首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
《Gondwana Research》2007,11(3-4):328-339
Volcanic rocks from Serra Branca, Iberian Pyrite Belt, Portugal, consist of calc-alkaline felsic and intermediate rocks. The latter are massive andesites, whereas the former include four dacitic to rhyolitic lithologies, distinguishable on spiderdiagrams and binary plots of immobile elements. Zircon thermometry indicates that two felsic suites may have formed from different magmas produced at distinct temperatures, with only limited fractionation within each suite. Alternatively, all the felsic rocks can be related through fractionation of a single magma if the lower zircon saturation temperature obtained for one suite merely results from Zr dilution, mostly reflecting silicification.The relatively high magma temperatures at Serra Branca ease the classification of felsic rocks based on their HFSE contents and also indicate volcanogenic massive sulfide deposit favorability. This contrasts with other areas of the Belt that register lower magma temperatures and are subsequently barren. However, magma temperatures may have not been high enough to cause complete melting of refractory phases in which HFSE reside during crustal fusion of an amphibolite protolith, implying difficult discrimination of tectonic environments for the felsic rocks. The intermediate rocks were possibly formed by mixing between basaltic magmas and crustal material, compatible with volcanism in an attenuated continental lithosphere setting.  相似文献   

2.
Felsic alkalic rocks are a minor component of many ocean island volcanic suites, and include trachyte and phonolite as well as various types of alkaline and peralkaline rhyolite. However, there is considerable debate on the nature of their formation; for example, are they formed by partial melting of anomalous mantle or the final products of fractional crystallization of mafic magmas. The phonolites and foidal phonolites on Rarotonga were formed by low pressure crystal fractionation of two chemically distinct parental magmas. Low silica and high silica mafic magmas produced a basanite-foidal phonolite series and an alkali basalt-phonolite series, respectively. The foidal phonolite composition evolved from the low silica mafic magmas by approximately 60% fractionation of titanaugite + leucite + nepheline + magnetite + apatite. Fractionation continued with the crystallization of aegirine-augite + nepheline + kaersutite + magnetite + apatite. The phonolites formed from the alkali basalts by approximately 40% fractionation of kaersutite + titanaugite + Fe-Ti oxide + plagioclase + apatite and continued to evolve further by fractionation of anorthoclase + nepheline + aegerine-augite + Fe-Ti oxides. As the magmas fractionated in both suites, their overall viscosities (solid + liquid) increased until a point was reached whereby viscosity inhibited the eruption of magmas with compositions intermediate between the mafic rocks and the felsic rocks. However, the magmas continued to fractionate under static conditions with the residual fluid becoming foidal phonolitic in the low silica suite or phonolitic in the high silica suite. These phonolitic liquids, as a result of an increase in volatiles and enrichment of alkalis over aluminum, would actually have a lower viscosity than the intermediate liquids. This decrease in viscosity and the switch from a magma chamber being predominantly a liquid with suspended solids to a solid crystalline network with an interstitial liquid enabled phonolitic liquids to migrate, pool, and eventually erupt on the surface.  相似文献   

3.
Volcanic rocks in the Middle–Lower Yangtze River Valley (MLYRV) constitute a bimodal magmatic suite, with a significant compositional gap (between 50% and 63% SiO2) between the mafic and felsic members. The suite is characterized by a relatively wide spectrum of rock types, including basalts, trachytes, and rhyolites. The basaltic rocks have low-to-moderate SiO2 contents of 46.00–50.01%, whereas the trachytes and rhyolites possess SiO2 contents in the range of 63.08–77.61%. Rocks of the bimodal suite show moderate enrichment of LILEs, negative Nb, Ta, and Ti anomalies, and are significantly enriched in LREEs. The basalts were most likely generated by parental mafic magmas derived from enriched lithospheric mantle with minor assimilation of crustal materials involving coeval crystal fractionation during magma evolution. The results of energy-constrained assimilation and fractional crystallization simulations demonstrate that the felsic magma was produced by the mixing of 5–20% lower crustal anatectic melts with an evolved mafic magma (~48% SiO2) and accompanied by extensive clinopyroxene, plagioclase, biotite, and Fe–Ti oxide fractionation. Our model for the genesis of felsic rocks in bimodal suites is different from the traditional models of crustal melting and fractional crystallization or assimilation–fractional crystallization of basaltic liquids.  相似文献   

4.
The areally extensive (>5000 km2), syn-tectonic, ca. 520 Ma, mainly S-type Donkerhuk batholith was constructed through injection of thousands of mainly sheet-like magma pulses over 20–25 Myr. It intruded schists of the Southern Zone accretionary prism in the Damara Belt of Namibia. Each magma pulse had at least partly crystallised prior to the arrival of the following batch. However, much of the batholith may have remained partially molten for long periods, close to the H2O-saturated granite solidus. The batholith shows extreme variation in chemistry, while having limited mineralogical variation, and seems to be the world’s most heterogeneous granitic mass. The Nd model ages of ~2 Ga suggest that Eburnean rocks of the former magmatic arc, structurally overlain by the accretionary wedge, are the most probable magma sources. Crustal melting was initiated by mantle heat flux, probably introduced by thermal diffusion rather than magma advection. The granitic magmas were transferred from source to sink, with minimal intermediate storage; the whole process having occurred in the middle crust, resulting in feeble crustal differentiation despite the huge volume of silicic magma generated. Source heterogeneity controlled variation in the magmas and neither mixing nor fractionation was prominent. However, due to the transpressional emplacement régime, local filter pressing formed highly silicic liquids, as well as felsic cumulate rocks. The case of the Donkerhuk batholith demonstrates that emplacement-level tectonics can significantly influence compositional evolution of very large syn-tectonic magma bodies.  相似文献   

5.
马芳  薛怀民 《地质学报》2017,91(2):334-361
处于浙-赣火山岩带东北缘的湖(州)-安(吉)盆地内的火山岩/潜火山岩从中性到酸性,中间没有明显的成分间断,以中酸性—酸性组分占绝对优势,中性组分相对较少,缺少基性组分,代表一套连续的中性—酸性岩浆系列。岩石化学总体表现为富碱和高钾的特征,中性岩属橄榄玄粗岩系列,中酸性—酸性岩类属高钾钙碱性系列。盆地内的火山岩在地球化学上均表现为富集大离子亲石元素和轻稀土元素,而高场强元素Nb、Ta、Ti等则有一定程度的亏损。火山岩中主量和微量元素的变异规律揭示分离结晶作用是盆地内岩浆演化的主要机理,但岩浆演化的不同阶段分离的矿物相有所差异,斜长石自始至终都是分离结晶的重要矿物相,在中性—中酸性岩浆演化阶段,角闪石可能也是重要的分离矿物,而中酸性—酸性岩中钾长石和黑云母的分离结晶也起着重要影响。本文所作的精确定年结果表明,盆地内三期火山活动产物的LA-ICPMS锆石U-Pb年龄在误差范围内几乎一致,介于128~130 Ma之间,指示盆地内主要火山活动持续的时间很短。另外测得粗安岩集块的SHRIMP锆石U-Pb年龄为136±1 Ma,可能意味着该盆地初期有少量偏基性的火山活动。推测湖安火山岩盆地发育于活动大陆边缘的后造山环境,岩浆的形成可能受控于岩石圈的拆沉或俯冲板片的断落,母岩浆主要是由镁铁质下地壳物质部分熔融形成的,几乎没有地幔物质的参与,所形成的安山质-英安质岩浆在浅部岩浆房中发生过强烈的分异演化。  相似文献   

6.
The Zouzan pluton is one of the intrusive bodies in the NE of Lut block enclosed by Cenozoic volcanic and sedimentary rocks. It consists of two distinct mafic and felsic magmas which are genetically unrelated. All studied rocks are calc-alkaline in nature, with LILE/REE and HFSE/REE ratios compatible with arc related magmatism. Mafic phase has dioritic composition emplaced as small stocks in felsic rocks. Geochemical characteristics in dioritic rocks (relatively high contents of incompatible elements, low Na2O and Mg#>44) suggest they were derived from partial melting of metabasalt sources in a subduction settings. Felsic phase composed of granodiorite to granite rocks with high-K calcalkaline metaluminous to slightly peraluminous signature. Major and trace element data exclude high pressure melting and metasedimentary parental in the formation of Zouzan felsic rocks. They have been formed by partial melting of mantle-derived mafic rocks. Field relation, petrographical evidences and chemical composition show that partial melting of a mantle wedge in conjunction with magma mixing and crystal fractionation would have led to generation of Zouzan pluton.  相似文献   

7.
ABSTRACT

Appinite complexes preserve evidence of mantle processes that produce voluminous granitoid batholiths. These plutonic complexes range from ultramafic to felsic in composition, deep to shallow emplacement, and from Neo-Archean to Recent in age. Appinites are a textural family characterized by idiomorphic hornblende in all lithologies, and spectacular textures including coarse-grained mafic pegmatites, fine-grained ‘salt-and-pepper’ gabbros, as well as planar and linear fabrics. Magmas are bimodal (mafic-felsic) in composition; ultramafic rocks are cumulates, intermediate rocks are hybrids. Their geochemistry is profoundly influenced by a mantle wedge extensively metasomatized by fluids/magmas produced by subduction. Melting of spinel peridotite sub-continental lithospheric mantle (SCLM) produces appinites whose geochemistry is indistinguishable from coeval low-K calc-alkalic arc magmatism. Coeval felsic rocks within appinite complexes and adjacent granitoid batholiths are crustal magmas. When subduction terminates, asthenospheric upwelling (e.g. in a slab window, or in the aftermath of slab failure) induces melting of metasomatized garnet SCLM to produce K-rich sho shonitic magmas enriched in large ionic lithophile and light relative to heavy rare earth elements, whose asthenospheric component can be identified by Sm-Nd isotopic signatures. Coeval late-stage Ba-Sr granitoid magmas have a ‘slab failure’ geochemistry, resemble TTG and adakitic suites, and are formed either by fractionation of an enriched (shoshonitic) mafic magma, or high pressure melting of a meta-basaltic protolith either at the base of the crust or along the upper portion of the subducted slab. Appinite complexes may be the crustal representation of mafic magma that underplated the crust for the duration of arc magmatism. They were preferentially emplaced along fault zones around the periphery of the granitoid batholiths (where their ascent is not blocked by overlying felsic magma), and as enclaves within granitoid batholiths. When subduction ceases, appinite complexes with a more pronounced asthenospheric component are preferentially emplaced along active faults that bound the periphery of the batholiths.  相似文献   

8.
Igneous rocks derived from high‐temperature, crystal‐poor magmas of intermediate potassic composition are widespread in the central Lachlan Fold Belt, and have been assigned to the Boggy Plain Supersuite. These rocks range in composition from 45 to 78% SiO2, with a marked paucity of examples in the range 65–70% SiO2, the composition dominant in most other granites of the Lachlan Fold Belt. Evidence is presented from two units of the Boggy Plain Supersuite, the Boggy Plain zoned pluton and the Nallawa complex, to demonstrate that these high‐temperature magmas solidified under a regime of convective fractionation. By this process, a magma body solidified from margin to centre as the zone of solidification moved progressively inwards. High‐temperature near‐liquidus minerals with a certain proportion of trapped interstitial differentiated melt, separated from the buoyant differentiated melt during solidification. In most cases much of this differentiated melt buoyantly rose to the top of the magma chamber to form felsic sheets that overly the solidifying main magma chamber beneath. Some of these felsic tops erupted as volcanic rocks, but they mainly form extensive high‐level intrusive bodies, the largest being the granitic part of the Yeoval complex, with an area of over 200 km2. Back‐mixing of fractionated melt into the main magma chamber progressively changed the composition of the main melt, resulting in highly zoned plutons. In the more felsic part of the Boggy Plain zoned pluton back‐mixing was dominant, if not exclusive, forming an intrusive body cryptically zoned from 63% SiO2 on the margin to 72% SiO2 in the core. It is suggested that tonalitic bodies do not generally crystallise through convective fractionation because the differentiated melt is volumetrically small and totally trapped within the interstitial space: back‐mixing is excluded and homogeneous plutons with essentially the composition of the parental melt are formed.  相似文献   

9.
To investigate their genesis and relations with their host rocks, we study igneous microgranular enclaves (IMEs) in the c. 370 Ma, post-orogenic, high-level, felsic plutons and volcanic rocks of Central Victoria, Australia. The IMEs are thermally quenched magma globules but are not autoliths, and they do not form mixing series with their host magmas. These IMEs generally represent hybrids between mantle-derived magmas and very high-T crust-derived melts, modified by fractionation, ingestion of host-derived crystals and, to a lesser extent, by chemical interactions with their hosts. Isotopic and elemental evidence suggests that their likely mafic progenitors formed by partial melting of subcontinental mantle, but that the IME suites from different felsic host bodies did not share a common initial composition. We infer that melts of heterogeneous mantle underwent high-T hybridisation with melts from a variety of crustal rocks, which led to a high degree of primary variability in the IME magmas. Our model for the formation of the Central Victorian IMEs is likely to be applicable to other occurrences, especially in suites of postorogenic granitic magmas emplaced in the shallow crust. However, there are many different origins for the mingled magma globules that we call IMEs, and different phenomena seem to occur in differing tectonic settings. The complexity of IME formation means that it is difficult to unravel the petrogenesis of these products of chaotic magma processes. Nevertheless, the survival of fine-grained, non-equilibrium mineralogy and texture in the IMEs suggests that their tenure in the host magmas must have been geologically brief.  相似文献   

10.
The post-orogenic Yzerfontein pluton, in the Saldania Belt of South Africa was constructed through numerous injections of shoshonitic magmas. Most magma compositions are adequately modelled as products of fractionation, but the monzogranites and syenogranites may have a separate origin. A separate high-Mg mafic series has a less radiogenic mantle source. Fine-grained magmatic enclaves in the intermediate shoshonitic rocks are autoliths. The pluton was emplaced between 533 ± 3 and 537 ± 3 Ma (LA-SF-ICP-MS U–Pb zircon), essentially synchronously with many granitic magmas of the Cape Granite Suite (CGS). Yzerfontein may represent a high-level expression of the mantle heat source that initiated partial melting of the local crust and produced the CGS granitic magmas, late in the Saldanian Orogeny. However, magma mixing is not evident at emplacement level and there are no magmatic kinships with the I-type granitic rocks of the CGS. The mantle wedge is inferred to have been enriched during subduction along the active continental margin. In the late- to post-orogenic phase, the enriched mantle partially melted to produce heterogeneous magma batches, exemplified by those that formed the Yzerfontein pluton, which was further hybridised through minor assimilation of crustal materials. Like Yzerfontein, the small volumes of mafic rocks associated with many batholiths, worldwide, are probably also low-volume, high-level expressions of crustal growth through the emplacement of major amounts of mafic magma into the deep crust.  相似文献   

11.
Following the amalgamation of the Siberian and North China Cratons, NE China, as part of the Central Asian Orogenic Belt (CAOB), underwent Late Mesozoic lithospheric extension that was associated with volcanic activity. The Songliao Basin is the most important rift structure formed during these processes and contains voluminous volcanic rocks interlayered with sedimentary infill. Mafic-to-intermediate lavas are associated with felsic ones. This study focusses on the geochemical compositions of the less-widespread Early Cretaceous mafic-to-intermediate lavas in the Songliao Basin and compares them with the more abundant felsic rocks. Two mafic-to-intermediate magma series, one with alkaline and the other with sub-alkaline affinity, were identified. High MgO and Cr contents, low Th/Nb and La/Nb ratios, and variable but depleted Nd isotope compositions indicate that both magma suites were most likely formed by the melting of enriched upper mantle sources. Sub-alkaline mafic-to-intermediate rocks and I-type rhyolites define a co-genetic magma series. This rock suite was produced by the melting of subduction-modified lithospheric mantle and subsequent magma evolution as well as crustal melting during lithospheric extension. Alkaline mafic-to-intermediate rocks and A-type rhyolites form another co-genetic magma suite that was produced under within-plate conditions from an OIB-type mantle source, supposed to be the heterogeneous shallow asthenosphere and/or the lower lithosphere. Decompression partial melting of this mantle source requires a relatively thin lithosphere. The development of alkaline mafic rocks and A-type rhyolites as typical bimodal volcanic assemblage reflects that lithospheric thinning below the Songliao Basin reached its maximum, whereas basin rifting terminated afterwards.  相似文献   

12.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include: (1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2) fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P H2O<P TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization were more important than bulk crustal melting or assimilation. Received: 2 July 1997 / Accepted: 25 November 1997  相似文献   

13.
The Appinite-Migmatite Complex of Sanabria, NW Iberian Massif, Spain   总被引:1,自引:0,他引:1  
The Sanabria appinitic rocks and host migmatites form an unusual,non-peri-batholithic complex in which all the typical membersof the appinite suite are present. It differs from most appiniticcomplexes in the deeper level of emplacement and the close temporaland spatial association with migmatites. Consequently, manyin situ relationships that resulted from the invasion of maficmagma into a crustal anatectic zone are extremely well preserved.The complex shows unequivocal relations between members of theappinitic suite and between these and migmatites derived byanatexis of a gneissic formation (Ollo de Sapo gneiss). Theserelations point to derivation of monzodiorites and biotite dioritesby hydrous basalt fractionation combined with fluid-assistedmelting of the crustal rocks surrounding the appinitic intrusions.This hydrous basic magma may be derived from an enriched regionof the mantle associated with subduction. Petrogenetic modelshave been tested using a combination of field relations andgeochemical data. Despite the complexity of the processes involved,it is concluded that water played an important role in the petrogenesisof the intermediate and mafic magmas. Reaction between monzodioritemelts and the host migmatites was responsible for the generationof a range of intermediate rocks within the complex. The needfor water to facilitate magma generation in both the mantleand the crust suggests that melting is linked with subduction.This interpretation has important implications because appiniticmagmatism may be considered as indicative of subduction processesinvolved not only in the generation of the mafic end-membersof the suite, but also in the generation of batholiths withwhich the appinitic rocks are spatially and temporally associated. KEY WORDS: appinite; monzodiorite; migmatite; Variscan orogen; Iberian massif  相似文献   

14.
The Middle Devonian volcanic rocks in the northern area of East Junggar, located between the Ertix andUlungur rivers of northern Xinjiang, may be divided into basic and acid ones. It is evident that a compositionalgap exists between the two groups so that the volcanic rocks are not in line with a calc-alkaline series becausethe intermediate rocks are absent in the area. The fact shows that the volcanic rocks are a typical bimodal asso-ciation. The formation of the bimodal association of volcanic rocks in the area was closely related to continen-tal rifting or continental extension in the Middle Devonian. In such a tectonic setting, magmas were first pro-duced by partial melting of the mantle. Where crustal thinning was greater, the magmas ascended and eruptedon the surface directly so that the basic volcanic rocks formed, but olivine and/or partial pyroxenefractionation occurred in the magmas during their ascent through the thinning crust. On the other hand, wherecrustal thinning was less, ascending mantle-derived magmas reached the lower crust and accumulated there, re-sulting in partial melting of the lower crust and thus giving rise to the contaminated magma which was consoli-dated as acid volcanic rocks on the surface.  相似文献   

15.
Three Paleoproterozoic A-type rapakivi granite suites (Jamon, Serra dos Carajás, and Velho Guilherme) are found in the Carajás metallogenic province, eastern Amazonian craton. Liquidus temperatures in the 900–870 °C range characterize the Jamon suite, those for Serra dos Carajás and Velho Guilherme are somewhat lower. Pressures of emplacement decrease from Jamon (3.2±0.7 kbar) through Serra dos Carajás (2.0±1.0 kbar) to Velho Guilherme (1.0±0.5 kbar). Oxidizing conditions (NNO+0.5) characterized the crystallization of the Jamon magma, the Velho Guilherme magmas were reducing (marginally below FMQ), and the Serra dos Carajás magmas were intermediate between the two in this respect. The three granite suites have Archean TDM model ages and strongly negative Nd values (−12 to −8 at 1880 Ma), and they were derived from Archean crust. The Jamon granite suite may have been derived from a quartz dioritic source, and the Velho Guilherme granites from K-feldspar-bearing granitoid rocks with some sedimentary input. The Serra dos Carajás granites either had a somewhat more mafic source than Velho Guilherme or were derived by a larger degree of melting. Underplating of mafic magma was probably the heat source for the melting. The petrological and geochemical characteristics of the Carajás granite suites imply considerable compositional variation in the Archean of the eastern Amazonian craton. The oxidized Jamon suite granites are similar to the Mesoproterozoic magnetite-series granites of Laurentia, and they were derived from Archean igneous sources that were more oxidized than the sources of the Fennoscandian rapakivi granites. The Serra dos Carajás and Velho Guilherme granites approach the classic reduced rapakivi series of Fennoscandia and Laurentia. No counterparts of the Mesoproterozoic two-mica granites of Laurentia have been found, however. Following the model of Hoffman [Hoffman, P., 1989. Speculations on Laurentia's first gigayear (2.0 to 1.0 Ga). Geology 17, 135–138], the origin of the 1.88 Ga Carajás granites is related to a mantle superswell beneath the Trans-Amazonian supercontinent. This caused breakup of the continent and was associated with magmatic underplating and resultant crustal melting and generation of A-type granite magmas. The Paleoproterozoic continent that included the Archean and Trans-Amazonian domains of the Amazonian craton was assembled at 2.0 Ga; its disruption was initiated at 1.88 Ga, at least 200 Ma earlier than in Laurentia and Fennoscandia. The Carajás granites were related to the breakup of the supercontinent, not to subduction processes.  相似文献   

16.
Geological studies on saturated to oversaturated and subsolvus aegirine-riebeckite syenite bodies of the Pulikonda alkaline complex and Dancherla alkaline complex were carried out. The REE distribution of the Dancherla syenite shows a high fractionation between LREE and HREE. The absence of Eu anomaly suggests source from garnet peridotite. The Pulikonda syenite shows moderate fractionation between LREE and HREE as reflected by enrichment of HREE and moderate enrichment of LREE. The negative Eu anomaly indicates role of plagioclase fractionation.Three distinct co-eval primary magmas i.e. mafic syenite-, felsic syenite- and alkali basalt magmas — all derived from low-degrees of partial melting of mantle differentiates and enriched metasomatised lower crust played a major role in the genesis and emplacement of the syenites into overlying crust along deep seated regional scale trans-lithospheric strike-slip faults and shear zones following immediately after late-Archaean calc-alkaline arc magmatism at different time-space episodes i.e. initially at craton margin and later on into the thickened interior of the Eastern Dharwar craton. The ductile sheared and folded Pulikonda alkaline complex was evolved dominantly from the magmas derived from partial melting of lower crust and minor juvenile magmas from mantle. Differentiation and fractionation by liquid immiscibility of mafic magma and commingling-mixing of intermediate and felsic magmas followed by fractionational crystallisation under extensional tectonics during waning stages of calc-alkaline arc magmatism nearer to the craton margin were attributed as the main processes for the genesis of Pulikonda syenite complex. Commingling and limited mixing of independent mantle derived mafic and felsic syenitic magmas and accompanying fractionation resulting into soda rich and potash rich syenite variants was tentatively deduced mechanism for the origin of Dancherla, Danduvaripalle, Reddypalle syenites and other bodies belonging to Dancherla alkaline complex at the craton interior. The Peddavaduguru syenite was formed by differentiation of alkali mafic magma (gabbro to diorite) and it’s simultaneous mingling with fractionated felsic syenitic magma under incipient rift. Vannedoddi and Yeguvapalli syenites were derived due to desilicification and accompanying alkali feldspar mestasomatism of younger potash rich granites along Guntakal-Gooty fault and along Singanamala shear zone respectively.  相似文献   

17.
太行山北段出露大规模中生代岩浆岩带,以中酸性岩为主,普遍含有基性微粒包体。锆石的SHRIMP U-Pb年代学研究表明,包体形成于126Ma左右,与寄主岩石大致同时形成。锆石的LA-MC-ICPMS Lu-Hf同位素原位测量研究表明,基性岩来自富集地幔的部分熔融,并遭受了一定程度的地壳混染;主要的中酸性岩基形成于壳幔岩浆混和过程,而岩基中微粒基性包体是经历分离结晶的基性岩浆注入酸性岩浆房中形成。  相似文献   

18.
Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes appear to require development of relatively large magma chambers in the crust that are sustained by large basalt fluxes from the mantle. The lack of extensive crustal contamination and mixing in the Miocene lavas may be related to a decreased basalt flux or initiation of blockfaulting that prevented pooling of basaltic magma in the crust.  相似文献   

19.
The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc‐alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back‐arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2–6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065–0.7085) and lower εNd(t) (?7.70 to ?4.35) than the MME of basaltic–dacitic composition (0.7044–0.7061 and ?0.53 to ?5.24), whereas most gray granites have intermediate chemical and Sr–Nd isotopic compositions (0.7061–0.7072 and ?3.75 to ?6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr–Nd–Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma–fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back‐arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI‐like composition, which plays an important role in the genesis of igneous rocks there.  相似文献   

20.
The Gouldsboro Granite forms part of the Coastal Maine Magmatic Province, a region characterized by granitic plutons that are intimately linked temporally and petrogenetically with abundant co-existing mafic magmas. The pluton is complex and preserves a felsic magma chamber underlain by contemporaneous mafic magmas; the transition between the two now preserved as a zone of chilled mafic sheets and pillows in granite. Mafic components have highly variably isotopic compositions as a result of contamination either at depth or following injection into the magma chamber. Intermediate dikes with identical isotopic compositions to more mafic dikes suggest that closed system fractionation may be occurring in deeper level chambers prior to injection to shallower levels. The granitic portion of the pluton has the highest Nd isotopic composition (εNd = + 3.0) of plutons in the region whereas the mafic lithologies have Nd isotopic compositions (εNd = + 3.5) that are the lowest in the region and similar to the granite and suggestive of prolonged interactions and homogenization of the two components. Sr and Nd isotopic data for felsic enclaves are inconsistent with previously suggested models of diffusional exchange between the contemporaneous mafic magmas and the host granite to explain highly variable alkali contents. The felsic enclaves have relatively low Nd isotopic compositions (εNd = + 2 – + 1) indicative of the involvement of a third, lower εNd melt during granite petrogenesis, perhaps represented by pristine granitic dikes contemporaneous with the nearby Pleasant Bay Layered Intrusion. The dikes at Pleasant Bay and the felsic enclaves at Gouldsboro likely represent remnants of the silicic magmas that originally fed and replenished the overlying granitic magma chambers. The large isotopic (and chemical) contrasts between the enclaves and granitic dikes and granitic magmas may be in part a consequence of extended interactions between the granitic magmas and co-existing mafic magmas by mixing, mingling and diffusion. Alternatively, the granitic magmas may represent an additional crustal source. Using granitic rocks such as these with abundant evidence for interactions with mafic magmas complicate their use in constraining crustal sources and tectonic settings. Fine-grained dike rocks may provide more meaningful information, but must be used with caution as these may also have experienced compositional changes during mafic–felsic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号