首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Paleozoic sequences of the Gurktal nappe (Eastern Alps) can be divided into two tectonic units by means their facies development: (1) The lower Murau nappe is characterized by low grade metamorphic black schists, calcareous phyllites of predominantly Silurian age (?) and some hundred meters of carbonates of predominantly Lower Devonian age. (2) The higher Stolzalpe nappe, metamorphosed very low to low grade, contains Ordovician to Lower Silurian volcanic formations. There can be recognized three facies during Upper Silurian to Lower Devonian times. The higher Devonian to Lower Carboniferous is dominated by more or less pelagic carbonates. After the facies distribution of Paleozoic rocks other parts of southern Austroalpine show a similar tectonic feature. The Stolzalpe nappe is related to the upper nappes of Austroalpine (i. e. Noric nappe system, northern parts of Paleozoic of Graz) and also western Carnics. The clastic and carbonate complexes of Murau nappe, Schöckel nappe s. 1. (Paleozoic of Graz) and Murides crystalline (middle Austroalpine) are developed very similar. Some features of Paleozoic fades distribution show a NE to SW trend crossing the alpidic structure. Because of conglomerates with crystalline components near the base is postulated a preUpper Ordovician basement complex for this realm.  相似文献   

2.
合理厘定西南天山构造属性,不仅对天山大地构造单元的准确划分具有重要科学意义,而且对中亚造山带的古生代构造演化也至关重要。通过对西南天山乌什北山地区的地质填图和构造解析,识别出5期构造变形,包括2期逆冲推覆构造。对主期逆冲推覆构造进行几何学、运动学研究表明,该逆冲推覆构造在空间上具有由北向南逆冲的运动学指向,并由北向南表现出由逆冲推覆构造的根带向前锋带变化的构造样式。根据逆冲推覆构造的物质组成及变形样式,认为西南天山乌什北山一带应属于塔里木板块北缘逆冲推覆构造带,从而为区域构造单元划分及西南天山晚古生代以来的构造演化过程提供构造变形方面的依据。  相似文献   

3.
Abstract

The multiply deformed Upper Austro-Alpine nappe pile of the Graz area is built up of low-grade metamorphosed Paleozoic rocks which are discordantly overlain by sediments of Santonian (Late Cretaceous) age (“Gosau” formation). Slices of Permo-Mesozoic rocks are absent. Analyses of structures, microfabrics, strain and shear directions were used to decipher the kinematic history; geochronological investigations to date the age of thrusting. K/Ar and Rb/Sr ages of synkinematically grown mica suggest an eo-Alpine (Early Cretaceous) age for the major deformation D1. D1 is characterized by non-coaxial rock flow which caused SW- to W directed nappe imbrication. Incremental strain measurements indicate the progressive superposition of D2 over Dl. In the higher nappe (Rannach Nappe) nappe imbrication continued during D2 changing the direction of nappe transport from SW to NW. Enhanced flattening strain in the deeper nappe (Schöckel Nappe) led to recumbent folds in all scales during D2. This study emphasized two interpretations : (1) The Alpine deformation in the Upper Austro-Alpine nappe pile of the Paleozoic of Graz started in the Earliest Cretaceous (about 125 Ma.). (2) The emplacement of nappes followed a curved translation path in the studied area.  相似文献   

4.
The classical concept of the nappe structure of the central Northern Calcareous Alps (NCA) is in contradiction with modern stratigraphic, structural, metamorphic and geochronological data. We first perform a palinspastic restoration for the time before Miocene lateral tectonic extrusion, which shows good continuity of structures, facies and diagenetic/metamorphic zones. We present a new nappe concept, in which the Tirolic unit practically takes the whole area of the central NCA and is divided into three subunits (nappes): Lower and Upper Tirolic subunit, separated by the Upper Jurassic Trattberg Thrust, and the metamorphic Ultra-Tirolic unit. The Hallstatt (Iuvavic) nappe(s) formed the highest unit, but were completely destroyed by erosion after nappe stacking. Remnants of the Hallstatt nappes are only represented by components of up to 1 km in size in Middle/Upper Jurassic radiolaritic wildflysch sediments ("Hallstatt Mélange" belonging to the Tirolic unit). Destruction of the continental margin started in Middle to Upper Jurassic time and prograded from the oceanic side towards the shelf. The original substratum of the external nappes (Bavaric units) of the NCA was largely the Austroalpine crystalline basement, of the internal nappes (Tirolic units) the weakly metamorphosed Palaeozoic sequences (Greywacke Zone and equivalents). Eocene movements caused limited internal deformation in the Tirolic unit.  相似文献   

5.
Summary The tectonostratigraphy within eastern sections of the Bohemian Massif includes two different terranes. A Proterozoic terrane is composed of the Moravo-Silesian parautochthon, the Moravian nappe complex and the Moldanubian Variegated and Monotonous complexes. A Paleozoic terrane includes the Gföhl Gneiss and the granulite klippen. Both terranes are separated by an oceanic suture zone which is represented by the Letovice ophiolite complex (Czech Republic) and the Raabs complex in Austria. The Raabs structural unit is interpreted to represent a tectonic melange of a dismembered ophiolite complex and metaandesites.The tectonic evolution of the southeastern Bohemian Massif includes: (1) Paleozoic extension predating late Variscan nappe stacking; (2) Variscan (c. 350-320 Ma) NE-directed nappe assembly by foreward propagation of thick-skinned nappes, whereas individual thrusts initiated within different crustal levels; (3) post-stacking Variscan W-E extension which was responsible for penetrative nappe internal deformations; and, (4) dispersion of units by a system of dextral strike-slip faults and genetically related thrust- and normal faults. The kinematic history during Variscan convergence is explained to have been related to oblique (dextral) transpression of Proterozoic against Paleozoic terranes.
Geodynamische und tektonische Entwicklung der südöstlichen Böhmischen Masse: Das Thaya Profil (Österreich)
Zusammenfassung Eine Gliederung der südöstlichen Böhmischen Masse umfaßt zwei kontinentale Blöcke (Terranes). Das proterozoische Terrane besteht aus dem Moravo-Silesischen Parautochton, den Moravischen Decken und basalen Anteilen des Moldanubikums (Bunte Serie und Monotone Serie). Das paläozoische Terrane umfaßt den Moldanubischen Gföhler Gneis und die Granulitklippen. Beide Krustenblöcke werden durch eine ozeanische Sutur getrennt, die durch den Letovice-Ophiolith (Tschechien) und die Raabser Einheit (Österreich) repräsentiert ist. Die Raabser Einheit wird als eine tektonische Melange, bestehend aus einem Ophiolith und einer kalkalkalischen, andesitischen Suite gedeutet. Die tektonische Entwicklung läßt folgende Entwicklungsstufen erkennen: (1) Paläozoische Krustenextension vor der spätvariszischen Deckenstapelung; (2) Spätvariszische (ca. 350-320 Ma) nordostgerichtete Deckenstapelung, wobei jüngere Decken in Richtung des Vorlandes progradierten. Dabei wurden einzelne Deckenbahnen in unterschiedlichen Krustenniveaus betätigt; (3) Generelle West-Ost Extension und Entwicklung des penetrativen Gefüges nach der Deckenstapelung; (4) Verteilung der Einheiten durch gleichzeitige Aktivität von steilen nordost-streichenden Scherzonen und flachen Auf- und Abschiebungen. Die kinematische Entwicklung während der variszischen Gebirgsbildung ist auf schräge (dextrale) Plattenkonvergenz zwischen dem proterozoischen und dem paläozoischen Terrane zurückzuführen.


With 10 Figures  相似文献   

6.
Abstract The Sambagawa metamorphic belt exposed in central Shikoku records a high-P–T metamorphic event. It is represented by the Oboke nappe and structurally overlying, internally imbricated, Besshi nappe complex. These major structural units are in ductile thrust contact. A melange is developed along a ductile internal tectonic contact within the Besshi nappe complex. Tectonic emplacement of a high-T enclave (Sebadani eclogite) in the melange zone resulted in the development of a contact metamorphic aureole within the host Sambagawa rocks. 36Ar/40Ar versus 39Ar/40Ar isotope correlation ages recorded by hornblende from the Sambagawa basic schists which surround the Sebadani enclave are 83.4 ± 0.3 Ma (within contact aureole) and 83.6 ± 0.5 Ma (outside aureole). 40Ar/39Ar plateau ages recorded by muscovite from the same samples are 87.9 ± 0.3 and 89.3 ± 0.4 Ma. Amphibole from the amphibolite within the Sebadani enclave records isotope correlation ages of 93.7 ± 1.1 and 96.5 ± 0.7 Ma (massive interior) and 84.6 ± 1.2 Ma (marginal shear zone). Amphibole within the massive amphibolite is significantly higher in XMg than that within the host Sambagawa basic schists. The older ages recorded by amphibole within the Sebadani enclave are interpreted to date cooling through somewhat higher closure temperatures than which characterize the more Fe-rich amphibole in surrounding schists. The younger amphibole age recorded within the marginal shear zone probably indicates that crystallization of amphibole continued until cooling through the relatively lower amphibole closure temperatures. These results, together with the previously published 40Ar/39Ar ages of the Sambagawa schists, suggest: (i) metamorphic culmination occurred in the Besshi nappe complex at c. 100–90 Ma; (ii) at c. 95 Ma the Besshi nappe complex was internally imbricated and tectonic enclaves were emplaced; (iii) at c. 85 Ma, the composite Besshi nappe was rapidly exhumed and tectonically emplaced over the Oboke nappe (which attained peak metamorphic conditions at c. 75 Ma); (iv) the Besshi and Oboke nappe complexes were further exhumed as a coherent tectonic unit and unconformably overlain by the Eocene Kuma Group at c. 50 Ma.  相似文献   

7.
The Adula nappe belongs to the Lower Penninic domain of the Central Swiss Alps. It consists mostly of pre-Triassic basement lithologies occurring as strongly folded and sheared gneisses of various types with mafic boudins. We propose a new lithostratigraphy for the northern Adula nappe basement that is supported by detailed field investigations, U–Pb zircon geochronology, and whole-rock geochemistry. The following units have been identified: Cambrian clastic metasediments with abundant carbonate lenses and minor bimodal magmatism (Salahorn Formation); Ordovician metapelites associated with amphibolite boudins with abundant eclogite relicts representing oceanic metabasalts (Trescolmen Formation); Ordovician peraluminous metagranites of calc-alkaline affinity ascribed to subduction-related magmatism (Garenstock Augengneiss); Ordovician metamorphic volcanic–sedimentary deposits (Heinisch Stafel Formation); Early Permian post-collisional granites recording only Alpine orogenic events (Zervreila orthogneiss). All basement lithologies except the Permian granites record a Variscan + Alpine polyorogenic metamorphic history. They document a complex Paleozoic geotectonic evolution consistent with the broader picture given by the pre-Mesozoic basement framework in the Alps. The internal consistency of the Adula basement lithologies and the stratigraphic coherence of the overlying Triassic sediments suggest that most tectonic contacts within the Adula nappe are pre-Alpine in age. Consequently, mélange models for the Tertiary emplacement of the Adula nappe are not consistent and must be rejected. The present-day structural complexity of the Adula nappe is the result of the intense Alpine ductile deformation of a pre-structured entity.  相似文献   

8.
The Gorny Altai region in southern Siberia is one of the key areas in reconstructing the tectonic evolution of the western segment of the Central Asian Orogenic Belt (CAOB). This region features various orogenic elements of Late Neoproterozoic–Early Paleozoic age, such as an accretionary complex (AC), high-P/T metamorphic (HP) rocks, and ophiolite (OP), all formed by ancient subduction–accretion processes. This study investigated the detailed geology of the Upper Neoproterozoic to Lower Paleozoic rocks in a traverse between Gorno-Altaisk city and Lake Teletskoy in the northern part of the region, and in the Kurai to Chagan-Uzun area in the southern part. The tectonic units of the studied areas consist of (1) the Ediacaran (=Vendian)–Early Cambrian AC, (2) ca. 630 Ma HP complex, (3) the Ediacaran–Early Cambrian OP complex, (4) the Cryogenian–Cambrian island arc complex, and (5) the Middle Paleozoic fore-arc sedimentary rocks. The AC consists mostly of paleo-atoll limestone and underlying oceanic island basalt with minor amount of chert and serpentinite. The basaltic lavas show petrochemistry similar to modern oceanic plateau basalt. The 630 Ma HP complex records a maximum peak metamorphism at 660 °C and 2.0 GPa that corresponds to 60 km-deep burial in a subduction zone, and exhumation at ca. 570 Ma. The Cryogenian island arc complex includes boninitic rocks that suggest an incipient stage of arc development. The Upper Neoproterozoic–Lower Paleozoic complexes in the Gorno-Altaisk city to Lake Teletskoy and the Kurai to Chagan-Uzun areas are totally involved in a subhorizontal piled-nappe structure, and overprinted by Late Paleozoic strike-slip faulting. The HP complex occurs as a nappe tectonically sandwiched between the non- to weakly metamorphosed AC and the OP complex. These lithologic assemblages and geologic structure newly documented in the Gorny Altai region are essentially similar to those of the circum-Pacific (Miyashiro-type) orogenic belts, such as the Japan Islands in East Asia and the Cordillera in western North America. The Cryogenian boninite-bearing arc volcanism indicates that the initial stage of arc development occurred in a transient setting from a transform zone to an incipient subduction zone. The less abundant of terrigenous clastics from mature continental crust and thick deep-sea chert in the Ediacaran–Early Cambrian AC may suggest that the southern Gorny Altai region evolved in an intra-oceanic arc-trench setting like the modern Mariana arc, rather than along the continental arc of a major continental margin. Based on geological, petrochemical, and geochronological data, we synthesize the Late Neoproterozoic to Early Paleozoic tectonic history of the Gorny Altai region in the western CAOB.  相似文献   

9.
南鄱阳坳陷地质结构具有“上张下压”的叠合盆地特征。下构造层地质结构的显著特征是发育推覆构造,由北向南推覆,在坳陷南缘与官帽山逆冲系相向逆冲形成向塘—二甲村对冲带。其内部结构受推覆构造影响呈现条带状分布的残留向斜,部分地区呈现为逆冲超叠单斜片。坳陷内的推覆构造与萍乐坳陷北部九岭推覆构造体系实属同一构造体系,由九岭向东延伸至波阳,再向东与高台山逆冲系相接,主要推覆活动期为燕山运动中期。  相似文献   

10.
In the Upper Pennine nappe complex of the Simplon—Pennine Alps (Switzerland and Italy), at least three phases of major post-nappe folding (in places associated with thrusting) can be distinguished. These are superimposed on an earlier-formed, partly chaotic, complex of tectonic units, including the Bernhard and Monte Rosa continental flakes and the Zermatt—Saas and Antrona ophiolite complexes. The earliest post-nappe folds were essentially isoclinal throughout the whole region and were accompanied by a strong schistosity which is the main foliation in most areas. Later, two successive phases of back-folding led to the present overall structure. Both phases typically show rapid variations in style from open folds lacking axial planar schistosity to very tight structures with complete foliation transposition. This has been demonstrated by systematically mapping the major axial traces over the whole region. Successively removing the major structures in reverse order shows that the ophiolite complexes were originally part of a continuous unit marking an important suture between the Bernhard and Monte Rosa nappes.  相似文献   

11.
三江昌宁-孟连带原-古特提斯构造演化   总被引:4,自引:0,他引:4       下载免费PDF全文
昌宁-孟连特提斯洋的构造演化及其原特提斯与古特提斯的转换方式一直是青藏高原及邻区基础地质研究中最热门的科学问题之一.根据新的地质调查资料、研究成果并结合分析数据,系统总结了三江造山系不同构造单元地质特征,讨论了昌宁-孟连特提斯洋早古生代-晚古生代的构造演化历史.通过对不同构造单元时空结构的剖析和对相关岩浆、沉积及变质作用记录的分析,认为昌宁-孟连结合带内共存原特提斯与古特提斯洋壳残余,临沧-勐海一带发育一条早古生代岩浆弧带,前人所划基底岩系"澜沧岩群"应为昌宁-孟连特提斯洋东向俯冲消减形成的早古生代构造增生杂岩,滇西地区榴辉岩带很可能代表了俯冲增生杂岩带发生了深俯冲,由于弧-陆碰撞而迅速折返就位,这一系列新资料及新认识表明昌宁-孟连结合带所代表的特提斯洋在早古生代至晚古生代很可能是一个连续演化的大洋.在此基础上,结合区域地质资料,构建了三江造山系特提斯洋演化的时空格架及演化历史,认为其经历了早古生代原特提斯大洋扩张、早古生代中晚期-晚古生代特提斯俯冲消减与岛弧带形成、晚二叠世末-早三叠世主碰撞汇聚、晚三叠世晚碰撞造山与盆山转换等阶段.   相似文献   

12.
中国西北是古亚洲构造域和特提斯构造域共同作用的地区,南华纪—古生代时期经历了复杂的洋-陆演化过程,诸陆(地)块于三叠纪基本拼贴就位,奠定了中生代以来陆内盆山演化的基础。但对于西北地区南华纪—古生代时期古亚洲洋盆最终关闭的时限、位置,以及秦祁昆古生代造山带属于特提斯构造域还是古亚洲构造域等重大区域地质问题目前仍存在较大争议。文章在最新地质填图的基础上,通过对沉积建造、岩浆建造、变质变形等的综合分析,将西北地区南华纪—古生代的构造单元厘定为3个洋板块、4个弧盆系和2个陆(地)块群等9个二级、46个三级和112个四级构造单元,力图刻画消失的大洋盆地的残留组成和诸陆(地)块的边缘增生结构。结合古地磁、生物古地理研究成果,恢复了古生代不同时期西北洋-陆系统在全球的位置,讨论了洋盆消减、诸陆(地)块拼贴的过程。   相似文献   

13.
14.
北祁连造山带中—西段陆壳残块群的构造—地层特征   总被引:31,自引:0,他引:31       下载免费PDF全文
左国朝  刘义科  张崇 《地质科学》2002,37(3):302-312
北祁连造山带是一条多旋回的造山带,其最大特点是早古生代岩系中镶嵌有众多大小不一的由前震旦系变质岩系所组成的陆壳残块群,它们源于晋宁期末,统一的巨型华北古大陆早古生代初的裂解。寒武 奥陶纪西段演化为裂谷系,陆壳残块群组成裂谷系的正性隆起构造单元;中段发育微洋盆沟弧盆体系,在南缘的陆壳残块群处于奥陶纪活动大陆边缘张裂带上,并构成被晚期弧后盆地及裂谷分开后的陆壳基底部位,少数陆壳残块为沟弧盆体系中的孤岛隆起。它们不是由中祁连推覆来的飞来峰或是外来移置的滑覆体,而是由统一的巨型华北古大陆西南缘古阿拉善地块于早古生代初裂解后向洋或裂谷演化过程中残留其中的大小不一的陆壳残块。北祁连早奥陶世海域与现在加拿大北部巴芬湾及伊丽莎白女王群岛的构造格局相似。  相似文献   

15.
The Tokat Massif is a major metamorphic complex of the south-central Pontides, the origin and development of which have long remained unknown. Recent detailed field-based mapping has revealed the major geological features of this complex. The Tokat Massif appears to be a tectonic mosaic composed of three major components: (1) the Yesilirmak Group; (2) the Turhal Metaophiolite; and (3) the Amasya Group. The Yesilirmak Group, which consists of a coherent lithoiogical sequence involving Paleozoic basement and overlying Triassic units, represents a short-lived basin assemblage. The Turhal Metaophiolite consists of an ophiolitic melange association and slices of a stratigraphically ordered ophiolite. The Amasya Group, the highest-standing tectonic unit, is represented by a lower Paleozoic clastic succession.

The different major tectonostratigraphic assemblages of the Tokat Massif record a continent-continent collision between the Laurasian Amasya Group and the Gondwanan Yesilirmak Group. The Turhal Metaophiolite, sandwiched between the two continental fragments, represents remnants of an oceanic realm that was consumed between the two continents. The three major tectonic components were assembled and underwent regional metamorphism during the Late Triassic-Liassic transition, and were later covered during the Liassic by basal detrital units.  相似文献   

16.
华南构造演化新思考 兼论“ 华夏古陆”说中的几个问题   总被引:21,自引:1,他引:21  
华南新元古代到早古生代是扬子活动大陆边缘构造“捕获”的一个边缘海盆地,其间充填了巨厚的复理石、砂、页岩沉积。早古生代晚期发生了福建沿海弧与武夷弧碰撞,这两个弧一起与扬子活动大陆边缘碰撞,产生华南造山作用,使华南边缘海沉积物发生变质作用,产生了强烈构造变形,形成一系列推覆构造和花岗岩浆作用。因此,华南是早古生代形成的造山带,而不是华夏地块(古陆)。但是仍然有学者沿用这个老“术语”———华夏地块,因此,产生了华南是造山带还是华夏地块的争论。专业“术语”反映学者的学术思想体系和今后的研究走向,因此有必要讨论华南的构造属性。还讨论了华夏地块问题,简述了关于地质构造单元命名的基本原则。  相似文献   

17.
安徽省主要构造地质要素的变形   总被引:1,自引:0,他引:1       下载免费PDF全文
安徽省在中国东部的中心部位,跨越不同的构造地质单元。前寒武纪变质岩出露面积约占基岩出露面积的三分之一。变质岩包括太古宙、元古宙及少部分古生代地层;变质相包括麻粒岩相到低级绿片岩相。其中发育有多期褶皱变形和同变质期的断层作用,这些断层在后继变形过程中被改造和复活,形成十分复杂的构造地质图案。  相似文献   

18.
赣东北朱溪为钦杭成矿带新发现的重要钨铜多金属矿集区,位于钦杭结合带萍(乡)乐(平)坳陷带东部逆冲推覆抬升地段。朱溪矿集区燕山期受逆冲推覆构造影响,形成由新元古界变质基底与上古生界-中生界沉积盖层组成的构造岩片堆叠构造;具有逆冲推覆深断裂带控岩-控矿、碳酸盐岩构造岩片赋矿、燕山晚期浅层对冲构造破矿的构造背景;发育有燕山早期I型花岗闪长(斑)岩钼铜和S型花岗岩钨铜两个岩浆岩成矿系列,在空间上形成张家坞—月形与塔前—朱溪两个矿田、张家坞—毛家园和塔前—朱溪上下两个成岩台阶,下成矿台阶朱溪巨大钨铜矿床的发现打开了钦杭成矿带坳陷区“深地”找矿的一扇窗户。  相似文献   

19.
The Variscan continental suture zone exposed in NW Iberia is examined to uncover the long-lived rheological control exerted by the strata deposited over the external parts of Gondwana on its geodynamic evolution. The suture occurs within a set of allochthonous terranes whose limits were taken as domain boundaries to interpret the Variscan stacking of Paleozoic continental domains and retrodeform the resulting nappe pile. The suture zone formed due to closure of ocean basins located between Gondwana and Laurussia during the Late Paleozoic and consists of relics of oceanic and transitional crust. The suture zone exhibits a tabular to lens shape due to repeated tectonic events dominated by non-coaxial deformation (thrusts and low-angle normal faults). Thrusting and normal faulting also involved the margins of the continents bounding the suture. The structure of the continental blocks, however, is dominated by folds, particularly large nappe folds with pronounced superimposed flattening. The upper part of the basal allochthonous units comprises a rheologically incompetent domain below the suture zone. This domain is typified by the carbonaceous-rich strata, which are probably Ordovician–Silurian sediments based on U–Pb detrital zircon populations. The rheology of this layer determined the location of the first accretionary thrust that initiated the Late Devonian subduction of the Gondwana margin below the suture zone. By favoring fault development, the upper sequence of the basal allochthonous units as a whole influenced the exhumation of deep-seated continental crust, the transference of the suture zone over Gondwana, and the re-equilibration of the resulting overthickened crust.  相似文献   

20.
Within the Mediterranean realm, the Rhodopes represent a nappe stack of oceanic and continental fragments assembled along the Eurasian continental margin during the Alpine orogeny. The timing of the high-pressure (HP) metamorphism has long been ambiguous, lacking detailed geochronological and geochemical control on subduction-exhumation and nappe stacking processes. Here we apply the Lu–Hf and Sm–Nd chronometers to a suite of representative eclogite samples covering two different key units of the Rhodopean nappe stack: (1) the Kimi Complex (Upper Allochthon) and (2) the Middle Allochthon. In addition to geochronology, we also determined whole rock Hf and Nd isotope compositions as well as major and trace element concentrations in order to constrain the nature of the eclogite protoliths. Two HP metamorphic events were revealed by Lu–Hf geochronology: (1) a Lower Cretaceous event in the Upper Allochthon (126.0 ± 1.7 Ma) and (2) an Eocene event in the Middle Allochthon (44.6 ± 0.7 Ma; 43.5 ± 0.4 Ma; 42.8 ± 0.5 Ma), at conditions of ca. 700°C/20–25 kbar. Our new data provide direct evidence for multiple subduction events in the Rhodopes. Exhumation and subsequent thrusting of the Middle Allochthon on the Lower Allochthon can be narrowed down to the time span between 42 and 34 Ma. In a broader tectonic context, the Eocene ages for the HP metamorphism support the view that the Rhodopes represent a large-scale tectonic window, exposing the deepest nappe units of the Hellenides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号