首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We document the characteristic time scales of variability for seven climate indices whose time-dependent behavior is sensitive to some aspect of the El Niño/Southern Oscillation (ENSO). The ENSO sensitivity arises from the location of these long-term records on the periphery of the Indian and Pacific Oceans. Three of the indices are derived principally from historical sources, three others consist of tree-ring reconstructions (one of summer temperature, and the other two of winter rainfall), and one is an annual record of oxygen isotopic composition for a high-elevation glacier in Peru. Five of the seven indices sample at least portions of the Medieval Warm Period (~ A.D. 950 to 1250).Time series spectral analysis was used to identify the major time scales of variability among the different indices. We focus on two principal time scales: a high frequency band (~ 2–10 yr), which comprises most of the variability found in the modern record of ENSO activity, and a low frequency band to highlight variations on decadal to century time scales (11 <P < 150 yr). This last spectral band contains variability on time scales that are of general interest with respect to possible changes in large-scale air-sea exchanges. A technique called evolutive spectral analysis (ESA) is used to ascertain how stable each spectral peak is in time. Coherence and phase spectra are also calculated among the different indices over each full common period, and following a 91-yr window through time to examine whether the relationships change.In general, spectral power on time scales of ~ 2–6 yr is statistically significant and persists throughout most of the time intervals sampled by the different indices. Assuming that the ENSO phenomenon is the source of much of the variability at these time scales, this indicates that ENSO has been an important part of interannual climatic variations over broad areas of the circum-Pacific region throughout the last millennium. Significant coherence values were found for El Niño and reconstructed Sierra Nevada winter precipitation at ~ 2–4 yr throughout much of their common record (late 1500s to present) and between 6 and 7 yr from the mid-18th to the early 20th century.At decadal time scales each record generally tends to exhibit significant spectral power over different periods at different times. Both the Quelccaya Ice Cap 18O series and the Quinn El Niño event record exhibit significant spectral power over frequencies ~ 35 to 45 yr; however, there is low coherence between these two series at those frequencies over their common record. The Sierra Nevada winter rainfall reconstruction exhibits consistently strong variability at periods of ~ 30–60 yr.  相似文献   

2.
The potential for the mean climate of the tropical Pacific to shift to more El Niño-like conditions as a result of human induced climate change is subject to a considerable degree of uncertainty. The complexity of the feedback processes, the wide range of responses of different atmosphere–ocean global circulation models (AOGCMs) and difficulties with model simulation of present day El Niño southern oscillation (ENSO), all complicate the picture. By examining the components of the climate-change response that projects onto the model pattern of ENSO variability in 20 AOGCMs submitted to the coupled model inter-comparison project (CMIP), it is shown that large-scale coupled atmosphere–ocean feedbacks associated with the present day ENSO also operate on longer climate-change time scales. By linking the realism of the simulation of present day ENSO variability in the models to their patterns of future mean El Niño-like or La Niña-like climate change, it is found that those models that have the largest ENSO-like climate change also have the poorest simulation of ENSO variability. The most likely scenario (p=0.59) in a model-skill-weighted histogram of CMIP models is for no trend towards either mean El Niño-like or La Niña-like conditions. However, there remains a small probability (p=0.16) for a change to El Niño-like conditions of the order of one standard El Niño per century in the 1% per year CO2 increase scenario.  相似文献   

3.
A new set of tree-ring records from the Andes of northern Patagonia, Argentina (41° S) was used to evaluate recent (i.e., last 250 years) regional trends in tree growth at upper treeline. Fifteen tree-ring chronologies from 1200 to 1750 m elevation were developed for Nothofagus pumilio, the dominant subalpine species. Samples were collected along three elevational transects located along the steep west-to-east precipitation gradient from the main Cordillera (mean annual precipitation >4000 mm) to an eastern outlier of the Andes (mean annual precipitation >2000 mm). Ring-width variation in higher elevation tree-ring records from the main Cordillera is mainly related to changes in temperature and precipitation during spring and summer. However, the response to climatic variation is also influenced by local site factors of elevation and exposure. Based on the relationships between Nothofagus growth and climate, we reconstructed changes in snow cover duration in late spring and variations in mean annual temperature since A.D. 1750. Abrupt interannual changes in the mean annual temperature reconstruction are associated with strong to very strong El Niño-Southern Oscillation events. At upper treeline, tree growth since 1977 has been anomalously high. A sharp rise in global average tropospheric temperatures has been recorded since the mid-1970s in response to an enhanced tropical hydrologic cycle due to an increase in temperature of the tropical Pacific. Temperatures in northern Patagonia have been anomalously high throughout the 1980s, which is consistent with positive temperature anomalies in the tropical Pacific and along the western coast of the Americas at c.a. 40° S latitude. Our 250-year temperature reconstruction indicates that although the persistently high temperatures of the 1980s are uncommon during this period, they are not unprecedented. Tropical climatic episodes similar to that observed during the 1980s may have occurred in the recent past under pre-industrial carbon dioxide levels.  相似文献   

4.
Summary The influence of ENSO on intraseasonal variability over the Tanzanian coast during the short (OND) and long (MAM) rainy seasons is examined. In particular, variability in the rainfall onset, peak and end dates as well as dry spells are considered. In general, El Niño appears to be associated with above average rainfall while La Niña is associated with below average rainfall over the northern Tanzanian coast during OND, and to lesser extent MAM. Over the southern coast, the ENSO impacts are less coherent and this region appears to be a transition zone between the opposite signed impacts over equatorial East and southern Africa. The increased north coast rainfall during El Niño years is generally due to a longer than normal rainfall season associated with early onset while reduced rainfall during La Niña years tends to be associated with a late onset, and thus a shorter than average rainfall season. Wet conditions during El Niño years were associated with enhanced convection and low-level easterly anomalies over the equatorial western Indian Ocean implying enhanced advection of moisture from the Indian Ocean while the reverse is true for La Niña years. Hovmöller plots for OLR and zonal wind at 850 hPa and 200 hPa show eastward, westward propagating and stationary features over the Indian Ocean. It was observed that the propagating features were absent during strong El Niño years. Based on the Hovmöller results, it is observed that the convective oscillations over the Tanzanian coast have some of the characteristic features of intraseasonal oscillations occurring elsewhere in the tropics.  相似文献   

5.
Summary Two lines of research into climate change and El Niño/Southern Oscillation (ENSO) converge on the conclusion that changes in ENSO statistics occur as a response to global climate (temperature) fluctuations. One approach focuses on the statistics of temperature fluctuations interpreted within the framework of random walks. The second is based on the discovery of correlation between the recurrence frequency of El Niño and temperature change, while developing physical arguments to explain several phenomena associated with changes in El Niño frequency. Consideration of both perspectives leads to greater confidence in, and guidance for, the physical interpretation of the relationship between ENSO and global climate change. Topics considered include global dynamics of ENSO, ENSO triggers, and climate prediction and predictability.Revised November 14, 2002; accepted November 28, 2002 Published online: June 12, 2003  相似文献   

6.
Tree-ring reconstructed rainfall variability in Zimbabwe   总被引:1,自引:1,他引:1  
We present the first tree-ring reconstruction of rainfall in tropical Africa using a 200-year regional chronology based on samples of Pterocarpus angolensis from Zimbabwe. The regional chronology is significantly correlated with summer rainfall (November–February) from 1901 to 1948, and the derived reconstruction explains 46% of the instrumental rainfall variance during this period. The reconstruction is well correlated with indices of the El Niño-southern oscillation (ENSO), and national maize yields. An aridity trend in instrumental rainfall beginning in about 1960 is partially reproduced in the reconstruction, and similar trends are evident in the nineteenth century. A decadal-scale drought reconstructed from 1882 to 1896 matches the most severe sustained drought during the instrumental period (1989–1995), and is confirmed in part by documentary evidence. An even more severe drought is indicated from 1859 to 1868 in both the tree-ring and documentary data, but its true magnitude is uncertain. A 6-year wet period at the turn of the nineteenth century (1897–1902) exceeds any wet episode during the instrumental era. The reconstruction exhibits spectral power at ENSO, decadal and multi-decadal frequencies. Composite analysis of global sea surface temperature during unusually wet and dry years also suggests a linkage between reconstructed rainfall and ENSO.  相似文献   

7.
The Paraná-Plata basin is the second largest hydrological basin in South America and is of great importance for the countries of the region (Argentina, Bolivia, Brazil, Paraguay and Uruguay). The present study focuses on the long-term trends in basin-scale precipitation with special emphasis on the role of distribution changes in extreme large-scale precipitation events and on the characteristics and evolution of ENSO teleconnections over the last 50 years. First, we defined a Paraná-Plata basin total precipitation index (PTPI) as the precipitations spatially averaged over the hydrological basin. On interannual time scales, such an index is mainly representative of anomalous monsoon precipitations in the northern part of the basin and large convective precipitation anomalies in the center of the basin (Paraguay-southern Brazil-Uruguay-northern Argentina) typical of the canonical ENSO teleconnection pattern. Our major findings clearly highlight a positive trend in yearly averaged PTPI mainly from the late 1960s to the early 1980s with a strong dependence from month-to-month. The largest precipitation increase is observed from November to May in southern Brazil and Argentina. A close examination of PTPI distributions during the two halves of the period 1950–2001 shows that the changes in the mean state from 1950–1975 to 1976–2001 result from significant changes in each calendar month mean state and in the tails of the PTPI anomaly distributions in May with lesser and weaker large-scale dry events and stronger large-scale wet events. Further studies will be needed to assess whether the observed trend in large-scale extreme precipitation conditions can be related to natural climate variability or anthropogenic activities and whether it is associated to changes in local/regional extreme events. The stronger wet conditions in different months seem to be associated to changes in ENSO characteristics (amplitude, propagation, spatial structure, ...) since the 1982–1983 El Niño. Indeed, spatial ENSO teleconnections (stronger in November and April–May) have greatly evolved from 1950–1975 to 1976–2001. Moreover, we demonstrate that there is a strong modulation and displacement of the teleconnection patterns from one event to another, impeding the definition of robust statistical relationship between ENSO and precipitation in the Paraná-Plata basin (except maybe over a very limited area near the common border between Paraguay, Argentina and Brazil). Finally, the non-antisymmetrical patterns of precipitation between El Niño and La Niña conditions and the non-linear relationship between precipitation and either Niño3.4 or Niño1+2 sea surface temperature indices show that linear statistical forecast systems are actually of very limited use for impact predictions on society on a local or regional scale.  相似文献   

8.
Observations indicated that for the El Niño/Southern Oscillation (ENSO) there have been eastward displacements of the zonal wind stress (WS) anomalies and surface heat flux (short wave heat flux and latent heat flux) anomalies during El Niño episodes in the 1981–1995 regime relative to the earlier regime of 1961–1975 (without corresponding displacements during La Niña episodes). Our numerical experiments with the Zebiak–Cane coupled model generally reproduced such displacements when the model climatological fields were replaced by the observed climatologies [of sea surface temperature (SST), surface WS and surface wind atmospheric divergence] and simulated climatologies (of oceanic surface layer currents and associated upwelling) for the 1981–1995 regime. Sensitivity tests indicated that the background atmospheric state played a much more important role than the background ocean state in producing the displacements, which enhanced the asymmetry between El Niño and La Niña in the later regime. The later regime climatology state resulted in the eastward shifts in the ENSO system (WS and SST) only during El Niño, through the eastward shift of the atmosphere convergence heating rate in the coupled model. The ENSO period and ENSO predictability were also enhanced in the coupled model under the later regime climatology. That the change in the mean state of the tropical Pacific atmosphere and ocean after the mid 1970s could have produced the observed changes in ENSO properties is consistent with our findings.  相似文献   

9.
Maintaining a multi-model database over a generation or more of model development provides an important framework for assessing model improvement. Using control integrations, we compare the simulation of the El Niño/Southern Oscillation (ENSO), and its extratropical impact, in models developed for the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report with models developed in the late 1990s [the so-called Coupled Model Intercomparison Project-2 (CMIP2) models]. The IPCC models tend to be more realistic in representing the frequency with which ENSO occurs, and they are better at locating enhanced temperature variability over the eastern Pacific Ocean. When compared with reanalyses, the IPCC models have larger pattern correlations of tropical surface air temperature than do the CMIP2 models during the boreal winter peak phase of El Niño. However, for sea-level pressure and precipitation rate anomalies, a clear separation in performance between the two vintages of models is not as apparent. The strongest improvement occurs for the modelling groups whose CMIP2 model tended to have the lowest pattern correlations with observations. This has been checked by subsampling the multi-century IPCC simulations in a manner to be consistent with the single 80-year time segment available from CMIP2. Our results suggest that multi-century integrations may be required to statistically assess model improvement of ENSO. The quality of the El Niño precipitation composite is directly related to the fidelity of the boreal winter precipitation climatology, highlighting the importance of reducing systematic model error. Over North America distinct improvement of El Niño forced boreal winter surface air temperature, sea-level pressure, and precipitation rate anomalies to occur in the IPCC models. This improvement is directly proportional to the skill of the tropical El Niño forced precipitation anomalies.  相似文献   

10.
Historical ENSO teleconnections in the eastern hemisphere   总被引:2,自引:0,他引:2  
Examination of instrumental data collected over the last one hundred years or so shows that rainfall fluctuations in various parts of the eastern hemisphere are associated with the El Niño-Southern Oscillation (ENSO) phenomenon. Using proxy rainfall data-sets from Indonesia, Africa, North China; and a chronology of droughts from India, we investigate the occurrence of ENSO-related floods and droughts over the last five hundred years. The aim of this work is to examine the stability of the pattern of ENSO teleconnections over this longer period, noting any changes in ENSO behaviour which may be relevant in estimating its future behaviour, such as its response to climate change due to the enhanced greenhouse effect.Comparisons of the various data sets with each other and with El Niño chronology from South America, showed statistically significant evidence of teleconnections characteristic of ENSO back to around 1750. Prior to that time, relationships characteristic of ENSO were weak or absent. The disappearance of the ENSO signal in the early period is considered to be most likely due to the poorer quality of the data at that time. From the 18th Century onwards, chronologies of ENSO and anti-ENSO events are given and compared with similar chronologies in the literature.  相似文献   

11.
Earlywood width chronologies from Douglas-fir tree rings were used to reconstruct winter (November–March) precipitation for more than 600 years over Durango, Mexico. The tree-ring data were obtained from two sites of long-lived Douglas-fir in northern and southern Durango and the seasonal climatic precipitation data were regionally averaged from five weather stations well distributed across the state. The averaged earlywood chronology accounted for 56% of the variance in instrumental November–March precipitation 1942–1983. We validated the reconstruction against independent precipitation records. The worst winter drought of the 20th century in Durango occurred 1950–1965. However, the reconstruction indicates droughts more severe than any witnessed in the 20th century, e.g., the 1850s–1860s, and the megadrought in the mid- to late-16th century. Reconstructed winter precipitation 1540–1579 shows 33 of 40 years were dry. Persistent drought may be linked to extended La Niña episodes. The Tropical Rainfall Index (TRI) correlates well with instrumental and reconstructed winter precipitation (r = 0.49 and 0.55, respectively), reflecting the strong ENSO modulation of cool season climate over northern Mexico. The ENSO teleconnection varies through time, with TRI-reconstructed precipitation correlations ranging from 0.78 to 0.27 in five periods 1895–1993. The 1942–1983 winter observed and reconstructed Durango data correlate well with the corresponding seasonalization of the All-Mexico Rainfall Index (AMRI; r=0.68, P<0.0001 and r=0.70, P<0.001, respectively), indicating that both the observed and the reconstructed precipitation often reflect broad-scale precipitation anomalies across Mexico. New long Douglas-fir and baldcypress tree-ring chronologies are now available for central and southern Mexico near major population centers, allowing the exploration of relationships between drought, food scarcity, and social and political upheaval in Mexican history.  相似文献   

12.
A. Wu  W. W. Hsieh 《Climate Dynamics》2003,21(7-8):719-730
Nonlinear interdecadal changes in the El Niño-Southern Oscillation (ENSO) phenomenon are investigated using several tools: a nonlinear canonical correlation analysis (NLCCA) method based on neural networks, a hybrid coupled model, and the delayed oscillator theory. The leading NLCCA mode between the tropical Pacific wind stress (WS) and sea surface temperature (SST) reveals notable interdecadal changes of ENSO behaviour before and after the mid 1970s climate regime shift, with greater nonlinearity found during 1981–99 than during 1961–75. Spatial asymmetry (for both SST and WS anomalies) between warm El Niño and cool La Niña events was significantly enhanced in the later period. During 1981–99, the location of the equatorial easterly anomalies was unchanged from the earlier period, but in the opposite ENSO phase, the westerly anomalies were shifted eastward by up to 25°. According to the delayed oscillator theory, such an eastward shift would lengthen the duration of the warm events by up to 45%, but leave the duration of the cool events unchanged. Supporting evidence was found from a hybrid coupled model built with the Lamont dynamical ocean model coupled to a statistical atmospheric model consisting of either the leading NLCCA or CCA mode.  相似文献   

13.
Summary The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed.The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes.The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.With 16 Figures  相似文献   

14.
The focus of this study is to document the possible role of the southern subtropical Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Composite analyses of sea surface temperature (SST) fields prior to El Niño-Southern Oscillation (ENSO), Indian summer monsoon (ISM), Australian summer monsoon (AUSM), tropical Indian Ocean dipole (TIOD) and Maritime Continent rainfall (MCR) indices reveal the southeast Indian Ocean (SEIO) SSTs during late boreal winter as the unique common SST precursor of these various phenomena after the 1976–1977 regime shift. Weak (strong) ISMs and AUSMs, El Niños (La Niñas) and positive (negative) TIOD events are preceded by significant negative (positive) SST anomalies in the SEIO, off Australia during boreal winter. These SST anomalies are mainly linked to subtropical Indian Ocean dipole events, recently studied by Behera and Yamagata (Geophys Res Lett 28:327–330, 2001). A wavelet analysis of a February–March SEIO SST time series shows significant spectral peaks at 2 and 4–8 years time scales as for ENSO, ISM or AUSM indices. A composite analysis with respect to February–March SEIO SSTs shows that cold (warm) SEIO SST anomalies are highly persistent and affect the westward translation of the Mascarene high from austral to boreal summer, inducing a weakening (strengthening) of the whole ISM circulation through a modulation of the local Hadley cell during late boreal summer. At the same time, these subtropical SST anomalies and the associated SEIO anomalous anticyclone may be a trigger for both the wind-evaporation-SST and wind-thermocline-SST positive feedbacks between Australia and Sumatra during boreal spring and early summer. These positive feedbacks explain the extraordinary persistence of the SEIO anomalous anticyclone from boreal spring to fall. Meanwhile, the SEIO anomalous anticyclone favors persistent southeasterly wind anomalies along the west coast of Sumatra and westerly wind anomalies over the western Pacific, which are well-known key factors for the evolution of positive TIOD and El Niño events, respectively. A correlation analysis supports these results and shows that SEIO SSTs in February–March has higher predictive skill than other well-established ENSO predictors for forecasting Niño3.4 SST at the end of the year. This suggests again that SEIO SST anomalies exert a fundamental influence on the transitions of the whole monsoon-ENSO system during recent decades.  相似文献   

15.
Remotely forced variability in the tropical Atlantic Ocean   总被引:1,自引:1,他引:1  
An ensemble of eight hindcasts has been conducted using an ocean-atmosphere general circulation model fully coupled only within the Atlantic basin, with prescribed observational sea surface temperature (SST) for 1950–1998 in the global ocean outside the Atlantic basin. The purpose of these experiments is to understand the influence of the external SST anomalies on the interannual variability in the tropical Atlantic Ocean. Statistical methods, including empirical orthogonal function analysis with maximized signal-to-noise ratio, have been used to extract the remotely forced Atlantic signals from the ensemble of simulations. It is found that the leading external source on the interannual time scales is the El Niño/Southern Oscillation (ENSO) in the Pacific Ocean. The ENSO signal in the tropical Atlantic shows a distinct progression from season to season. During the boreal winter of a maturing El Niño event, the model shows a major warm center in the southern subtropical Atlantic together with warm anomalies in the northern subtropical Atlantic. The southern subtropical SST anomalies is caused by a weakening of the southeast trade winds, which are partly associated with the influence of an atmospheric wave train generated in the western Pacific Ocean and propagating into the Atlantic basin in the Southern Hemisphere during boreal fall. In the boreal spring, the northern tropical Atlantic Ocean is warmed up by a weakening of the northeast trade winds, which is also associated with a wave train generated in the central tropical Pacific during the winter season of an El Niño event. Apart from the atmospheric planetary waves, these SST anomalies are also related to the sea level pressure (SLP) increase in the eastern tropical Atlantic due to the global adjustment to the maturing El Niño in the tropical Pacific. The tropical SLP anomalies are further enhanced in boreal spring, which induce anomalous easterlies on and to the south of the equator and lead to a dynamical oceanic response that causes cold SST anomalies in the eastern and equatorial Atlantic from boreal spring to summer. Most of these SST anomalies persist into the boreal fall season.
B. HuangEmail:
  相似文献   

16.
Summary This study investigates the impacts of five recent ENSO events on southern Africa, the associated circulation anomalies and the ability of an atmospheric general circulation model (UKMO HadAM3) to represent these impacts when forced by observed sea-surface temperature (SST). It is found that the model is most successful for the 1997/8 El Niño but does less well for the 1991/2 and 2002/3 El Niños and the 1995/6 and 1999/00 La Niña events. Diagnostics from the model and NCEP re-analyses suggest that modulations to the Angola low, an important centre of tropical convection over southern Africa during austral summer, are often important for influencing the rainfall impacts of ENSO over subtropical southern Africa. Since the model has difficulty in adequately representing this regional circulation feature and its variability, it has problems in capturing ENSO rainfall impacts over southern Africa. During 1997/8, modulations to the Angola low were weak and Indian Ocean SST forcing strong and the model is relatively successful. The implications of these results for dynamical model based seasonal forecasting of the region are discussed.Current affiliation: CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore, India.  相似文献   

17.
Since the devastating southern Africa drought of 1991/92 awareness has grown of the potential to better manage climate variability in the region through seasonal climate forecasting and monitoring of El Niño and the Southern Oscillation (ENSO). While other factors besides ENSO affect southern Africa's climate, and climate forecasting for the region is not based exclusively on ENSO, a major El Niño beginning in 1997 captured the attention of policy-makers and the public. Awareness of drought risks associated with the 1997/98 event was greater than during previous El Niños in 1991/92 and 1994/95. Mitigation and planning efforts also began earlier, with drought early warnings widely available and being taken seriously prior to the 1997/98 agricultural season. Actions taken include issuance of guidance to the public, on-going monitoring and preparedness efforts including the development of national preparedness plans in some countries, pre-positioning of food stocks, donor coordination, and greater reliance on the private-sector for meeting regional food needs. Although 1998 regional crop production was slightly below average, a major drought did not materialize. Nonetheless the experience is likely to ultimately strengthen capacity within the region to manage climate variability over the long term.  相似文献   

18.
This paper uses recent gridded climatological data and a coupled general circulation model (GCM) simulation in order to assess the relationships between the interannual variability of the Indian summer monsoon (ISM) and the El Niño-Southern Oscillation (ENSO). The focus is on the dynamics of the ISM-ENSO relationships and the ability of the state-of-the-art coupled GCM to reproduce the complex lead-lag relationships between the ISM and the ENSO. The coupled GCM is successful in reproducing the ISM circulation and rainfall climatology in the Indian areas even though the entire ISM circulation is weaker relative to that observed. In both observations and in the simulation, the ISM rainfall anomalies are significantly associated with fluctuations of the Hadley circulation and the 200 hPa zonal wind anomalies over the Indian Ocean. A quasi-biennial time scale is found to structure the ISM dynamical and rainfall indices in both cases. Moreover, ISM indices have a similar interannual variability in the simulation and observations. The coupled model is less successful in simulating the annual cycle in the tropical Pacific. A major model bias is the eastward displacement of the western North Pacific inter-tropical convergence zone (ITCZ), near the dateline, during northern summer. This introduces a strong semiannual component in Pacific Walker circulation indices and central equatorial Pacific sea surface temperatures. Another weakness of the coupled model is a less-than-adequate simulation of the Southern Oscillation due to an erroneous eastward extension of the Southern Pacific convergence zone (SPCZ) year round. Despite these problems, the coupled model captures some aspects of the interannual variability in the tropical Pacific. ENSO events are phase-locked with the annual cycle as observed, but are of reduced amplitude relative to the observations. Wavelet analysis of the model Niño34 time series shows enhanced power in the 2–4 year band, as compared to the 2–8 year range for observations during the 1950–2000 period. The ISM circulation is weakened during ENSO years in both the simulation and the observations. However, the model fails to reproduce the lead-lag relationship between the ISM and Niño34 sea surface temperatures (SSTs). Furthermore, lag correlations show that the delayed response of the wind stress over the central Pacific to ISM variability is insignificant in the simulation. These features are mainly due to the unrealistic interannual variability simulated by the model in the western North Pacific. The amplitude and even the sign of the simulated surface and upper level wind anomalies in these areas are not consistent with observed patterns during weak/strong ISM years. The ISM and western North Pacific ITCZ fluctuate independently in the observations, while they are negatively and significantly correlated in the simulation. This isolates the Pacific Walker circulation from the ISM forcing. These systematic errors may also contribute to the reduced amplitude of ENSO variability in the coupled simulation. Most of the unrealistic features in simulating the Indo-Pacific interannual variability may be traced back to systematic errors in the base state of the coupled model.  相似文献   

19.
两类ENSO对中国北方冬季平均气温和极端低温的不同影响   总被引:2,自引:0,他引:2  
汪子琪  张文君  耿新 《气象学报》2017,75(4):564-580
利用1961-2012年观测、再分析资料以及全球大气环流模式数值试验,探讨了中国北方冬季平均气温对于不同类型(即东部型和中部型)ENSO事件的气候响应,并分析了不同类型ENSO对极端低温事件的可能影响,重点关注了北大西洋涛动(NAO)在其中的桥梁作用。结果表明,ENSO信号能通过调制北大西洋地区的大气环流改变欧亚中高纬度地区的纬向温度平流输送和西伯利亚高压的强度,进而影响中国北方冬季气温,由于不同类型ENSO事件海温分布的差异,这种影响具有明显的非线性特征。在两类厄尔尼诺和东部型拉尼娜事件冬季,北大西洋涛动均呈现负位相,不利于北大西洋的暖湿空气向欧亚大陆输送,西伯利亚高压偏强,因而中国北方地区较气候态偏冷。中部型厄尔尼诺和东部型拉尼娜事件冬季气温负异常的显著区域分别位于东北大范围地区、内蒙古河套附近;东部型厄尔尼诺事件冬季显著的冷异常信号仅局限于黑龙江北部与大兴安岭地区;而中部型拉尼娜事件冬季虽伴随北大西洋涛动正位相,但其空间结构向西偏移,对下游中国北方地区气温的直接影响并不显著,可能受局地信号干扰较大。数值试验再现了北大西洋涛动以及中国北方冬季气温对不同类型ENSO的响应,进一步佐证了上述结论。此外,两类厄尔尼诺事件冬季中国东北地区日平均气温容易偏低,极端低温事件的发生频次增多;而两类拉尼娜事件对极端低温的影响较弱。   相似文献   

20.
In this modelling study, the teleconnections of ENSO are studied using an atmospheric general circulation model (AGCM), HadAM3. The influence of sea surface temperature anomalies (SSTAs) remote from the tropical Pacific but teleconnected with ENSO is investigated. Composite cycles of El Niño and La Niña SSTs are created and imposed on HadAM3. These SSTs are imposed in different areas, with climatological SSTs elsewhere, in order to find the influences of SSTs in different regions. It is found that most of the reproducible response to ENSO is forced directly from the tropical Pacific before the peak of the event. However, during the peak and decay of ENSO, remote SSTs become increasingly influential throughout the tropics (at the 98% significance level). This could lead to extended ENSO-related predictability due to the memory of the remote oceans. The Indian Ocean and Maritime Continent SSTs are found to be particularly influential. Indian Ocean SSTAs dampen the teleconnections from the tropical Pacific and force the atmosphere above the tropical Atlantic. More generally, when a tropical SSTA is imposed, atmospheric anomalies are forced locally with anomalies of the opposite sign to the west. Some of the reproducible response to ENSO in the tropical Atlantic is forced, not directly from the tropical Pacific but from the Indian ocean, which in turn is forced by the tropical Pacific. Subsequently, delayed SSTAs in the tropical Atlantic damp the local response and force the atmosphere above the tropical Pacific in the opposite manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号