首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The effects of the orientation of the interplanetary magnetic field (IMF) on the structure of the distant magnetotail are studied by superposing a uniform magnetic field on a magnetospheric model. It is shown that a southward component of the IMF alone can reduce the closed field region in the magnetotail, while a northward turning of the IMF can produce a new closed field region. It is suggested that these two effects can explain thinning and thickening, respectively, of the plasma sheet during magnetospheric substorms without invoking internal instabilities.  相似文献   

2.
This paper reports the study concerning the latitudinal dispalacement of the auroral oval as a function of the northward orientation of the Bz-component IMF and the relation between southward Bz and the auroral dynamics in the night sector.  相似文献   

3.
The correlation between the polar cap geomagnetic variations (H-traces) and the changes of the azimuthal (YSE) and vertical (ZSE) components of the interplanetary magnetic field (IMF) during undisturbed periods is examined. It is shown that peak-to-peak correlation between YSE and geomagnetic horizontal component variations may be generally observed in the daytime cusp region, independently of the magnitude and polarity of the ZSE. The existence of the DP3 disturbances associated with the northward component ZSE > 0 is confirmed. It is shown that the disturbances due to the vertical component of the IMF dominate in the region near the pole. In so far as the southward component of the IMF generates both polar cap disturbances and geomagnetic substorms, the disturbances in the region near the pole, associated with ZSE < 0, may be regarded as a precursor of a substorm. On this basis a new index of the polar cap magnetic activity PCL, characterizing the changeability of the magnetic field is proposed. It is shown that the increase of the PCL index is followed in 1–2 hr by a substorm in 70% of events considered.  相似文献   

4.
The relationship between the orientation of the interplanetary magnetic field (IMF), represented by the clock angle which is the angle defined by IMF-By and -Bz components, and the AL and AU indices is examined at various dipole tilt angles for the period of 1978-1988. We use the IMF data obtained from the IMP 8 satellite, AL and AU indices with corrected seasonal variations, and the dipole tilt angle, which is the dipole magnetic latitude of the subsolar point calculated as a function of the day of year and universal time. For both positive (dipole tilted to the Sun) and negative dipole tilt angles, the values of |AL| and AU decrease as the IMF clock angle moves away from 180°, becoming more northward. The indices also tend to become smaller for larger dipole tilt angle, either toward or away from the Sun. This dependence on dipole tilt angle enhances the semiannual variation of geomagnetic activity.  相似文献   

5.
The influence of the Bz and By polarity of the IMF on the location of the dayside regions of precipitating, low energy electrons recorded by the DMSP F-2 satellite, is investigated. The average differential electron flux was determined for 2 months during local summer. It is found that the spatial distributions are similar for electrons in the range from 50 to 183 eV. The region of maximum intensity for Kp? 2+ over the Southern Hemisphere is located on the opposite side of noon from the Northern Hemisphere. The current intensity carried by precipitating electrons in the cusp region agrees with that measured by the TRIAD magnetometer. When the IMF is northward a marked asymmetry of the low energy electron precipitation between positive and negative By cases is observed. For positive By the maximum electron flux occurs between 0800 and 1200 M.L.T.and ?76 and ?83° M.L.A.T.and for negativeBythe region occurs between 1200 and 1500 M.L.T. and ?79 and ?82° M.LAT. The dynamical variations associated with substorm activity when the IMF is southward obscure the expected By effect.  相似文献   

6.
Observations are presented of long-lived global Pc5 ULF wave activity observed at a wide range of local times. The event was monitored in the high latitude ionosphere (∼60–80° magnetic latitude) by several SuperDARN HF radars and 5 magnetometer chains in Scandinavia, Greenland, Canada, Alaska and Russia. The event coincided with a protracted period (∼36 h) of northward interplanetary magnetic field (IMF). The study focuses on 4 h during which distinct dawn/dusk asymmetries in the wave characteristics were observed with multiple field line resonance (FLR) structures observed in the dawn flank at 1.7, 2.6, 3.3, 4.2 and 5.4 mHz and compressional oscillations in the dusk flank at 1.7 and 2.3 mHz. The data indicated an anti-sunward propagation in both the dawn and dusk flanks and a low azimuthal m number (∣m∣∼6) suggesting a generation mechanism external to the Earth's magnetosphere. A sudden increase in the solar wind dynamic pressure followed by a period of strongly northward, Bz dominated IMF, coincides with the observations and also a large increase in Pc5 wave power observed in the dawn flank. The observed enhancements in the wave activity and FLR structures are thought to be due to a Kelvin–Helmholtz driven waveguide mode. Additionally, there is no evidence that the frequencies of the FLRs are intrinsic to the solar wind. It thus seems that the frequencies were determined by the dimensions of the magnetospheric cavity.  相似文献   

7.
One year of magnetic field data from the geostationary spacecraft ATS 6 have been analysed for effects associated with the equatorial plane components of the interplanetary magnetic field (IMF). It is shown that perturbation fields in the Y (dawn to dusk) direction appear in association with the Y component of the IMF, in agreement with previous theoretical suggestions. On average a fraction 0.28 ± 0.02 of the IMF Y field appears at geostationary orbit, such that the average ATS 6 By field is 1.9 ± 0.4 nT larger when IMF By is positive than when it is negative. The perturbation field magnitudes are also found to depend strongly on local time, however, with largest effects appearing in the midnight and dawn quadrants, where the average perturbation fields are nearly half the simultaneous IMF Bv. field. At noon this fraction drops to one fifth, and no average effect occurs in the dusk quadrant. Both the daily mean perturbation fields and the diurnal modulation are also found to depend upon the level of magnetic disturbance as measured by KP, or equivalently upon IMF Bz, and upon season of the year. Overall stronger daily mean perturbation fields occur when KP is low or when IMF Bz is positive, than when KP is high or when IMF Bz is negative. This effect is not linear, however, and there is also a trend in the data towards increasing perturbation fields with IMF Bz negative and decreasing. On dividing the data according to season, increasingly strong daily mean effects are found in the order winter, summer and equinox for both quiet and disturbed magnetospheres. Diurnal modulations of the perturbation field magnitudes for low KP (IMF Bz > 0) take the form of large amplitude quasi-sinusoidal variations about mean values which are very marked in the equinox data, are present to a lesser degree during summer and are absent during winter conditions. When Kp is high (IMF Bz < 0) significant deviations from mean perturbation field values occur generally only during nightside hours and little seasonal dependence is evident. Finally, it is shown that the highest correlation between the IMF data and the ATS 6 perturbation fields occurs with zero time delay between the two data sets, showing that a prompt response to IMF conditions occurs at geostationary orbit within the 1 h time resolution available in this study. Although many details of the above ATS 6 response remain to be understood, these results overall demonstrate in a very direct manner the magnetically “open” nature of the Earth's magnetosphere.  相似文献   

8.
Global auroral imagery obtained by DMSP satellites during the years 1972–1979 over both the northern and southern high latitude polar regions were examined to study the morphology of the discrete arcs known as polar cap arcs. Based upon their morphology, the polar cap arcs can be generally classified into three types viz. (1) the distinctly sun-aligned polar cap arcs—Type 1 arcs, (2) the morning/evening polar cap arcs expanded from the auroral oval—Type 2 arcs and (3) the hook shaped arcs connecting the polar cap arc with the oval arc (including the hitherto unreported oppositely oriented hook shaped arcs)—Type 3 arcs. Concurrent auroral electrojet indices (AE) and interplanetary magnetic field (IMF) data were used to study the occurrence of the polar cap arcs. It was found that Type 1 arcs were observed mostly during low geomagnetic activity conditions, bright Type 2 arcs during the recovery phase of the substorms and Type 3 arcs do not occur during the recovery phase of the substorm. Over both hemispheres, the polar cap arcs were observed mostly during northward IMF. Furthermore, Type 1 arcs were obeserved over the northern polar cap during mostly negative Bx periods and over the southern polar cap during mostly positive Bx periods. The latter observation suggests that these types of arcs may be non-conjugate.  相似文献   

9.
The origin of magnetospheric asymmetry effects associated with the equatorial plane component of the interplanetary magnetic field (IMF) is discussed in terms of the forces exerted on open flux tubes mapping into the solar wind. It is argued that the downstream relaxation of the magnetosphere under the action of these stresses towards a state of reduced stress is such as to allow, in effect, partial penetration of this field component (both Bx and By in magnetospheric coordinates) into the magnetosphere. Many of the associated phenomena are therefore qualitatively described by the ‘dipole plus uniform IMF’ model, since this represents the idealization of exactly zero electromagnetic stress and hence gives a lowest order picture of the effects which result from magnetospheric relaxation toward that state. This is true of IMF By-associated effects which are well documented experimentally and which form a rich and consistent set of phenomena which have received considerable attention over the past decade. It is argued here that exactly corresponding phenomena are expected to be associated with the IMF Bx field as well, but because of the differing field direction these will take differing and usually less obvious forms than the similar effects associated with By. The suggested partial penetration of the IMF Bx field should be directly testable in the dipolar field region of the magnetosphere, but in the tail North-South displacements of the current sheet (and possibly magnetopause) are expected to occur instead. Some evidence of the latter displacements are presented. The other major IMF Bx effect should be noon-midnight displacements of the polar cap, such as have been recently reported. Little IMF Bx effect on auroral zone flows is anticipated, by contrast with the dawn-dusk asymmetries in this flow associated with IMF By.  相似文献   

10.
After reviewing the basic characteristics of the polar cap arcs, it is suggested that their appearance can be explained if the open region splits into two, one located in the dawn sector and the other in the dusk sector. It is suggested that a distinct splitting occurs temporarily when an IMF tangential discontinuity passes by the magnetosphere and the sign of the IMF By component changes at the discontinuity, provided that the IMF Bz component is positive on both sides. As a result, the dawn or the dusk side of the polar region will be connected to either the front side or the hind side of the discontinuity, depending on the sign of the By component across the discontinuity. As the dynamo process is expected to operate in each of the two open regions (as is the case in the single open region), it is reasonable to infer that a sheet of plasma and of field-aligned currents forms in the region between the two open regions, resulting in the polar cap arcs across the polar region. The four-cell convection pattern may also appear. A model of the magnetosphere is constructed to demonstrate such a possibility.  相似文献   

11.
It is shown that the pattern of convection at high latitudes when the IMF is northward is the sum of two types of convection: (a) four-vortex convection completely closed in high latitudes and (b) homogeneous sunward convection across all high-latitude regions including the auroral zone. The decay of the three-dimensional current system which existed before the turning of IMF northwards may maintain the homogeneous sunward convection.  相似文献   

12.
Recent observations of partial penetration of the IMF By into the magnetosphere (Fairfield, 1979; Cowley and Hughes, 1983) are shown to agree with the idea of a magnetopause current Ky, induced by IMF By (Primdahl and Spangslev, 1983). The slow decay of Ky, caused by Joule heat losses in the cusp ionospheres is responsible for the appearance (on the average) of a fraction of IMF By inside the magnetosphere, and this also explains the large statistical scatter of the data. A decay time constant of 4–5 days is derived from the average fraction of IMF By observed inside the magnetosphere in good agreement with the 7-day time constant previously proposed.  相似文献   

13.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

14.
The geometry of the open flux area in the polar region is computed by superposing a uniform interplanetary magnetic field (IMF) with various orientation angles to a model of the magnetosphere. It is confirmed that the IMF By component is as important as the Bz component in “opening” the magnetosphere. It is also shown that the computed area of open field lines is remarkably similar to the observed ones which were determined by using the entry of solar electrons. In particular, when the IMF vector is confined in the X-Z-plane and the Bz component has a large positive value, the open area becomes crescent-shaped, coinciding approximately with the cusp region.  相似文献   

15.
We present a study of the plasma properties inside and dynamics of the low-latitude boundary layer (LLBL)/cusp during the ICME event on 7 November 2004 based on data from the four Cluster spacecraft. The interplanetary magnetic field (IMF) is predominantly strongly northward, up to 50 nT, with some short-duration rotations. The observed LLBL/cusp is very thick (∼6 – 7° invariant latitude (ILAT)) and migrates equatorward with rates of 0.55° and 0.04° ILAT per minute during quick southward IMF rotations and stable northward IMF, respectively. The LLBL/cusp observed by Cluster 1 and Cluster 4 is in a fast transition between different states and is populated by different types of plasma injection, presumably coming from multiple reconnection sites. During a period of extremely northward IMF, signatures of pulsed dual reconnection inside the LLBL/cusp are observed by Cluster 3, suggesting that at least part of the LLBL/cusp is on closed field lines. However, analysis of the ion data implies that the boundary layer is formed in the dawn sector of the magnetosphere and does not slowly convect from the dayside as has been suggested previously. A statistical study of the location of the LLBL/cusp equatorward boundary during the ICME events on 28 – 29 October 2003 and 7 – 10 November 2004 is performed. During extreme conditions the LLBL/cusp position is offset by −7° ILAT from the location under normal conditions, which might be explained by the influence of the high solar wind dynamic pressure. The LLBL/cusp moves equatorward with increasing southward and northward IMF. However, the LLBL/cusp position under strong southward IMF is more poleward than expected from previous studies, which could indicate some saturation in the dayside reconnection process or enhancement of the nightside reconnection rate. The LLBL/cusp position under strong northward IMF is extremely low and does not agree with the location predicted in previous studies. For the events with solar wind dynamic pressure >10 nPa, the LLBL/cusp position does not depend on the solar wind dynamic pressure. This might indicate some saturation in the mechanism of how the LLBL/cusp location depends on the solar wind dynamic pressure.  相似文献   

16.
A well established correlation exists between the IMF By and the cusp field-aligned and horizontal currents (Wilhjelm et al., 1978). The northern and southern cusp currents may be parts of one large scale current system (D'Angelo, 1980) flowing mainly at the magnetopause and driven by the z-component of the solar wind electric field. Primdahl and Spangslev (1981) suggested that the large scale current system seems to shield out the IMF By from the interior of the magnetosphere. This paper proposes that the currents are induced by the change of sign of By at the IMF sector boundary crossings, and argues that the time constant for decay of the currents may well be one week or larger. The percentage errors in inferring the IMF sector polarity from the Godhavn H magnetogram increases with increasing time since the last sector boundary crossing. This is in accordance with a steady decay of the induced currents. Finally experimental tests are proposed to demonstrate the feasability of and possibly distinguish between the mechanisms.  相似文献   

17.
A comparative analysis of solar and heliospheric magnetic fields in terms of their cumulative sums reveals cyclic and long-term changes that appear as a magnetic flux imbalance and alternations of dominant magnetic polarities. The global magnetic flux imbalance of the Sun manifests itself in the solar mean magnetic field (SMMF) signal. The north – south asymmetry of solar activity and the quadrupole mode of the solar magnetic field contribute the most to the observed magnetic flux imbalance. The polarity asymmetry exhibits the Hale magnetic cycle in both the radial and azimuthal components of the interplanetary magnetic field (IMF). Analysis of the cumulative sums of the IMF components clearly reveals cyclic changes in the IMF geometry. The accumulated deviations in the IMF spiral angle from its nominal value also demonstrate long-term changes resulting from a slow increase of the solar wind speed over 1965 – 2006. A predominance of the positive IMF B z with a significant linear trend in its cumulative signal is interpreted as a manifestation of the relic magnetic field of the Sun. Long-term changes in the IMF B z are revealed. They demonstrate decadal changes owing to the 11/22-year solar cycle. Long-duration time intervals with a dominant negative B z component were found in temporal patterns of the cumulative sum of the IMF B z .  相似文献   

18.
The variation of the geomagnetic activity index Ap at the IMF sector boundaries (+ to ? and ? to +) has been studied for three solar cycles, separating data into vernal and autumnal equinoxes. It was found that a reported increase in Ap as an effect of a Hale boundary can be better attributed to the occurrence of a negative IMF Bz component in the geocentric solar magnetospheric coordinate system and to the occurrence of high speed solar wind streams.  相似文献   

19.
An empirical formula has been constructed using the results of correlative analyses to determine in what form the AL index, as a measure of the intensity of the westward auroral electrojet, depends on interplanetary parameters. The formula thus obtained shows that AL is mainly determined by BsV2 where Bs is the southward component of the IMF and V is the solar wind velocity, and is modulated in a characteristic way by the combined effect of the east-west component of the IMF and the tilt angle of the Earth's dipole axis toward the Sun-Earth line. In contrast, effects of the solar wind density and the IMF variability were found to be insignificant.Implications of the empirical formula are discussed mainly in relation to the problem of the location in the dayside magnetosphere of the region where the reconnection process to initiate the substorm takes place.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号