首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
. . ,e, , . . e, . , .
Stability of the librational triangular points of the three-dimensional elliptic restricted three-body problem is studied. The problem is solved in the non-linear statement at the small values of eccentricity.For all values ofe, , besides ones which correspond to the resonances of the third and the fourth order the librational points are stable taking into account the terms up to the fourth order in the normal form of the Hamiltonian function of the perturbed motion.At sufficiently smalle and the non-stability in sense of Liapunov has been proved. The approximate equations of the boundary of the stability area in the planee, has been obtained. The cause of the non-stability is an equality of the rotational period of the principal attracting masses in the elliptic orbit and the period of oscillation of indefinitely small mass along the direction perpendicular to the plane of their motion.
  相似文献   

2.
We present the analysis of observations of the August flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms and spectra. In each flare the observations fit a model of particle acceleration in the chromosphere with emission produced by impact and by heating by the energetic electrons and protons. The region showed inverted polarity and high gradients from birth, and flares appear due to strong magnetic shears and gradients across the neutral line produced by sunspot motions. Post flare loops show a strong change from sheared, force-free fields parallel to potential-field-like loops, perpendicular to the neutral line above the surface.We detected fast (5 s duration) small (1') flashes in 3835 at the footpoints of flux loops in the August 2 impulsive flare at 1838 UT, which may be explained by dumping of > 50 keV electrons accelerated in individual flux loops. The flashes show excellent time and intensity agreement with > 45 keV X-rays. In the less impulsive 2000 UT flare a less impulsive wave of emission in 3835 moved with the separating footpoints. The thick target model of X-ray production gives a consistent model for X-ray, 3835 and microwave emission in the 18:38 UT event.Spectra of the August 7 flare show emission 12 Å FWHM in flare kernels, but only 1 to 2 Å wide in the rest of the flare. The kernels thus produce most of the H emission. The total emission in H in the August 4 and August 7 flares was about 2 × 1030 erg. We belive this dependable value more accurate than previous larger estimates for great flares. The time dependence of total H emission agrees with radio and X-ray data much better than area measurements which depend on the weaker halo.Absorption line spectra show a large (6 km/s-1) photospheric velocity discontinuity across the neutral line, corresponding to sheared flow across that line.This work has been supported by NASA under NGR 05 002 034, NSF Atmospheric Sciences program under GA 24015, and AFCRL under FI9628-73-C-0085.  相似文献   

3.
E. W. Cliver 《Solar physics》1995,157(1-2):285-293
The evolution of solar flare nomenclature is reviewed in the context of the paradigm shift, in progress, from flares to coronal mass ejections (CMEs) in solar-terrestrial physics. Emphasis is placed on: the distinction between eruptive (Class II) flares and confined (Class I) flares; and the underlying similarity of eruptive flares inside (two-ribbon flares) and outside (flare-like brightenings accompanying disappearing filaments) of active regions. A list of research questions/problems raised, or brought into focus, by the new paradigm is suggested; in general, these questions bear on the interrelationships and associations of the two classes (or phases) of flares. Terms such as eruptive flare and eruption (defined to encompass both the CME and its associated eruptive flare) may be useful as nominal links between opposing viewpoints in the flares vs CMEs controversy.  相似文献   

4.
The flare of 11 November, 1980, 1725 UT occurred in a magnetically complex region. It was preceded by some ten minutes by a gradual flare originating over the magnetic inversion line, close to a small sunspot. This seems to have triggered the main flare (at 70 000 km distance) which originated between a large sunspot and the inversion line. The main flare started at 172320 UT with a slight enhancement of hard X-rays (E > 30 keV) accompanied by the formation of a dark loop between two H bright ribbons. In 3–8 keV X-rays a southward expansion started at the same time, with - 500 km s –1. At the same time a surge-like expansion started. It was observable slightly later in H, with southward velocities of 200 km s–1. The dark H loop dissolved at 1724 UT at which time several impulsive phenomena started such as a complex of hard X-ray bursts localized in a small area. At the end of the impulsive phase at 172540 UT, a coronal explosion occurred directed southward with an initial expansion velocity of 1800 km s–1, decreasing in 40 s to 500 km s–1.Now at Fokker Aircraft Industries, Schiphol, The Netherlands.  相似文献   

5.
Zhang  Jun  Wang  Jingxiu 《Solar physics》2000,196(2):377-393
We analyzed simultaneous EUV images from the Transition Region And Coronal Explorer (TRACE) and H and H filtergrams from Huairou Solar Observing Station (HSOS). In active region NOAA 8307, an H C5.5 flare occurred near 06:10 UT on 23 August 1998. In this paper, we concentrated on loop–loop interaction, as well as their relationship to the C5.5 flare. We find that while opposite polarity magnetic fields cancelled each other, H bright points appeared, and then the flare occurred. Looking at EUV images, we noticed that a TRACE flare, associated with the C5.5 flare in H and H filtergrams, first appeared as patch-shaped structures, then the flare patches expanded to form bright loops. We used a new numerical technique to extrapolate the chromospheric and coronal magnetic field. Magnetic field loops, which linked flare ribbons, were found. It was suggested that loop interaction in the active region was the cause of the TRACE and H flare; the magnetic topological structures were clearly demonstrated and the TRACE flare was probably due to the interaction among energetic low-lying and other longer (higher) magnetic loops. Each primary flare kernel, seen from H, H filtergrams, and EUV images, was located near the footpoints of several interacting loops.  相似文献   

6.
With the use of X-ray heliographs carried by the satellites Cosmos-166 and Cosmos-230 the height of an X-ray flare was found to be about 20–25 000 km. The regions of the X-ray flares possess a filamentary structure which, during the development of the flares, shows spatial changings with speeds up to 107 cm/sec.  相似文献   

7.
The flare of 12 November 1980, 0250 UT, in Active Region 2779 (NOAA classification) was studied by using X-ray images obtained with the Hard X-Ray Imaging Spectrometer aboard NASA's Solar Maximum Mission. In a ten-minute period, between about 0244 and 0254 UT, some five short-lived impulsive bursts occurred. We found that the so-called hard bursts ( 15 keV) are also detectable in low energy images. During that 10 min period - the impulsive phase - the heat input into the flare and the total number of energetic electrons increased practically exponentially, to reach their maximum values at 0254 UT. At the end of that period, when the thermal energy content of the flare was largest, a burst was observed, for the first time, to spread in a broad southern direction from an initially small area with a speed of about 50 km s–1. We have called this phenomenon a coronal explosion.Fokker Aircraft Industries, Schiphol, The Netherlands.  相似文献   

8.
On the assumption that solar flares are due to instabilities which occur in current sheets in the Sun's atmosphere, one may classify magnetic-field configurations associated with flares into two types. One is characterized by closed current sheets, magnetic-field lines adjacent to these sheets beginning and ending at the Sun's surface. The other is characterized by open current sheets, magnetic-field lines adjacent to these sheets beginning at the Sun's surface but extending out into interplanetary space. Flares associated with open current sheets can produce Type III radio bursts and high-energy-particle events, but flares associated with closed current sheets cannot. The flare of July 6, 1966 apparently consisted of one flare of each type.  相似文献   

9.
M. Dizer 《Solar physics》1969,10(2):416-428
We report measurements made on the brightness in H of all parts of the flare photographed through a birefringent filter centered on H, using a scanning isodensitometer. From obtained isophotes of the flares we derived some information on the morphological changes in the flare and estimated the total energy in H of the flare.  相似文献   

10.
The problem of stability of the equilibrium points in the problem of motion of a mass point in the neighbourhood of a rotating triaxial ellipsoid in a degenerate case (the Gaussian of the Hamiltonian is equal to zero) is investigated.It is proved that the equilibrium points in the degenerate case are stable in the strict sence.
Résumé On étudie le problème de la stabilité des positions d'équilibre relatif dans le problème du mouvement du point matériel au voisinage de l'ellipsoid à trois axes tournant dans un cas dégénéré (le gaussian du Hamiltonian égal zéro).On a démontré que des positions d'équilibre relatif dans le dégénéré sont stables dans le sens rigoureux.

( )., .
  相似文献   

11.
Ayres  Thomas R. 《Solar physics》2000,193(1-2):273-297
The solar–stellar connection bridges the daytime and nighttime communities; an essential link between the singular, but detailed, views of our Sun, and the broad, but coarse, glimpses of the distant stars. One area in particular – magnetic activity – has profited greatly from the two way traffic in ideas. In that spirit, I present an evolutionary context for coronal activity, focusing on the very different circumstances of low-mass main-sequence stars like the Sun, compared with more massive stars. The former are active mainly very early in their lives, whereas the latter become coronal only near the end of theirs, during the brief incursion into the cool half of the Hertzsprung–Russell diagram as yellow, then red, giants. I describe tools at the disposal of the stellar astronomer; especially spectroscopy in the ultraviolet and X-ray bands where coronae leave their most obvious imprints. I compare HST STIS spectra of solar-type dwarfs – Dor (F7 V), an active coronal source, and Cen A (G2 V), near twin of the Sun – to the SOHO SUMER UV solar atlas. I also compare the STIS line profiles of the active coronal dwarf to the corresponding features in the mixed activity hybrid chromosphere bright giant TrA (K2 II) and the archetype non-coronal red giant Arcturus ( Boo; K2 III). The latter shows dramatic evidence for a cool absorber in its outer atmosphere that is extinguishing the hot lines (like Siiv 1393 and Nv 1238) below about 1500 Å; the corona of the red giant seems to lie beneath its extended chromosphere, rather than outside as in the Sun. I present an early taste of the moderate resolution spectra we can expect from the recently launched Chandra X-ray Observatory (CXO), and contemporaneous STIS high resolution UV measurements of the CXO calibration star Capella ( Aur; G8 III + G1 III). Last, I describe preliminary results from a May 1999 observing campaign involving SOHO SUMER, TRACE, and the Kitt Peak Infrared Imaging Spectrometer (IRIS). The purpose was to explore the dynamics of the quiet solar atmosphere through the key magnetic transition zone that separates the kinetically dominated deep photosphere from the magnetically dominated coronal regime. Linking spatially and temporally resolved solar phenomena to properties of the average line shapes (widths, asymmetries, intensity ratios, and Doppler shifts) is a crucial step in carrying physical insights from the solar setting to the realm of the distant stars.  相似文献   

12.
13.
Spectra in the narrow vicinity of the Mg xii resonance line at = 8.42 Å were obtained aboard the satellites Intercosmos-4, -7 and the rocket Vertical-2, as well as from laser-produced plasma. The high resolution in solar and laboratory spectra made it possible to reveal a new spectral structure close to the L (Mg xii) line from both short and long wavelength sides. The main features were observed in all the spectra and were interpreted as a single or group of dielectronic satellite lines due to 2l3l 1s3l transitions in the He-like ions according to theoretical calculations which were carried out by means of relativistic Z-expansion technique. The derived electron temperature of the emitting volumes seemed to be 3 × 106 K for laser plasma and about 6 × 106 K for the solar flares studied. The latter value is in good agreement with the temperature estimated with the help of the resonance line-to-continuum intensity ratios.Polish Academy of Science, Solar-Terrestrial Relations Laboratory, Wroclaw, Poland.  相似文献   

14.
Since the average relation between the angular momentaP and the massesM of galaxies can be represented by a power lawPM , we can define a relative angular momentum =P/M (or a constant timeP/M ). For a random motion picture within protogalaxies, should follow a Maxwellian distribution and consequently the dispersion of log should be 0.210.For the reasonable range of ( to 2), the limited sample of galaxies with known dynamical parameters gives between and 1 times the Maxwellian value. For the plausible special case =2 the reciprocal of the maximum rotational velocityv m is already a measure of and the larger sample ofv m-values not only yields the Maxwellian but, moreover, shows the shape of the distribution.
PM , =constP/M . , (lg )=0.210. 7/42, . =2 v m- .
  相似文献   

15.
Flare-associated soft X-ray bursts (8–12 Å) are examined for 283 events observed by OSO-III. These bursts are shown to be predominantly thermal in nature. Their time-profiles are roughly similar to those of the associated H flares, although the X-ray burst begins about two minutes earlier, on the average. The strength of the soft X-ray burst is directly related to the area and brilliance of the flare, the age and flare-richness of the associated plage, and the general level of solar activity at the time of the burst. The peak enhancements in the soft X-ray and H emission rates during flares are of the same order of magnitude, as are the total flare energies radiated at these wavelengths. We estimate that soft X-radiation accounts for up to 10% of a flare's total electromagnetic emission.NRC/NAS Resident Research Associate.  相似文献   

16.
Shortly after the dynamic flare of 14 44 UT on 6 November, 1980, which initiated the second revival in the sequence of post-flare coronal arches of 6–7 November, a moving thermal disturbance was observed in the fine field of view of HXIS. From 15 40 UT until about 18 UT, when it left the field of view, the disturbance rose into the corona, as indicated by a projected velocity of 7.4 km s-1 in the south-east direction. The feature was located above the reconnection region of the dynamic flare and was apparently related to the revived coronal arch. Observations in the coarse field of view after 18 UT revealed a temperature maximum in the revived arch, rising with a velocity of 7.0 km s-1 directly in continuation of the thermal disturbance. The rise velocity of the disturbance was initially (at least until 17 20 UT) very similar to the rise velocities observed for the post-flare loop tops of the parent flare. This suggests that the rise of the reconnection point, in the Kopp and Pneuman (1976) mechanism responsible for the rise of the loop tops, also dictates the rise of the disturbance. From energy requirements it follows that in this phase the disturbed region is still a separate magnetic island, thermally isolated from the old arch structure and the post-flare loops. After 18 UT the rise of the post-flare loop tops slowed down to 2 km s-1, which is significantly slower than the rise of the brightness and temperature maxima of the revived arch in the coarse field of view. Thus in this phase the Kopp and Pneuman mechanism is no longer directly responsible for the rise of the thermal structure and the rise possibly reflects the merging of the old and the new arch structures.A similar thermal disturbance was observed after the dynamic flare of 07: 53 UT on 4 June, 1980. On the other hand, the confined flare of 17 25 UT on 6 November, 1980, did not show this phenomenon. Apparently this type of disturbance occurs after dynamic flares only, in particular when the flare is associated with an arch revival.  相似文献   

17.
Calculations of the rotation parameters at initial stage of evolution on the basis of the model suggested by Jones and published observational data of NP 0532 were made. It is shown that the observed dependence of the angular velocity of NP 0532 and its first derivative with respect to time can be explained by an increase of the angle between the magnetic moment and the rotation axis. The time variation of rotation parameters essentially depends on the value and time variation of the viscosity of the star. In spite of the fact that the observational data are not extensive enough, it is possible to conclude that initial rotation frequency of NP 0532 did not exceed essentially 50 Hz.
, , NP 0532 . , . , . , , NP 0532 50 , .
  相似文献   

18.
We have observed 10 solar bursts during the thermal phase using the Haystack radio telescope at 22 GHz. We show that these high frequency flux observations, when compared with soft X-ray band fluxes, give useful information about the temperature profile in the flare loops. The microwave and X-ray band fluxes provide determinations of the maximum loop temperature, the total emission measure, and the index of the differential emission measure (q(T)/T = cT–1). The special case of an isothermal loop ( = ) has been considered previously by Thomas et al. (1985), and we confirm their diagnostic calculations for the GOES X-ray bands, but find that the flare loops we observed departed significantly from the isothermal regime. Our results ( = 1–3.5) imply that, during the late phases of flares, condensation cooling ( 3.5) competes with radiative cooling ( 1.5). Further, our results appear to be in good agreement with previous deductions from XUV rocket spectra ( 2–3).  相似文献   

19.
The position of bright knots of 30 flares at their very beginning relative to the high-resolution isogauss maps of the longitudinal component (H ) and maps of the transverse component (H ) of magnetic field are considered for seven days during the passage of the active and large spot group in Sept. 1963 (see Table I and maps on Figures 1–8).The flare bright knots occur simultaneously in regions of opposite magnetic polarity, and the majority of these knots are adjacent to neutral line H = 0, although not coinciding precisely with this line (Figure 9). Lenticular form of flare knots and the motions of bright material of flares is restrained by transversal field H . Also flares are closely associated (83%) with so-called bifurcated regions, where specific crossing of transverse components takes place (Figures 4–5). There is well-expressed (80%) coincidence of flare knots with the strongest (positive or negative) electric currents as determined from the relation j = c/4 rot H. The relation of results obtained to some existing theories of flares is briefly discussed.U.S. Nat. Acad. of Science - U.S.S.R. Acad. Nauk. Exchange Scientist Program; now at CSIRO Division of Physics, Australia.  相似文献   

20.
Sunspot associated H-flares and microwave bursts occurring during the period 1972 to 1974 have been examined in relation to the magnetic strength and configurations of the sunspots and sunspot groups (abbreviated as spots). Important results obtained are: (i) percentage occurrences of flares exceeds those of microwave bursts up to a magnetic field strength of 2000 G while the reverse is true for higher field strength of spots, (ii) flare productivity (average number of flares per spot) and also burst productivity are comparatively higher in the case of and types of spots than in the case of other types of spots, (iii) the above productivities are predominantly high when magnetic configuration of spots changes during their life time, and (iv) impulsive type of microwave bursts are more associated with spots having changing type of magnetic configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号