首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The common serpentine–diopside matrix assemblage in volcaniclastic kimberlite (VK) at the Venetia Mine, South Africa is ascribed to a secondary origin, because of post‐emplacement serpentinization and associated hydrothermal metamorphism. Volcaniclastic deposits with 20–30% porosity infill kimberlite pipes in the waning stages of kimberlite eruptions. Olivine macrocrysts are typically rimmed by talc and are pseudomorphed by lizardite, with minor magnetite. The fine matrix consists of mixtures of lizardite, chlorite, smectite, brucite, calcite, titanite and andradite, an assemblage which either pseudomorphed microcrysts or in‐filled voids. Locally we recognize microcryst pseudomorphs rich in sub‐microscopic mixtures of lizardite with smectite, and other microcryst pseudomorphs and void‐filling matrix rich in chlorite and lizardite. Interstitial lizardite and associated phyllosilicates (brucite, smectite and chlorite) crystallized progressively from meteoric or hydrothermally derived pore waters, and Si4+ and Mg2+ released into the fluid phase during serpentinization of olivine macrocrysts. Radial‐fibrous fringes of diopside microlites around crystals display void‐filling textures because of unrestricted growth into pore spaces. Secondary diopside is attributed to Si4+, Mg2+ and Ca2+ cations released into the fluid phase by interaction with olivine, calcite and plagioclase in siliceous xenoliths. The paucity of primary, fine‐grained groundmass phases resistant to alteration, for example, perovskite and spinel, precludes an origin for the intergrain matrix as altered interstitial ash, glass or a late‐stage kimberlite melt. Isovolumetric replacement of olivine results in a volume increase of 60% so that pore spaces in the original deposit can be easily filled up with serpentine. The source of Al3+ to form chlorite and smectite is attributed to alteration of plagioclase in xenoliths which comprise 20–30 vol.% of the deposit. Titanite, hydro‐andradite and second‐generation diopside precipitate as hydrothermal minerals from calcium‐bearing serpentinizing fluids in replacement reactions and as void‐filling minerals. Consideration of mineral equilibria in the CaO‐MgO‐SiO2‐H2O‐CO2 system constrains the common matrix assemblage of lizardite and diopside in XCO2)–T space. At 300 bar, the assemblage is stable only at temperatures below 370 °C and XCO2 < 0.01. This upper limit on temperature is well below the plausible solidus of ultrabasic magmas. Furthermore, the requirement of trace CO2 in the fluid phase implies a post‐emplacement external source rather than ‘autometamorphism’ from kimberlite‐derived fluids, because of high PCO2 commonly inferred for kimberlite magmas.  相似文献   

2.
The primary garnet (pyrope-almandine)-omphacite (Cpx 1, 6.5–7 wt% Na2O)-sulfide (Fe-Ni-Co mss) assemblage of the two diamondiferous eclogite xenoliths studied (U33/1 and UX/1) experienced two mantle metasomatic events. The metasomatic event I is recorded by the formation of platy phlogopite (~ 10 wt% K2O), prior to incorporation of the xenoliths in the kimberlite. The bulk of the metasomatic alteration, consisting of spongy-textured clinopyroxene (Cpx 2A, 1–3 wt% Na2O), coarser-grained clinopyroxene (Cpx 2B, 2–5 wt% Na2O), pargasitic amphibole (~ 0.8 wt% K2O; 3–3.5 wt% Na2O), kelyphite (Cpx 3, mostly <1 wt% Na2O; and zoned Mg-Fe-Al spinel), sodalite, calcite, K-feldspar, djerfisherite (K5.95Na0.02Fe18.72Ni2.36Co0.01Cu4.08S26Cl ) and a small amount of K-Ca-Fe-Mg glass, is ascribed to the metasomatic event II that occurred also in the upper mantle, but after the xenoliths were incorporated in the kimberlite. A pervasive chloritic alteration (mainly clinochlore + magnetite) that overprints earlier assemblages probably took place in the upper crustal environment. The diamonds are invariably associated with secondary clinopyroxene and chlorite, but the diamonds formed before the entrainment of the xenoliths in the Udachnaya kimberlite.Editorial Responsibility: T.L. Grove  相似文献   

3.
We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths(garnet peridotite,eclogite and clinopyroxene-phlogopite rocks)and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle(SCLM)and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation(Phil)occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation(Phl2)occurs as rims and outer zones that surround the Phil grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phil,within the garnet peridotite and clinopyroxene-phlogopite xenoliths,is characterised by low Ti and Cr contents(TiO_21 wt.%,Cr_2 O_31 wt.% and Mg# = 100 × Mg/(Mg+ Fe)92)typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H_2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr_2O_3 despite a wider range of TiO_2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations(TiO_22 wt.%,Cr_2O_31 wt.% and Mg# = 100× Mg/(Mg + Fe)92)and compositionally overlaps with phlogopite from polymict brecc:ia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phil grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe.  相似文献   

4.
The sulphides in the garnet-peridotite and griquaite xenoliths in kimberlite were investigated microscopically, and the mineral assemblages and textural relationships are discussed. The results of a geochemical investigation of the K2O, Na2O, Cu, Co, Ni, and Zn contents of these nodules are discussed.It is concluded that the massive basaltic kimberlites (Frick, 1970) are the only kimberlites on which meaningful geochemical investigations could be attempted. It was also found that, owing to the amount of contamination induced by the kimberlite magma, neither the xenoliths nor the mineral separates derived from them can be used for a meaningful geochemical investigation. In an investigation of the upper mantle most of the geochemical work on these inclusions can therefore be disregarded.Two stages of sulphide mineralization can be distinguished in the garnet-peridotite xenoliths, and at least one stage of sulphide mineralization in the griquaite inclusions. The textural evidence supports a cumulate origin for the garnet-peridotite xenoliths, and strongly contradicts such an origin for the griquaite inclusions. It appears that the sulphides in the griquaite xenoliths form during the partial melting of the griquaite, as an immisible sulphide liquid. Although inconclusive, evidence does exist that the sulphur is disseminated in the lattices of the griquaitic clinopyroxenes.  相似文献   

5.
Hydrothermal alteration of kimberlite by convective flows of external water   总被引:1,自引:0,他引:1  
Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130–400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water–rock ratios (estimated at <0.2). Such low water–rock ratios result in only small changes in stable isotope compositions; for example, δO18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.  相似文献   

6.

Kimberlite pipes from Chidliak, Baffin Island, Nunavut, Canada host surface-derived Paleozoic carbonate xenoliths containing conodonts. Conodonts are phosphatic marine microfossils that experience progressive, cumulative and irreversible colour changes upon heating that are experimentally calibrated as a conodont colour alteration index (CAI). CAI values permit us to estimate the temperatures to which conodont-bearing rocks have been heated. Conodonts have been recovered from 118 samples from 89 carbonate xenoliths collected from 12 of the pipes and CAI values within individual carbonate xenoliths show four types of CAI distributions: (1) CAI values that are uniform throughout the xenolith; (2) lower CAIs in core of a xenolith than the rim; (3) CAIs that increase from one side of the xenolith to the other; and, (4) in one xenolith, higher CAIs in the xenolith core than at the rim. We have used thermal models for post-emplacement conductive cooling of kimberlite pipes and synchronous heating of conodont-bearing xenoliths to establish the temperature–time history of individual xenoliths within the kimberlite bodies. Model results suggest that the time-spans for xenoliths to reach the peak temperatures recorded by CAIs varies from hours for the smallest xenoliths to 2 or 3 years for the largest xenoliths. The thermal modelling shows the first three CAI patterns to be consistent with in situ conductive heating of the xenoliths coupled to the cooling host kimberlite. The fourth pattern remains an anomaly.

  相似文献   

7.
Six kimberlite pipes of late Cretaceous or Tertiary age occur in Riley Co., east-central Kansas. Within the pipes xenoliths of local sedimentary and exotic igneous rocks are common, especially in the Stockdale pipe. Igneous rocks which occur as xenoliths include granite, gabbro, metagabbro, pyroxenite and eclogite. In the eclogites omphacitic clinopyroxene (approx. Di52Jd24mol%) and pyropic garnet (approx. Py47Al35Gr12mol%) are the predominant minerals with subordinate amounts of rutile and sulphides (pyrrotite-pentlandite (?)-chalcopyrite). Interstitial kaersutitic amphibole is a minor constituent. The eclogites are chemically equivalent to olivine-basalt. The texture, composition and mineralogy of the eclogites from Kansas are similar to those of eclogites from kimberlite pipes in South Africa and Siberia. Whereas the rocks from these latter localities display a range in composition, those examined to date from Kansas are of fairly restricted composition. Furthermore it seems probable that the eclogites from Stockdale formed under limited P-T conditions within the mantle. This is the first record of such eclogites on the North American continent.  相似文献   

8.

New results of Rb–Sr and Sm–Nd isotope analyses have been obtained on samples of deformed peridotite xenoliths collected from the Udachnaya kimberlite pipe (Yakutia). The data obtained imply two main stages of metasomatic alteration of the lithospheric mantle base matter in the central part of the Siberian Craton. Elevated ratios of Sr isotopes may be considered as evidence of an ancient stage of metasomatic enrichment by a carbonatite melt. The acquired Nd isotope composition together with the geochemistry of the deformed peridotite xenoliths suggests that the second stage of metasomatic alteration took place shortly before formation of the kimberlite melt. The metasomatic agent of this stage had a silicate character and arrived from an asthenosphere source, common for the normal OIB type (PREMA) and the Group-I kimberlite.

  相似文献   

9.
Within the ‘glimmerite’ nodules occurring within kimberlite pipes we recognize the MARID suite consisting of varying proportions of mica, amphibole, rutile, ilmenite and diopside. Banding of some specimens is interpreted as cumulate layering. All specimens were deformed either before incorporation into the host kimberlite or during intrusion. Compared with minerals in peridotite xenoliths, the MARID ones are lower in Al2O3 and Cr2O3, but richer in total iron. The MARID micas, amphiboles, diopsides, ilmenites and probably rutiles contain substantial Fe2O3 indicative of oxidizing conditions. The amphibole is potassic richterite. Micas of the megacryst suite in kimberlite have less total iron and Fe2O3 than micas of the MARID suite. We suggest that the rocks of the MARID suite crystallized under oxidizing conditions from a magma, chemically similar to kimberlite, within the higher parts of the upper mantle: the presence of amphibole restricts the depth to less than ~ 100 km. A xenolith containing olivine and orthopyroxene as well as minerals similar to but not the same compositionally as MARID-types is interpreted as a metasomite, possibly representing wall-rock of a magma body from which MARID-suite rocks crystallized.  相似文献   

10.
Reconstruction of Mesozoic and Cenozoic sedimentary ‘cover’ on the Precambrian shield in the Lac de Gras diamond field, Northwest Territories, Canada, has been achieved using Cretaceous and early Tertiary sedimentary xenoliths and contemporaneous organic matter preserved in volcaniclastic sediments associated with late Cretaceous to early Tertiary kimberlite pipe intrusions, and in situ, Eocene crater lake, lacustrine and peat bog strata. Percent reflectance in oil (%Ro) of vitrinite within shale xenoliths for: (i) Albian to mid-Cenomanian to Turonian ranges from > 0.27 to 0.42 %Ro (mean = 0.38 %Ro), (ii) Maastrichtian to early Paleocene from 0.24 to < 0.30%; (iii) latest Paleocene to early middle Eocene 0.15 to < 0.23 %Ro (mean = 0.18 %Ro). These levels of thermal maturity are corroborated by Rock Eval pyrolysis Tmax (°C) and VIS region fluorescence of liptinites, with wavelengths of maximum emission for sporinite, prasinophyte alginite and dinoflagellates consistent with vitrinite reflectance of 0.20 to < 0.50 %Ro. Burial–thermal history modeling, constrained by measured vitrinite reflectance and porosity of shale xenoliths, predicts a maximum burial temperature for Mid to Late Albian strata (∼115 Ma) of 60 °C with ∼1.2 to 1.4 km of Cretaceous strata in the Lac de Gras kimberlite field region prior to major uplift and erosion, which began at 90 Ma. Late Paleocene to middle Eocene volcanic crater lake lacustrine to peat bog strata were only buried to a few hundreds of meters and are in a peat-brown coal stage of thermal maturation.  相似文献   

11.
Here we present new data on the major and trace element compositions of silicate and oxide minerals from mantle xenoliths brought to the surface by the Carolina kimberlite, Pimenta Bueno Kimberlitic Field, which is located on the southwestern border of the Amazonian Craton. We also present Sr-Nd isotopic data of garnet xenocrysts and whole-rocks from the Carolina kimberlite. Mantle xenoliths are mainly clinopyroxenites and garnetites. Some of the clinopyroxenites were classified as GPP–PP–PKP (garnet-phlogopite peridotite, phlogopite-peridotite, phlogopite-K-richterite peridotite) suites, and two clinopyroxenites (eclogites) and two garnetites are relicts of an ancient subducted slab. Temperature and pressure estimates yield 855–1102 °C and 3.6–7.0 GPa, respectively. Clinopyroxenes are enriched in light rare earth elements (LREE) (LaN/YbN = 5–62; CeN/SmN = 1–3; where N = primitive mantle normalized values), they have high Ca/Al ratios (10–410), low to medium Ti/Eu ratios (742–2840), and low Zr/Hf ratios (13–26), which suggest they were formed by metasomatic reactions with CO2-rich silicate melts. Phlogopite with high TiO2 (>2.0 wt.%), Al2O3 (>12.0 wt.%), and FeOt (5.0–13.0 wt.%) resemble those found in the groundmass of kimberlites, lamproites and lamprophyres. Conversely, phlogopite with low TiO2 (<1.0 wt.%) and lower Al2O3 (<12.0 wt.%) are similar to those present in GPP-PP-PKP, and in MARID (mica-amphibole-rutile-ilmenite-diopside) and PIC (phlogopite-ilmenite-clinopyorxene) xenoliths. The GPP-PP-PKP suite of xenoliths, together with the clinopyroxene and phlogopite major and trace element signatures suggests that an intense proto-kimberlite melt metasomatism occurred in the deep cratonic lithosphere beneath the Amazonian Craton. The Sr-Nd isotopic ratios of pyrope xenocrysts (G3, G9 and G11) from the Carolina kimberlite are characterized by high 143Nd/144Nd (0.51287–0.51371) and εNd (+4.55 to +20.85) accompanied with enriched 87Sr/86Sr (0.70405–0.71098). These results suggest interaction with a proto-kimberlite melt compositionally similar with worldwide kimberlites. Based on Sr-Nd whole-rock compositions, the Carolina kimberlite has affinity with Group 1 kimberlites. The Sm-Nd isochron age calculated with selected eclogitic garnets yielded an age of 291.9 ± 5.4 Ma (2 σ), which represents the cooling age after the proto-kimberlite melt metasomatism. Therefore, we propose that the lithospheric mantle beneath the Amazonian Craton records the Paleozoic subduction with the attachment of an eclogitic slab into the cratonic mantle (garnetites and eclogites); with a later metasomatic event caused by proto-kimberlite melts shortly before the Carolina kimberlite erupted.  相似文献   

12.
The critical issue in the study of kimberlites, known as principal host rocks of diamonds, is the reconstruction of their primary melt composition, which is poorly constrained due to contamination by xenogenic materials, significant loss of volatiles during eruption, and post-magmatic alteration. It is generally accepted that the last equilibration of primary kimberlite melt with surrounding mantle (garnet lherzolite) occurred beneath cratons at 5–7 GPa (150–230 km depths). However, the subliquidus mineral assemblages obtained in kimberlite melting experiments at mantle pressures differ from lherzolite, probably owing to unaccounted loss of CO2. Here we present experiments at 6.5 GPa and 1200–1600 °C on unaltered kimberlite with an addition of 2–22 mol% CO2 over its natural abundance in the rock (13 mol%), but keeping proportions of other components identical to those in an exceptionally fresh anhydrous kimberlite from Udachnaya-East pipe in Siberia. We found that the partial melt achieves equilibrium with garnet lherzolite at 1500 °C and 19–23 mol% CO2 in the system. Under these conditions this melt contains (mol%): SiO2 = 9, FeO = 6–7, MgO = 23–26, CaO = 16, Na2O = 4, K2O = 1, and CO2 = 30–35. We propose, therefore, the alkali-rich carbonatitic composition of primary kimberlite melt and loss of 34–45 mol% (34–46 wt%) CO2 during ascent of the kimberlite magma to the surface.  相似文献   

13.
New geochemical data of the crater-facies Tokapal kimberlite system sandwiched between the lower and upper stratigraphic horizons of the Mesoproterozoic lndravati Basin a::e presented. The kimberlite has been subjected to extensive and pervasive low-temperature alteration. Spinel is the only primary phase identifiable, while olivine macrocrysts and juvenile lapilli are largely pseudomorphed (talc-serpentine- carbonate alteration). However, with the exception of the alkalies, major element oxides display systematic fractionation trends; likewise, HFSE patterns are well correlated and allow petrogenetic interpretation. Various crustal contamination indices such as (SiO2 + AI::O3 ~ Na20)](MgO ~ K20) and Si] Mg are close to those of uncontaminated kimberlites. Similar La]Yb ('79-109) of the Tokapal samples with those from the kimberlites of Wajrakarur (73-145) and Narayanpet (72-156), Eastern Dharwar craton, southern India implies a similarity in their genesis. In the discriminant plots involving HFSE the Tokapal samples display strong affinities to Group 1I kimberlites from southern Africa and central India as well as to 'transitional kimberlites' from the Eastern Dharwar craton, southern India, and those from the Prieska and Kuruman provinces of southern Africa. There is a striking ~;imilarity in the depleted-mantle (TOM) Nd model ages of the Tokapal kimberlite system, Bastar craton, th~ kimberlites from NKF and WKE Eastern Dharwar craton, and the Majhgawan diatreme, Bundelkhand craton, with the emplacement age of some of the lamproites from within and around the Palaeo~Mesoproterozoic Cuddapah basin, southern India. These similar ages imply a major tectonomagmatic event, possibly related to the break- up of the supercontinent of Columbia, at 1.3-1.5 Ga across the l:hree cratons. The 'transitional' geochemical features displayed by many of the Mesoproterozoic po~:assic-ultrapotassic rocks, across these Indian cratons are inferred to be memories of the metasomatisi  相似文献   

14.
Two diamond bearing xenoliths found at Finsch Mine are coarse garnet lherzolites, texturally and chemically similar to the dominant mantle xenoliths in that kimberlite. A total of 46 diamonds weighing 0.053 carats have been recovered from one and 53 diamonds weighing 0.332 carats from the other. The diamonds are less corroded than diamonds recovered from the kimberlite. Geothermobarometric calculations indicate that the xenoliths equilibrated at 1,130° C and pressures 50 kb which is within the diamond stability field; this corresponds to depths of 160 km and would place the rocks on a shield geotherm at slightly greater depths than most coarse garnet lherzolites from kimberlite. The primary minerals in the two rocks are very similar to each other but distinctly different to the majority of mineral inclusions in Finsch diamonds. This suggests a different origin for the diamonds in the kimberlite and the diamonds in the xenoliths although the equilibration conditions for both suites are approximately coincident and close to the wet peridotite solidus.  相似文献   

15.
The Komsomolskaya kimberlite is one of numerous (>1,000) kimberlite pipes that host eclogite xenoliths on the Siberian craton. Eclogite xenoliths from the adjacent Udachnaya kimberlite pipe have previously been geochemically well characterized; however, data from surrounding diamond-bearing kimberlite pipes from the center of the craton are relatively sparse. Here, we report major- and trace-element data, as well as oxygen isotope systematics, for mineral separates of diamondiferous eclogite xenoliths from the Komsomolskaya kimberlite, suggesting two distinct subgroups of a metamorphosed, subducted oceanic crustal protolith. Using almandine contents, this suite can be divided into two subgroups: group B1, with a high almandine component (>20 mol%) and group B2, with a low almandine component (<20 mol%). Reconstructed REE profiles for B1 eclogites overlap with typical oceanic basalts and lack distinct Eu anomalies. In addition, elevated oxygen isotope values, which are interpreted to reflect isotopic exchange with seawater at low temperatures (<350 °C), are consistent with an upper-oceanic crustal protolith. Reconstructed REE profiles for B2 eclogites are consistent with oceanic gabbros and display distinct Eu anomalies, suggesting a plagioclase-rich cumulate protolith. In contrast to B1, B2 eclogites do not display elevated oxygen isotope values, suggesting an origin deep within the crustal pile, where little-to-no interaction with hydrothermal fluids has occurred. Major-element systematics were reconstructed based on mineral modes; group B1 eclogites have higher MgO wt% and lower SiO2 wt%, with respect to typical oceanic basalts, reflecting a partial melting event during slab subduction. Calculated residues from batch partial melt modeling of a range of Precambrian basalts overlap with group B1 trace-element chemistry. When taken together with the respective partial melt trajectories, these melting events are clearly linked to the formation of Tonalite–Trondhjemite–Granodiorite (TTG) complexes. As a result, we propose that many, if not all, diamondiferous eclogite xenoliths from Komsomolskaya represent mantle ‘restites’ that preserve chemical signatures of Precambrian oceanic crust.  相似文献   

16.
The Archaean lode-gold deposits at Norseman, Western Australia, consist of auriferous quartz veins in dextral-reverse ductile-brittle shear zones within tholeiitic metabasalts of upper-greenschist to amphibolite facies metamorphic grade. Three types of deposits (Northern, Central, Southern) are delineated on the basis of their spatial distribution, veining style, alteration mineraloty and metamorphic grade of host rocks. Northern deposits, hosted in upper-greenschist to lower-amphibolite facies rocks, comprise massive to laminated quartz veins with selvedges of quartz-chlorite-calcite-biotite-plagioclase assemblages. Central deposits, hosted in lower-amphibolite facies rocks, consist of laminated to massive quartz veins with selvedges of quartz-actinolite-biotite-plagioclasecalcite assemblages. Southern deposits, hosted in middleamphibolite facies metabasalts, consist of banded quartz-diopside-calcite-microcline-zoisite veins. All deposits exhibit variable ductile deformation of veins and contiguous alteration haloes, consistent with a syn-deformational genesis at high temperatures. From Northern to Southern deposits, the alteration assemblages are indicative of higher temperatures of formation, and there are progressively greater degrees of dynamically recovered textures in alteration and gangue minerals. These observations imply that a thermal variation of gold-related hydrothermal alteration exists within the Norseman Terrane over a distance of 40 km, with TNorthern<TCentral<TSouthern This thermal zonation is corroborated by T−XCO 2 phase relations between vein selvedge assemblages, which signify formation temperatures of approximately 420°–475°C, 470°–495°C and >500°C for Northern, Central and Southern deposits, respectively. The sum of structural, petrographic and mineral chemistry data indicates that the alteration assemblages formed in high-temperature, open hydrothermal systems and have not been subsequently metamorphosed. The thermal differences between the deposit groups may reflect (1) a temperature gradient, at relatively constant P, corresponding to the proximity of the deposits to regional granitoid complexes, or (2) formation of the deposits at progressively deeper crustal levels from north to south. In either case the deposits represent a continuum of gold deposition from upper-greenschist to amphibolite facies, now exposed in an oblique section through the Archaean crust at Norseman.  相似文献   

17.
K.M. Masun  B.J. Doyle  S. Ball  S. Walker 《Lithos》2004,76(1-4):75-97
The 613±6 Ma Anuri kimberlite is a pipelike body comprising two lobes with a combined surface area of approximately 4–5 ha. The pipe is infilled with two contrasting rock types: volcaniclastic kimberlite (VK) and, less common, hypabyssal kimberlite (HK).

The HK is an archetypal kimberlite composed of macrocrysts of olivine, spinel, mica, rare eclogitic garnet and clinopyroxene with microphenocrysts of olivine and groundmass spinel, phlogopite, apatite and perovskite in a serpentine–calcite–phlogopite matrix. The Ba enrichment of phlogopite, the compositional trends of both primary spinel and phlogopite, as well as the composition of the mantle-derived xenocrysts, are also characteristic of kimberlite. The present-day country rocks are granitoids; however, the incorporation of sedimentary xenoliths in the HK shows that the Archean granitoid basement terrain, at least locally, was capped by younger Proterozoic sediments at the time of emplacement. The sediments have since been removed by erosion. HK is confined to the deeper eastern parts of the Anuri pipe. It is suggested that the HK was emplaced prior to the dominant VK as a separate phase of kimberlite. The HK must have ascended to high stratigraphic levels to allow incorporation of Proterozoic sediments as xenoliths.

Most of the Anuri kimberlite is infilled with VK which is composed of variable proportions of juvenile lapilli, discrete olivine macrocrysts, country rock xenoliths and mantle-derived xenocrysts. It is proposed that the explosive breakthrough of a second batch of kimberlite magma formed the western lobe resulting in the excavation of the main pipe. Much of the resulting fragmented country rock material was deposited in extra crater deposits. Pyroclastic eruption(s) of kimberlite must have occurred to form the common juvenile lapilli present in the VKs. The VK is variable in nature and can be subdivided into four types: volcaniclastic kimberlite breccia, magmaclast-rich volcaniclastic kimberlite breccia, finer grained volcaniclastic kimberlite breccia and lithic-rich volcaniclastic kimberlite breccia. The variations between these subtypes reflect different depositional processes. These processes are difficult to determine but could include primary pyroclastic deposition and/or resedimentation.

There is some similarity between Anuri and the Lac de Gras kimberlites, with variable types of VK forming the dominant infill of small, steep-sided pipes excavated into crystalline Archean basement and sedimentary cover.  相似文献   


18.
Diamonds and eclogites of the Jericho kimberlite (Northern Canada)   总被引:1,自引:1,他引:0  
We studied diamonds and barren and diamondiferous eclogite xenoliths from the Jericho kimberlite (Northern Slave craton). The majority of the diamonds are non-resorbed octahedral crystals, with moderately aggregated N (IaB < 50%, N < 300 ppm) and δ13C = −5 to −41‰. The diamonds belong to “eclogitic” (90% of the studied samples), “websteritic” (7%) and “peridotitic” (3%) assemblages. The Jericho diamonds differ from the majority of “eclogitic” diamonds worldwide in magnesian compositions of associated minerals and extremely light C isotopic compositions (δ13C = −24 to −41‰). We propose that metasomatism triggered by H2O fluids may have been involved in the diamond formation. Multiple episodes of the metasomatism and associated melt extraction of various ages are evident in Jericho eclogite xenoliths where primary garnet and clinopyroxene have been recrystallized to more magnesian minerals with higher contents of some incompatible trace elements and to hydrous secondary phases. The model is supported by the general similarity of mineral compositions in diamondiferous eclogites to those in diamond inclusions and to secondary magnesian garnet and clinopyroxene in recrystallized barren eclogites. The ultimate products of the metasomatism could be “websteritic” diamond assemblages sourced from magnesian eclogites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Zircon-bearing veins in a harzburgite xenolith from kimberlite have imposed Ca-metasomatism on the harzburgite wall rock, in addition to adding K, Fe, Ti and OH. The zircon, previously dated to have an age similar to that of the xenolith-hosting kimberlite, shows higher Y, Nb, Ba, REE, Th and U contents than other mantle-derived zircons. Peripheral alteration of the zircon to baddeleyite and zirconolite, and alteration of vein ilmenite to perovskite suggest reaction with an evolving carbonatitic kimberlite melt. The high Cr2O3 content (0.77 wt%) of the zirconolite extends the compositional range of terrestrial zirconolite.  相似文献   

20.
Trace element characteristics of seven coesite-bearing eclogitic xenoliths from the Roberts Victor kimberlite demonstrate that this suite of eclogites originated as gabbroic cumulates in oceanic crust that was subsequently subducted. All but one of the garnets show positive Eu anomalies, accompanied by a flat heavy rare earth pattern, which is atypical of garnet, but characteristic of plagioclase, arguing for a considerable amount of plagioclase in the protoliths. Forward modelling of the accumulation of liquidus minerals from primitive komatiitic, picritic, and basaltic liquids suggests that at least some of the eclogite protoliths were not derived from basaltic parental liquids, whereas derivation from either komatiitic or picritic liquids is possible. The reconstructed eclogite bulk rocks compare favourably with oceanic gabbros from ODP hole 735B (SW Indian Ridge), even to the extent that oxygen isotopic systematics show signs of low-temperature seawater alteration. However, the oxygen isotope trends are the reverse of what is expected for cumulates in the lower section of the oceanic crust. These new findings show that δ18O values in eclogitic xenoliths, despite being sound indicators for their interaction with hydrothermal fluids at low pressure, do not necessarily bear a simple relationship with the inferred oceanic crustal stratigraphy of the protoliths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号