial ionosphere have been examined using a theoretical model and an observational data set. It is shown by the model that components of neutral wind in the magnetic meridian up to only 50 m s? can produce He+ gradients in the northern and southern sectors of a flux tube that differ by more than 80%. This is associated with interhemisphere transport velocities of He+ as large as 15 m s?1 at 800 km. A substantial latitude gradient in the He+ distribution across the dip equator also results from the redistribution of He+ The changes in the He+ concentration at the dip equator and the latitude distribution of He+ in response to different neutral wind components is determined from the model and used to construct longitude distributions of He+ to compare with observations made at equinox. Good agreement between the calculations and observations is obtained both at the geographic and geomagnetic equators using the relationship between neutral winds, interhemispheric transport velocity and He+ concentration derived from the model. If these relationships can be extrapolated to accommodate the different conditions expected during solstice, we can also discuss the He+ distributions expected during this season.  相似文献   

10.
Recent satellite observations of thermal ion composition in the near-equatorial plasmasphere have shown that He+ comprises 5–10% typically and occasionally 25% or more of the total thermal ion density. A steady state diffusive equilibrium model for the distributions of H+, He+ and O+ along a plasmaspheric flux tube is used to elicit effects that may help explain these observed high He+ fractional concentrations. The model indicates that both the ionospheric composition and the temperature distribution along the flux tubes are important factors controlling the equatorial He+ composition, through the plasma scale height and thermal diffusion effects. Direct comparison of the model results with thermal ion observations by ISEE-1 indicates that the effects incorporated into the model may explain some of the elevated He+ concentrations. In some instances, however, effects not included in the model may also be of importance.  相似文献   

11.
Frank-Condon factors for H2O+ bands have been calculated. They are used to estimate the photon scattering coefficient g8.0 for the (8,0) band at 6158 Å.  相似文献   

12.
In a recent paper, Brekke and Pettersen (1972) have introduced a method for estimating any indirect process in the production of the O(1S) atoms in pulsating aurora; for 38 per cent of their data they found that the decay time for the indirect mechanism was shorter than the effective lifetime of the 1S state. These data are related to the energy transfer from the N2(A3Σ) molecules to the O(1S) state, and evidence is found for this process to contribute in the altitude range below 125 km.  相似文献   

13.
The coupled time-dependent O+ and H+ continuity and momentum equations and O+, H+ and electron heat balance equations are solved simultaneously within the L = 1.4 (Arecibo) magnetic flux tube between an altitude of 120 km and the equatorial plane. The results of the calculations are used in a study of the topside ionosphere above Arecibo at equinox during sunspot maximum. Magnetically quiet conditions are assumed.The results of the calculations show that the L = 1.4 magnetic flux tube becomes saturated from an arbitrary state within 2–3 days. During the day the ion content of the magnetic flux tube consists mainly of O+ whereas O+ and H+ are both important during the night. There is an altitude region in the topside ionosphere during the day where ion-counterstreaming occurs with H+ flowing downward and O+ flowing upward. The conditions causing this ion-counterstreaming are discussed. There is a net chemical gain of H+ at the higher altitudes. This H+ diffuses both upwards and downwards whilst O+ diffuses upwards from its solar e.u.v. production source which is most important at the lower altitudes. During the night the calculated O+ and H+ temperatures are very nearly equal whereas during the day there are occasions when the H+ temperature exceeds the O+ temperature by about 300 K.  相似文献   

14.
A magnetic type mass spectrometer has been flown on two ESRO sounding rockets from ESRANGE (Kiruna 68°N) on February 25 and 26, 1970. The first launch was at sunset (16:33 UT) and the second the next morning, during sunrise (04:47 UT). For both flights the solar zenith angle was approximately 98°. The instrument was measuring simultaneously the neutral gas and positive ion composition and the total ion density. In this paper the results of the ion composition measurements are presented. For both flights the main ion constituents measured between approximately 110–220 km were O+, NO+ and O2+. Only at sunset were N+ and N2+ detected above 200 km. In spite of the identical solar UV-radiation, pronounced sunset/sunrise variations in the positive ion composition were found. The total ion densities at sunrise were between 5×103 and 5 × 104 ions cm?3 and therefore too high to be explained without a night-time ionization by precipitated particles. At sunrise the NO+ and O2+ profiles show a correlated wavelike structure with three pronounced almost equally spaced layers in the E-region. Only the highest layer is present in the O+ profile. Locally enhanced field aligned ionization originated by particle precipitation and an E × B instability are the most likely source for this structure. In the E- and lower F-regions the NO+O2+ ration increased overnight from values around 7 at sunset to 15 at sunrise, correlated with an increase of the local magnetic activity index K from 0+ to 2°. This could be explained if the NO density and magnetic activity are correlated.  相似文献   

15.
Under magnetically quiet conditions, ionospheric plasma in the midlatitude F-region corotates with the Earth and relative east-west drifts are small compared to the corotation velocity. During magnetic storms, however, the enhanced dawn-to-dusk magnetospheric convection electric field often penetrates into the midlatitude region, where it maps into the ionosphere as a poleward electric field in the 18:00 LT sector, producing a strong westward plasma drift. To evaluate the ionospheric response to this east-west drift, the time-dependent O+ continuity equation is solved numerically, including the effects of production by photoionization, loss by charge exchange and transport by diffusion, neutral wind and E × B drift. In this investigation only the neutral wind's meridional component and east-west E × B drift are included. It is found that an enhanced equatorward wind coupled with westward drift produces an enhancement in the peak electron density (NMAX(F2)) and in the electron content (up to 1000 km) in the afternoon sector and a subsequent greater-than-normal decay in ionization after 18:00 LT. These results agree in general with midlatitude F-region ionospheric storm observations of NMAX(F2) and electron content which show an afternoon enhancement over quiet-time values followed by an abrupt transition to lower-than-normal values. Westward drift appears to be a sufficient mechanism in bringing about this sharp transition.  相似文献   

16.
The part that the energy transfer reaction N2(A3u+) + O(3P) → N2(X1g+) + O(1S) plays in the excitation of the auroral green line has been investigated. The contribution is estimated to be 40 per cent in this case, containing pulsating aurora in class IBC 1. Due to greater quenching of the A3u+ state, the centroid of the VK emission is displaced 10 km upwards of the green line height, which is centred at 110 km.  相似文献   

17.
We have modelled the plasmaspheric density distribution for a range of solar cycle, seasonal and diurnal conditions with a magnetic flux tube dependent diffusive equilibrium model by using experimentally determined values of ionospheric parameters at 675 km as boundary conditions.Data is presented in terms of plasmaspheric H+ and He+ density contours, total flux tube content and equatorial plasma density for a range of L-values from 1.15 to 3.0. The variation of equatorial density with L-value shows good agreement with the 1L4 dependence observed experimentally.The results show that the model predicts larger solar cycle and diurnal variation in equatorial plasma density than observed using whistler techniques. However, the whistler method requires a model to deduce the equatorial density and is therefore open to interpretation.Seasonal variations are rather artifical since in this general model we have not attempted to match equatorial densities for flux tubes emanating from the winter and summer hemispheres.  相似文献   

18.
Aeronomical determinations of the dissociative recombination reaction rate coefficient for O2+, α, depend directly on a knowledge of the rate coefficient for the charge exchange of O+ with O2, k. A re-evaluation of the aeronomical determination of α using Atmosphere Explorer satellite data is necessary in the light of a subsequent laboratory measurement of k. The results reported here are in reasonable agreement with laboratory determinations to within the uncertainty of the analysis for night-time conditions. However, for data obtained under sunlit conditions the aeronomical determination differs significantly from the laboratory measurements. The results imply that the state of the O2+ molecule resulting from the major thermospheric processes requires further examination.  相似文献   

19.
Measurements of N2+ and supporting data made on the Atmosphere Explorer-C satellite in the ionosphere are used to study the charge exchange process
O+(2D)+N2kN+2+O
The equality k = (5 ± 1.7) × 10?10cm3s?1. This value lies close to the lower limit of experimental uncertainty of the rate coefficient determined in the laboratory. We have also investigated atomic oxygen quenching of O+(2D) and find that the rate coefficient is 2 × 10?11 cm3s?1 to within approximately a factor of two.  相似文献   

20.
A mathematical model has been developed to calculate consistent values for the O+ and H+ concentrations and field-aligned velocities and for the O+, H+ and electron temperatures in the night-time equatorial topside ionosphere. Using the results of the model calculations a study is made to establish the ability of F-region neutral air winds to produce observed ion temperature distributions and to investigate the characteristics of ion temperature troughs as functions of altitude, latitude and ionospheric composition. Solar activity conditions that give exospheric neutral gas temperatures 600 K, 800 K and 1000 K are considered.It is shown that the O+-H+ transition height represents an altitude limit above which ion cooling due to adiabatic expansion of the plasma is extremely small. The neutral atmosphere imposes a lower altitude limit since the neutral atmosphere quenches any ion cooling which field-aligned transport tends to produce. The northern and southern edges of the ion temperature troughs are shown to be restricted to a range of dip latitudes, the limiting dip latitudes being determined by the magnetic field line geometry and by the functional form of the F-region neutral air wind velocity. Both these parameters considerably influence the interaction between the neutral air and the plasma within magnetic flux tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号