首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tongue‐like, boulder‐dominated deposit in Tverrbytnede, upper Visdalen, Jotunheimen, southern Norway, is interpreted as the product of a rock avalanche (landslide) due to its angular to subangular boulders, surface morphology with longitudinal ridges, down‐feature coarsening, and cross‐cutting relationship to ‘Little Ice Age’ moraines. The rock avalanche fell onto glacier ice, probably channelled along a furrow between two glaciers, and stopped on the glacier foreland, resulting in its elongated shape and long runout distance. Its distal margin may have become remobilized as a rock glacier, but a rock glacier origin for the entire landform is discounted due to lack of source debris, presence of matrix, lack of transverse ridges, and sparcity of melt‐out collapse pits. Lichenometric dating of the deposit indicates an approximate emplacement age of ad 1900. Analysis highlights the interaction of rock‐slope failures and glaciers during deglacierization in a neoparaglacial setting, with reduced slope stability due to debuttressing and permafrost degradation, and enhanced landslide mobility due to flow over a glacier and topographic channelling. Implications for the differentiation of relict landslides, moraines and rock glaciers are discussed and interrelationships between these landforms are considered in terms of an ice‐debris process continuum.  相似文献   

2.
Relict marginal moraines are commonly used landforms in palaeoglaciological reconstructions. In the Swedish mountains, a large number of relict marginal moraines of variable morphology and origin occur. In this study, we have mapped 234 relict marginal moraines distributed all along the Swedish mountains and classified them into four morphological classes: cirque‐and‐valley moraines, valley‐side moraines, complex moraines and cross‐valley moraines. Of these, 46 moraines have been reclassified or are here mapped for the first time. A vast majority of the relict moraines are shown to have formed during deglaciation of an ice‐sheet, rather than by local mountain glaciers as suggested in earlier studies. The relict marginal moraines generally indicate that deglaciation throughout the mountains was characterised by a retreating ice‐sheet, successively damming glacial lakes, and downwasting around mountains. The general lack of moraines indicating valley and cirque glaciers during deglaciation suggests that climatic conditions were unfavourable for local glaciation during the last phase of the Weichselian. This interpretation contrasts with some earlier studies that have reconstructed the formation of local glaciers in the higher parts of the Swedish mountains during deglaciation.  相似文献   

3.
Rock glaciers occur as lobate or tongue-shaped landforms composed of mixtures of poorly sorted, angular to blocky rock debris and ice. These landforms serve as primary sinks for ice and water storage in mountainous areas and represent transitional forms in the debris transport system, accounting for ~ 60% of all mass transport in some alpine regions. Observations of active (flowing) alpine rock glaciers indicate a common association between the debris that originates from cirque headwalls and the depositional lobes that comprise them. The delivery of this debris to the rock glacier is regulated primarily by the rate of headwall erosion and the point of origin of debris along the headwall. These factors control the relative movement of individual depositional lobes as well as the overall rate of propagation of a rock glacier. In recent geophysical studies, a number of alpine rock glaciers on Prins Karls Forland and Nordenskiöldland, Svalbard, Norway, and the San Juan Mountains of southwest Colorado, USA, have been imaged using ground penetrating radar (GPR) to determine if a relationship exists between the internal structure and surface morphology. Results indicate that the overall morphologic expression of alpine rock glaciers is related to lobate deposition during catastrophic episodes of rockfall that originated from associated cirque headwalls. Longitudinal GPR profiles from alpine rock glaciers examined in this study suggests that the difference in gross morphology between the lobate and tongue-shaped rock glaciers can be attributed primarily (but not exclusively) to cirque geometry, frequency and locations of debris discharge within the cirque, and the trend and magnitude of valley gradient in relation to cirque orientation. Collectively, these factors determine the manner in which high magnitude debris discharges, which seem to be the primary mechanism of formation, accumulate to form these rock glaciers.  相似文献   

4.
All periglacial and glacial landforms investigated in the Northern Foothills have a very thin active layer (0.1–0.3 m thickness) overlying a thin permafrost layer, characterised by electrical resistivities ranging between 13 and 50 kΩm and by different thicknesses. Below this surficial layer, different types of ground ice (with a resistivity range from 8000 to 0.1 kΩm) were detected. These different types of ground ice permitted ice-cored rock glaciers to be distinguished from ice-cemented rock glaciers, subsea permafrost to be identified in some raised beaches, and other interpretations to be suggested about a debris-covered glacier. These results have been obtained by vertical electrical soundings (VES) carried out in ice-free areas of the Northern Foothills, near Terra Nova Bay Station during the tenth national Italian expedition in Antarctica (1994–1995). In these areas on the basis of previous geomorphological research, some landforms such as rock glaciers, raised beaches with patterned ground and debris-covered glaciers were chosen to carry out the VES. The electrical prospection can be considered a good means for understanding the origins of landforms in ice-free areas of Antarctica and for making a contribution to the palaeoenvironmental reconstruction of this continent.  相似文献   

5.
对比黄圃镇海蚀遗迹与其它非海蚀成因相似地形,得出其形态特征差异:海蚀槽穴同时切过软硬相间的岩石,仅出现在某一水平面;片流和风化作用形成的凹槽与结构面或岩层完全平行而且连续延伸,出现在整个山坡面上,凹槽前无平台;河流侧蚀作用在同一水平面上,不能同时形成凹槽和平台;河流溶蚀作用也是水平的,在石灰岩河岸侧壁形成凹槽,槽上有突出屋檐,无平台;波浪作用不强的石灰岩海岸也可形成凹槽和突出屋檐,但无海蚀平台;只有波浪作用才能同时形成(海蚀)平台和(海蚀)凹穴.  相似文献   

6.

A regional model was used to draw the permafrost distribution in the 200 km 2 of the Bagnes-Hérémence area (Western Swiss Alps). The model is based on the fact that permafrost distribution depends mainly on altitude and orientation and that the minimal altitude of active/inactive rock glaciers can be used as an indicator of the lower limit of discontinuous permafrost. The lower limit of relict rock glaciers is also used as an indicator of past distribution of permafrost. An inventory of rock glaciers was therefore made in the study area. The lower limit of permafrost during the Younger Dryas was determined by comparing the position of relict rock glaciers and glacier extension during the Older Dryas. The model was then applied to four periods (Younger Dryas, Little Ice Age, current period and future) in order to show the temporal evolution of permafrost distribution and glacier extension.  相似文献   

7.
Although rock glaciers in the Central and Desert Andes of Argentina and Chile have been previously studied in detail, much less attention has been paid to the occurrence of these permafrost forms in Patagonia. Recently, however, the establishment of the Argentinean Glacier Inventory program, which intends to inventory and monitor all ice masses along the Argentinean Andes, has started a large amount of new geocryological research. The project is designed to provide reliable and worldwide comparable results, supported by well established technical procedures and background information. Presented here is the first rock glacier inventory of the Monte San Lorenzo (Cerro Cochrane) region in the southern Patagonian Andes. A total of 130 intact (9.86 km2) and 47 fossil (1.45 km2) landforms were inventoried using two 2.5 m resolution ALOS Panchromatic Remote‐sensing Instruments for Stereo Mapping images. Since the Argentinean federal initiative described above legally protects all rock glaciers in the country as water reserves, and due to the little scientific knowledge concerning rock glaciers in the vast majority of the Patagonian Andes, this inventory provides an important basis for political decision‐making and opens further geocryological research avenues for the Patagonian region in general.  相似文献   

8.
9.
The Pleistocene periglacial legacy to the geomorphology of Dartmoor has been substantial. This paper examines some of these relict features in an area of western Dartmoor. The major features are tors, altiplanation terraces, boulder accumulations in a variety of patterns, and earth mounds. The tors and altiplanation terraces indicate the degree of slope modification created by frost action. The block-fields (clitter) are arranged into stripes, runs and garlands. Narrow stripes start and finish in midslope positions, while boulder runs converge and diverge, apparently at random. The long axis orientation of boulders in stripes is roughly in accord with the direction of the steepest slope, whereas orientation of boulders in blockfields is more variable. The altiplanation terraces and earth mounds occur on Cox Tor, which is composed of diabase. This contrast in rock type seems to explain the lack of similar features on the granite areas. The diabase is very closely jointed and weathers to a silt grade. The earth mounds are thought to be the result of frost thrusting in a silt-based soil. The general conclusion is that many of the landforms of Dartmoor are relicts from periglacial activity during the last glacial period. [Key words: periglaciation, tors, solifluction, Dartmoor.]  相似文献   

10.
Field observations of weathering processes and the related landforms, combined with laboratory analyses of weathering products, permit a synthetic evaluation of Late Cenozoic weathering environments in the Sør Rondane Mountains, Antarctica, an arid upland characterized by low temperatures and strong winds. Rates and character of weathering depend mainly on moisture availability and the bedrock geology. Under the humid weathering regime that occurs only locally around the margin of the present sheet, frequent diurnal freeze-thaw cycles in summer cause relatively rapid rock fragmentation. Most of the mountains are situated in the arid weathering regime, under which rock breakdown is very slow unless the rock contains plenty of salts. Salt weathering becomes more intensive and extensive with exposure age, as a result of salt accumulation in rock, eventually producing soils as small as fine-silt size. Lack of clay mineralization even in weathered rocks having been exposed above the ice sheet prior to 4 Ma ago indicates that hydrolysis or carbonation of rock minerals has been insignificant during the past 4 Ma. The final products of weathering are due mainly to salt action and reflect the parent lithology. Resistant fine-grained granite forms strongly oxidized tors carved with tafoni, or fields of mushroom-like boulders overlying the fractured bedrock. Less resistant rocks, like biotite gneiss and amphibolite, produce stone pavements underlain by saline, silty soils up to 30–40 cm thick, the thickness of which corresponds to the maximum thaw depth.  相似文献   

11.
Cryogenic block streams consist of a stream of rocks superficially resembling a stream deposit but lacking a matrix, usually occurring on a valley or gully floor or on slopes that are less steep than the maximum angle of repose of coarse sediments. They are usually formed on perennially frozen ground, but can also occur as relict landforms. There are three main active kinds forming today, viz., Siberian and Tibetan dynamic rock streams and lag block streams. During their formation, the blocks in the active Siberian and Tibetan dynamic block streams move downslope at up to 1 m/a. They are forming today on the Tibetan Plateau and in the more arid parts of south-central Siberia, although the processes involved in the movement are different. In the case of the Tibetan type, individual blocks slide downslope over the substrate in winter on an icy coating in areas of minimal winter precipitation. The Siberian type develops in areas of 15–80 cm of winter snow cover and an MAAT(mean annual air temperature) of-4 °C to-17 °C. The movement is due to creep of snow and ice and collapse of the blocks downslope during thawing. Lag block streams are formed by meltwater flowing over the surface of sediment consisting primarily of larger blocks with a limited amount of interstitial sediment. The erosion of the matrix is primarily in the spring in areas of higher winter precipitation on 10°–30° slopes. The blocks remain stationary, but the interstitial sediment is washed out by strong seasonal flows of meltwater or rain to form an alluvial fan. The boulders undergo weathering and become more rounded in the process. Lag block streams can also develop without the presence of permafrost in areas with cold climates or glaciers. Block streams also occur as relict deposits in older deposits under various climatic regimes that are unsuitable for their formation today. An example of relict lag block streams with subangular to subrounded blocks occurs in gullies on the forested mountainsides at Felsen in Germany, and is the original "felsenmeer". Similar examples occur near Vitosha Mountain in Bulgaria. The "stone runs" in the Falkland Islands are examples of the more angular relict lag block streams. In both Tasmania and the Falkland Islands, they mask a more complex history, the underlying soils indicating periods of tropical and temperate soil formation resulting from weathering during and since the Tertiary Period. Block streams have also been reported from beneath cold-based glaciers in Sweden, and below till in Canada, and when exhumed, can continue to develop.  相似文献   

12.
We conducted a preliminary study of paleoshoreline features associated with Böön Tsagaan Nuur, Tsagaan Nuur, and Orog Nuur, lakes located in the Gobi–Altai transition zone of the Valley of Lakes (Dolina Ozor) which stretches from central to western Mongolia. The paleoshoreline features were first identified on RADARSAT satellite SAR imagery. We investigated the features during the 1998 field season of the Joint Mongolian–Russian–American Archaeological Expedition to the Gobi–Altai region. We identified paleoshorelines of multiple elevations in the field, which are considered to be relict beach ridges and wave-cut terraces. Other paleolake landforms include spits and Gilbert-type deltas. These landforms are complex, large and well established, implying that the paleolakes were stable for extended periods. The reconstructed paleolakes cover extensive areas of the valley floor, implying that hydrological and climatic conditions were very different in the past. Paleolake expansions may have occurred under a variety of circumstances. One hypothesis is that the high lake stands occurred during the wetter period corresponding to the Oxygen Isotope Stage 3 prior to the Last Glacial Maximum (LGM), during the warmest early Holocene and the late Holocene, or during all these periods. If low evaporation rates due to lower temperatures, glacier meltwater and possibly increased precipitation are important factors, then the expansions may have occurred during the terminal Late Glacial period after the Last Glacial Maximum. The greatly expanded lakes in the Gobi–Altai could have significantly affected the Quaternary human demography and migration in the region.  相似文献   

13.
Six rock glaciers in the Southern Carpathians have been investigated by means of geoelectrical soundings in order to detect their internal stratigraphy and the existence of frozen sediments. In the case of three relict rock glaciers, the electrical resistivity measurements indicated a typical internal structure. Low resistivity values (<10 kΩm) which are typical of unfrozen fine‐grained materials were obtained, but high resistivity values (25–240 kΩm) measured in the Pietroasa, Ie?u and Pietrele rock glaciers denote the presence of sediments cemented by interstitial ice and ice lenses. Based on the moderate resistivity values, the ice content is probably low to medium in the upper portion of these rock glaciers, that is, above 2040 m. At two sites (Pietroasa and V?iuga rock glaciers), ground surface temperature (GST) evolution was monitored using digital dataloggers. Mean annual ground surface temperature and GST regime throughout the winter were extracted from the recordings and confirmed the probability of permafrost occurrence in Pietroasa rock glacier. In the Ie?u and Pietrele rock glaciers, measurements of bottom temperatures of the winter snow cover were performed in March 2012. Considering the thick active layer, the reduced ice content and the presence of scarce vegetation on their surface it could be assumed that the permafrost exists in marginal conditions in the Southern Carpathians. The ground ice in permafrost is produced by the groundwater freezing or by snow banks buried by coarse angular boulders following large rockfalls.  相似文献   

14.
Sugai  & Ohmori 《Basin Research》1999,11(1):43-57
A model for the change in shape of interfluves by concurrent tectonics and denudation was developed based on the morphometric attributes of landforms. The tributaries flowing down valley side slopes and dissecting low-relief surfaces on the interfluves are one of the most important elements for relief-forming processes. They were named as β-tributaries. The valleyhead altitude ( H ), the junction altitude ( L ) and the valley length ( l ) of the β-tributary were measured. The altitudinal difference ( h=H−L ), which indicates the local relief, and the average slope of tributary (tan θ= h / L ) were calculated. The regression analyses among H , L , l , h and tan θ indicate that the valley length, relief and slope increase with an increase in valleyhead altitude.
Based on the functional relations above, the shape of interfluve is a function of uplift, altitude and erosion. This model is used to illustrate the change in cross-section of interfluves during a period of sustained rock uplift.
Successive changes in shape of interfluve can be divided into two substages: (1) the early substage, characterized by trapezoidal cross-sections with the original low-relief surfaces and residual, shallow stream networks on the ridges; and (2) the later substage, characterized by a triangular cross-section, with the original low-relief surfaces removed and with the interfluves lowered by headward erosion of β-tributaries. In central Japan, the transitional relief from the trapezoidal to the triangular cross-section appears when the ridges of interfluves attain elevations about 1600–2000 m above sea level.  相似文献   

15.
One of the most glacierized areas in the European Alps, the Mont Blanc massif, illustrates how fast changes affect the cryosphere and the related morphodynamics in high mountain environments, especially since the termination of the Little Ice Age. Contrasts between the north‐west side, gentle and heavily glaciated, and the south‐east side, steep and rocky, and between local faces with varying slope angle and aspect highlight the suitability of the study site for scientific investigations. Glacier shrinkage is pronounced at low elevation but weaker than in other Alpine massifs, and supraglacial debris covers have developed over most of the glaciers, often starting in the nineteenth century. Lowering of glacier surface also affects areas of the accumulation zone. While modern glaciology has been carried out in the massif for several decades, study of the permafrost has been under development for only a few years, especially in the rock walls. Many hazards are related to glacier dynamics. Outburst flood from englacial pockets, ice avalanche from warm‐based and cold‐based glaciers, and rock slope failure due to debuttressing are generally increasing with the current decrease or even the vanishing of glaciers. Permafrost degradation is likely involved in rockfall and rock avalanche, contributing to the chains of processes resulting from the high relief of the massif. The resulting hazards could increasingly endanger population and activities of the valleys surrounding the Mont Blanc massif.  相似文献   

16.
Glaciers in the western USA contribute summer meltwater to regional hydrological systems. In the San Juan Mountains of Colorado, where glaciers do not exist, rock glaciers serve that function during the summer runoff period. Most rock glaciers in Colorado are located on northern slopes in mountainous areas; however, some rock glaciers in southwest Colorado have different aspects. In this study, we asked how slope aspect and rising air temperatures influence the hydrological processes of streams sourced from rock glaciers in the San Juan Mountains. We focused on three adjacent basins, Yankee Boy basin, Blue Lakes basin, and Mill Creek basin, which share a common peak, Gilpin Peak. Using HOBO® U20-001–04 water-level loggers, streamflow data were collected in each of these basins, below each rock glacier. Air temperature significantly influenced stream discharge below the rock glacier. Discharge and air temperature patterns indicate a possible air temperature threshold during late summer when rock glacier melt increases at a greater rate. The results also suggest that the aspect of rock glacier basins influences stream discharge, but that temperature and precipitation are likely larger components of melt regimes.  相似文献   

17.
Only a few very young landforms are the result of currently operating geomorphic processes. Because the time scale for landscape evolution is much longer than the time scale for late Cenozoic climate changes, almost all landscapes are palimpsests, written over repeatedly by various combinations of climate-determined processes. Relict glacial and periglacial landforms are widely identified in mid-latitude regions that have been traditionally described as having been shaped by the “normal” processes of fluvial erosion. Less confidently, deeply weathered regolith and associated relict landforms in the middle and high latitudes are attributed to early Tertiary warmth. However, assemblages of geomorphic processes specific to certain climatic regions, like faunal and floral assemblages, cannot be translated across latitude, so in spite of the many books about the geomorphology of specific modern climate regions, there are few sources that discuss former warm high-latitude, or cold low-latitude, low-altitude geomorphic processes that have no modern analogs. Students and teachers alike who attempt to interpret landforms by extrapolating modern climatic conditions to other latitudinal zones will find their outlook broadened, and they become better prepared to consider the geomorphic impacts of global climate change.  相似文献   

18.
This paper reviews permafrost in High Arctic Svalbard, including past and current research, climatic background, how permafrost is affected by climatic change, typical permafrost landforms and how changes in Svalbard permafrost may impact natural and human systems. Information on active layer dynamics, permafrost and ground ice characteristics and selected periglacial features is summarized from the recent literature and from unpublished data by the authors. Permafrost thickness ranges from less than 100 m near the coasts to more than 500 m in the highlands. Ground ice is present as rock glaciers, as ice-cored moraines, buried glacial ice, and in pingos and ice wedges in major valleys. Engineering problems of thaw-settlement and frost-heave are described, and the implications for road design and construction in Svalbard permafrost areas are discussed.  相似文献   

19.
In the southernmost tract of the Alps (Italian‐French Maritime Alps), extensively covered by glaciers during the Last Glacial Maximum, about 30 small glaciers were present by the end of the Little Ice Age. The aim of this paper is to document the progressive decrease towards exhaustion of these glaciers, located at the latitude of 44° N, highlighting the factors affecting their retreat. All available data sources were investigated for this work including: the annual glaciers fluctuations record, comparative analyses of historical maps and multi‐temporal oblique photographs and direct surveys in the field. The history of the Maritime Alps glaciers fluctuations was thoroughly reconstructed. Stationary conditions were observed from 1896 up to the beginning of the 1930s; since then they underwent phases of withdrawal with variable intensity. In the early 1990s, only six glaciers were still present, the extent of which were all was dramatically reduced. In the past two decades, the Maritime Alps glacier fronts experienced a global retreat of about 100 m, with a sharp acceleration after 2002. Currently ice patches along cirque walls and/or semi‐buried lenses of ice are still present; morphological evidence of permafrost creeping in the glacier forefield accounts for the incipient transition to periglacial landforms (i.e. rock glaciers). The main factors controlling glaciers retreat seem to have been their original extent at the beginning of the current regressive phase and their distance from the main chain divide. From a climatic point of view unfavourable factors for glaciers persistence have been in the last decades a remarkable and sharp temperature increase, a decrease in winter snowfall and a shift of the rainfall peak from autumn to spring.  相似文献   

20.
Glacier mass balance is more sensitive to warming than cooling, but feedbacks related to the exposure of previously buried firn and ice in very warm years is not generally considered in sensitivity studies. A ground‐penetrating radar survey in the accumulation area of Rolleston Glacier, New Zealand shows that five years of previous net accumulation was removed by melt from parts of the glacier above the long‐term equilibrium line altitude during a single negative mass balance year. Rolleston Glacier receives a large amount of accumulation from snow avalanches, which may temporarily buffer it from climate warming by providing additional mass that has accumulated at higher elevations, effectively increasing the elevation range of the glacier. However, glaciers reliant on avalanche input may have high sensitivity to climatic variations because the extra mass is concentrated on a small part of the glacier, and small variations in avalanche input could have a large impact on overall glacier accumulation. Further research is needed to better estimate the amount and spatial distribution of accumulation by avalanche in order to quantify the climate sensitivity of small avalanche‐fed glaciers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号