首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In the El Hamadieh region, part of the large intracontinental basalt plateau extending NW-SE from Syria to Jordan and Saudi-Arabia in the northern part of the Arabian Plate, young volcanic edifices formed by fissure eruptions have been investigated; all geometrical dimensions and parameters of the ridges have been measured, the field relationships documented, the data evaluated and the structural patterns analysed. Using the attitude of the fissures as palaeostress indicators, a stress-strain-model is introduced, showing the superimposition of stress fields. Magma was extruded at the intersection of two regional structures: the NE-SW-striking Amman-Hallabat fold belt and the NW-SE-trending Azraq-Sirhan graben. A first effusion with a relatively fluid magma took place in reactivated fold-related conjugated hk0-shear fractures with a compressional σ1-stress trending NW-SE. A second phase of fissure effusions produced a more viscous lava. These fissures represent (a) hk0-planes with an acute angle about the fold axis, and (b) planes of normal faults along the southwestern shoulder of the Azraq-Sirhan graben in the position of fold-related reactivated conjugated 0hl-shear planes.The geometrical relationships between the Amman-Hallabat folds, the Azraq-Sirham faults and the volcanic fissures indicate a rotation of the local stress field with the originally NW-SE-trending compressional σ1- and the NE-SW-trending, σ3-stress changing into a NE-SW-acting tensional σ1-stress.  相似文献   

2.
3.
Jom-Bolok volcanic field is located in the East Sayan Mts. of Siberia (Russia), a portion of the Asian convergent zone. It is located at the boundary of the Riphean Tuva-Mongolia massif, which was probably reactivated because of the interplay between far-field tectonic stress derived from the India–Asia collision zone and extension in the south-western Baikal rift system. The volcanic field comprises a number of hawaiitic lava flows, of various lengths, which flowed down paleorivers. Flows were fed by fissure eruptions and the largest lava flow field was dated as 7,130?±?140 cal 14C years BP using a buried organic sample found inside the associated cinder cone. This lava flow field is about 70 km long, ~100 km2 in area, and 7.9 km3 in volume. The area and volume of this flow field ranks this eruption highly in the global record of fissure-fed effusive eruptions. This lava flow field makes up 97% of the entire Jom-Bolok volcanic field, a fact which raises a puzzling question: why and/or how did a relatively small-volume volcanic field produce such a large-volume individual eruption? A working hypothesis is that a pond of sublithospheric melt accumulated over a relatively prolonged period. This was then rapidly drained in response of tectonic changes triggered by unloading of ice in the Early Holocene.  相似文献   

4.
We explain the global variation of Benioff zone seismicity with depth and the orientation of stress axes of deep and intermediate earthquakes using numerical models of subducting slabs. Models that match the seismicity and stress require a barrier to flow at the 670 km seismic discontinuity. The barrier may be a viscosity increase of at least an order of magnitude or a chemical discontinuity. Instantaneous flow is subparallel to the slabs for models with a viscosity increase but contorted for models with a chemical barrier. Log N (number of earthquakes) decreases linearly to 250–300 km depth and increases thereafter. Stress magnitude in our models shows the same pattern, in accord with experiments showing N proportional to e, with k a constant and σ stress magnitude. The models predict downdip compression in the slabs at depths below 300–400 km, as observed for earthquake stress axes.  相似文献   

5.
We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722?g?m?2?day?1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW?CNNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526?±?160?t?day?1 of which 453?t?day?1 (29.7?%) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4?C240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154?t?day?1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07?×?1014?J?day?1 or to a total heat flow of 1,237?MWt.  相似文献   

6.
As plates move across the surface of the earth they change their curvature in response to the changing curvature of the earth and as a consequence membrane stresses are generated. At any particular point within a plate the stress generated will be proportional to the change in radius of curvature at that point.The rate of change of curvature of the geoid is latitude dependent, consequently the calculation of latitude-generated stress (σγ) is relatively straightforward. For a point moving from an initial latitude of γ0 to a latitude of γ:σλ∝ (sin2λ0?sin2λ)By determining the stress generated at a sequence of points within a plate during set time intervals, membrane stress domains can be defined and used to predict the way in which a plate would deform.In West Africa two phases of compression (Coniacian-Santonian and Palaeocene-Eocene) have been observed within the Lower Benue Rift, followed by a phase of extension (starting about 25 m.y. ago and continuing to the present day) across the Cameroun Volcanic Line. Membrane stress domain theory offers an explanation not only for the timing of all three phases of deformation but is also closely in agreement with the best available information for the extent of deformation.The Red Sea Rift and the rift between Madagascar and the rest of the African continent were both initiated in domains of very high membrane stress generation.  相似文献   

7.
Collapsed calderas are the structural surface expression of the largest volcanic eruptions on Earth and may reach diameters of tens of kilometres while erupting volumes larger than 1000 km3. Remnants of collapse calderas can be found along the South American volcanic arc and are thought to be inactive. However, this study shows that systems of such dimension may become active in a relatively short period of time without attracting much attention. Using satellite-based InSAR data, a 45 km wide elongated area of ground deformation was observed in the Lazufre volcanic region (Chile), where no deformation was detected 10 years ago. The deformation signal shows an uplift of up to ~ 3 cm yr− 1 during 2003–2006, affecting an area of about 1100 km2, comparable in size to super-volcanoes such as Yellowstone or Long Valley. This deformation signal can be explained by an inflating magma body at about 10 km depth, expanding and propagating laterally at a velocity of up to 4 km per year. Although it is not clear whether this intrusion will lead to an eruption, its dimensions and the rapid deformation rate insinuate that a potentially large volcanic system is forming.  相似文献   

8.
Stress sensitivity of stylolite morphology   总被引:1,自引:0,他引:1  
Stylolites are rough surfaces that form by localized stress-induced dissolution. Using a set of limestone rock samples collected at different depths from a vertical section in Cirque de Navacelles (France), we study the influence of the lithostatic stress on the stylolites morphology on the basis of a recent morphogenesis model. We measured the roughness of a series of bedding-parallel stylolites and show that their morphology exhibits a scaling invariance with two self-affine scaling regimes separated by a crossover-length (L) at the millimeter scale consistent with previous studies. The importance of the present contribution is to estimate the stylolite formation stress σ from the sample position in the stratigraphic series and compare it to the crossover-length L using the expected relationship: L  σ ?2. We obtained a successful prediction of the crossover behavior and reasonable absolute stress magnitude estimates using relevant parameters: depth of stylolite formation between 300 to 600 m with corresponding normal stress in the range of 10–18 MPa. Accordingly, the stylolite morphology contains a signature of the stress field during formation and we thus suggest that stylolites could be used as paleo-stress gauges of deformation processes in the upper crust.  相似文献   

9.
The Adriatic foreland of the Apennines comes ashore only in Apulia (easternmost Italy). Its southern part, our study area, lacks any structural analysis devoted to define its recent-to-active tectonics. Throughout the Quaternary, this region was affected by mild brittle deformation with rare faults, characterized by small displacement, and widespread extension joints, frequently organized in sets. Therefore, we conducted a quantitative and systematic analysis of the joint sets affecting Quaternary deposits, by applying an inversion technique ad hoc to infer the orientation and ratio of the principal stress axes, R = (σ2 ? σ3)/(σ1 ? σ3). Within a general extensional regime, we recognized three deformational events of regional significance. The oldest event, constrained to the early and middle part of the Middle Pleistocene, is characterized by variable direction of extension and R between 0.64 and 0.99. The penultimate event, dated late Middle Pleistocene, is characterized by an almost uniaxial tension, with a horizontal σ3 striking ~N43°E; R is high, between 0.85 and 0.99. The most recent event is characterized by the lowermost R values, that never exceed 0.47 and are frequently <0.30, indicating a sort of horizontal ‘radial’ extension. This event is not older than the Late Pleistocene and possibly reflects the active stress field still dominating the entire study area.  相似文献   

10.
The geological evolution of Merapi volcano, Central Java, Indonesia   总被引:1,自引:0,他引:1  
Merapi is an almost persistently active basalt to basaltic andesite volcanic complex in Central Java (Indonesia) and often referred to as the type volcano for small-volume pyroclastic flows generated by gravitational lava dome failures (Merapi-type nuées ardentes). Stratigraphic field data, published and new radiocarbon ages in conjunction with a new set of 40K–40Ar and 40Ar–39Ar ages, and whole-rock geochemical data allow a reassessment of the geological and geochemical evolution of the volcanic complex. An adapted version of the published geological map of Merapi [(Wirakusumah et al. 1989), Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000] is presented, in which eight main volcano stratigraphic units are distinguished, linked to three main evolutionary stages of the volcanic complex—Proto-Merapi, Old Merapi and New Merapi. Construction of the Merapi volcanic complex began after 170?ka. The two earliest (Proto-Merapi) volcanic edifices, Gunung Bibi (109?±?60?ka), a small basaltic andesite volcanic structure on Merapi’s north-east flank, and Gunung Turgo and Gunung Plawangan (138?±?3?ka; 135?±?3?ka), two basaltic hills in the southern sector of the volcano, predate the Merapi cone sensu stricto. Old Merapi started to grow at ~30?ka, building a stratovolcano of basaltic andesite lavas and intercalated pyroclastic rocks. This older Merapi edifice was destroyed by one or, possibly, several flank failures, the latest of which occurred after 4.8?±?1.5?ka and marks the end of the Old Merapi stage. The construction of the recent Merapi cone (New Merapi) began afterwards. Mostly basaltic andesite pyroclastic and epiclastic deposits of both Old and New Merapi (<11,792?±?90 14C years BP) cover the lower flanks of the edifice. A shift from medium-K to high-K character of the eruptive products occurred at ~1,900 14C years BP, with all younger products having high-K affinity. The radiocarbon record points towards an almost continuous activity of Merapi since this time, with periods of high eruption frequency interrupted by shorter intervals of apparently lower eruption rates, which is reflected in the geochemical composition of the eruptive products. The Holocene stratigraphic record reveals that fountain collapse pyroclastic flows are a common phenomenon at Merapi. The distribution and run-out distances of these flows have frequently exceeded those of the classic Merapi-type nuées ardentes of the recent activity. Widespread pumiceous fallout deposits testify the occurrence of moderate to large (subplinian) eruptions (VEI 3–4) during the mid to late Holocene. VEI 4 eruptions, as identified in the stratigraphic record, are an order of magnitude larger than any recorded historical eruption of Merapi, except for the 1872?AD and, possibly, the October–November 2010 events. Both types of eruptive and volcanic phenomena require careful consideration in long-term hazard assessment at Merapi.  相似文献   

11.
A preliminary study of b value of rocks with two kinds of structural models has been made on the base of a new acoustic emission recording system. It shows that b value of the sample decreases obviously when the sample with compressive en echelon faults changes into a tensile one after interchange occurs between stress axis σ 1 and σ 2. A similar experiment is observed when the sample with tensile en echelon faults changes into that with a bend fault after two segments of the en echelon fault linking up. These facts indicate that the variation of b value may contain the information of the regional dominant structural model. Therefore, b-value analyses could be a new method for studying regional dominant structural models.  相似文献   

12.
A geochronological and structural study of dykes is used in order to define the stress field in Sardinia. The Plio-quaternary volcanism of Sardinia (between 5 and <0.2 My old) is mostly fissural and contemporaneous with an intraplate regime which reactivated normal faults of various orientations. Dykes in the Logudoro, Montiferro and Monte Arci areas (west-central and northern Sardinia) are 3.4 to 1.8 My old. Their orientations vary around a north-south mean direction which is the most frequent in the Tyrrhenian Basin. The reactivation of normal faults of various orientations may be linked to a stress regime characterised by a maximum vertical principal stressσ 1 and horizontal principal stressesσ 2 andσ 3 having close values and which can easily interchange. In these conditions, the magmatie liquid can intrude into preexisting fractures of different orientations, especially into the fractures that have an orientation close to the planeσ 1 σ 2 (with N-S orientation in Sardinia). This plane is concordant with the convergent motion of Europe and Africa plates. The influence of the pre-existing fractures on dyke orientations seems more important in this area than in southern France where there is a different tectonic regime (Féralt) andCampredon, 1983).  相似文献   

13.
Recent research has started to focus on how prolonged periods of sub‐threshold flows may be capable of imparting structural changes that contribute to increased bed stability. To date, this effect (termed ‘stress history’) has been found to be significant in acting to increase a bed's critical shear stress at entrainment threshold. However, it is supported by only limited, qualitative and often speculative information on the mechanisms of this stabilization process in grade‐specific studies. As such, this paper uses high resolution laser scanning to quantitatively ascertain the granular mechanics underpinning the relationship between stress history and entrainment threshold for beds of a range of grain size distributions. Employing a bed slope of 1/200, three grain size distributions with median grain sizes (D50) of 4·8 mm [uniform (σg = (D84/D16)0.5 = 1·13; bimodal (σg = 2·08); and, unimodal (σg = 1·63)] were exposed to antecedent stress histories of 60 and 960 minutes duration. Antecedent shear stress magnitude was set at 50% of the critical shear stress for the D50 when no stress history period was employed. Two laser displacement scans of the bed surface (approximate area 100 mm × 117 mm) were taken, one prior to the antecedent period and one after this period, so that changes to surface topography could be quantified (resolution of x = 0·10 mm, y = 0·13 mm and z = 0·24 mm). Rearrangement of bed surface structure is described using statistical analysis and two‐dimensional (2D) semi‐variograms to analyse scaling behaviour. Results reveal vertical settlement, changes to bed roughness and particle repositioning. However, the bed grain size distribution influences the relative importance of each mechanism in determining stress history induced bed stability; this is the focus of discussion in this paper. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units 1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2–3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5–6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22–43% basalt, ~0.4–1% basaltic andesite, ~29–54% andesite, ~2–3% dacite, and ~18–40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely formed by episodic partial melting of upper crustal rocks in response to emplacement of basalts. There are no examples of mingled rhyolitic and basaltic magmas. Whatever mechanism is invoked to explain the generation of andesite at the Tequila volcanic field, it must be consistent with a dominantly bimodal distribution of high-Ti basalt and rhyolite for an 800 kyr interval beginning ~1 Ma, which abruptly switched to punctuated bursts of predominantly andesitic volcanism over the last 200 kyrs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial responsility: J. Donnelly-NolanThis revised version was published online in January 2005 with corrections to Tables 1 and 3.An erratum to this article can be found at  相似文献   

15.
The Pliocene-Holocene Newer Volcanic Province (NVP) of southeastern Australia is an extensive, relatively well-preserved, intra-plate basaltic lava field containing more than 400 eruptive centres. This study reports new, high-precision 40Ar/39Ar ages for six young (300–600 ka) basalt flows from the NVP and is part of a broader initiative to constrain the extent, duration, episodicity and causation of NVP volcanism. Six fresh, holocrystalline alkali basalt flows were selected from the Warrnambool-Port Fairy area in the Western Plains sub-province for 40Ar/39Ar dating. These flows were chosen on the basis of pre-existing K-Ar age constraints, which, although variable, indicated eruption during a period of apparent relative volcanic quiescence (0.8–0.06 Ma).40Ar/39Ar ages were measured on multiple aliquots of whole rock basalt samples. Three separate flows from the Mount Rouse volcanic field yielded concordant 40Ar/39Ar age results, with a mean eruption age of 303 ± 13 ka (95% CI). An older weighted mean age of 382 ± 24 ka (2σ) was obtained for one sample from the central Rouse-Port Fairy Flow, suggesting extraneous argon contamination. Two basalt flows from the Mount Warrnambool volcano also yielded analogous results, with an average 40Ar/39Ar age of 542 ± 17 ka (95% CI). The results confirm volcanic activity during the interval of relative quiescence. Most previous K-Ar ages for these flows are generally older than the weighted mean 40Ar/39Ar ages, suggesting the presence of extraneous 40Ar. This study demonstrates the suitability of the 40Ar/39Ar incremental-heating method to obtain precise eruption ages for young, holocrystalline alkali basalt samples in the NVP.  相似文献   

16.
Limited field and flume data suggests that both uniform and graded beds appear to progressively stabilize when subjected to inter-flood flows as characterized by the absence of active bedload transport. Previous work has shown that the degree of bed stabilization scales with duration of inter-flood flow, however, the sensitivity of this response to bed surface grain size distribution has not been explored. This article presents the first detailed comparison of the dependence of graded bed stability on inter-flood flow duration. Sixty discrete experiments, including repetitions, were undertaken using three grain size distributions of identical D50 (4.8 mm); near-uniform (σg = 1.13), unimodal (σg = 1.63) and bimodal (σg = 2.08). Each bed was conditioned for between 0 (benchmark) and 960 minutes by an antecedent shear stress below the entrainment threshold of the bed (τ*c50). The degree of bed stabilization was determined by measuring changes to critical entrainment thresholds and bedload flux characteristics. Results show that (i) increasing inter-flood duration from 0 to 960 minutes increases the average threshold shear stress of the D50 by up to 18%; (ii) bedload transport rates were reduced by up to 90% as inter-flood duration increased from 0 to 960 minutes; (iii) the rate of response to changes in inter-flood duration in both critical shear stress and bedload transport rate is non-linear and is inversely proportional to antecedent duration; (iv) there is a grade dependent response to changes in critical shear stress where the magnitude of response in uniform beds is up to twice that of the graded beds; and (v) there is a grade dependent response to changes in bedload transport rate where the bimodal bed is most responsive in terms of the magnitude of change. These advances underpin the development of more accurate predictions of both entrainment thresholds and bedload flux timing and magnitude, as well as having implications for the management of environmental flow design. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

17.
The recent earthquake sequences of 2012 (northern Italy) and 2013 (Marche offshore) provided new, fundamental constraints to the active tectonic setting of the outer northern Apennines. In contrast to the Po Plain area, where the 2012 northern Italy earthquakes confirmed active frontal thrusting, the new focal mechanisms obtained in this study for the 2013 Marche offshore earthquakes indicate that only minor thrust fault reactivation occurs in the Adriatic domain, even for a theoretically favourably oriented maximum horizontal compression. Recent seismicity in this domain appears to be mainly controlled by transcurrent crustal faults dissecting the Apennine thrust belt. The along-strike stress field variation from the Po Plain to the Adriatic area has been quantitatively investigated by applying the multiple inverse method (MIM) to the analysis of the entire seismicity recorded from January 1976 to August 2014, from the top 12 km of the crust (fault plane solutions from 127 earthquakes with MW  4), allowing us to obtain a comprehensive picture of the state of stress over the outer zone of the fold and thrust belt. The present-day stress field has been defined for 39 cells of 1.5° × 1.5° surface area and 12 km depth. The obtained stress field maps point out that, although the entire outer northern Apennines belt is characterized by a sub-horizontal maximum compressive axis (σ1), the minimum compression (σ3) is sub-vertical only in the Po Plain area, becoming sub-horizontal in the Adriatic sector, thus confirming that the latter region is dominated by an active tectonic regime of strike-slip type.  相似文献   

18.
 For first time, during 1991, seismic activity was recorded during an eruption at Colima volcano. We analyze these data to obtain a stress pattern using a composite focal mechanism technique. From the analysis of regional seismicity, the Tamazula Fault and the Armeria River appear as active features and the dip of the slab east of the Jalisco Block is approximately 12°. Southwest of Colima volcano a vertical alignment of seismic events was observed. We estimate five different composite focal mechanism solutions from our data set, which indicate a change of the stress field at the volcano after the 1991 eruption. These solutions suggest that the stress field in the volcanic edifice was controlled by stresses related to the emplacement of magma superimposed on the regional stress field. No evidence of active local faults in the volcanic edifice was found. We propose a model for the eruptive process that involves tilting of the volcanic edifice. Received: 15 October 1995 / Accepted: 26 October 1998  相似文献   

19.
Sm-Nd data for ten greenstone belt volcanics from Rhodesia define an age of2.64 ± 0.14AE, which is in agreement with other geochronological data and with observed field relationships. This age and the initial143Nd/144Nd ratio of0.50919 ± 0.00018 yield a time-integrated Sm/Nd ratio of0.302 ± 0.009 in the mantle source region, similar to that in chondrites. Sm/Nd ratios of some lavas are0.31 and imply that a small fraction of their source was removed prior to or as part of the main melting event.The utility of the Sm-Nd system for dating altered Archaean volcanic rocks is amply demonstrated by these data.  相似文献   

20.
New high-precision single crystal sanidine 40Ar/39Ar ages for the Huckleberry Ridge Tuff (HRT), Yellowstone volcanic field, show that the three HRT members (A, B, and C) represent at least two different eruptions. The new 40Ar/39Ar ages (all ages calculated relative to the optimisation model of Renne et al., 2011) are: 2.135 ± 0.006 Ma, 2.131 ± 0.008 Ma, and 2.113 ± 0.004 Ma (2σ, full uncertainty propagation), for members A, B and C, respectively. Members A and B are within uncertainty of one another and both are more precise than, but in agreement with, previously published ages. Member C was erupted later than members A and B. HRT members A and B were deposited during the Reunion Normal Polarity Subchron (C2r.1n). Member C was deposited during Subchron C2r.1r. Previously published radiogenic and stable isotope data show that member C was sourced from an isotopically discrete magma with a higher fraction of crustal material than members A and B. The volume of the first HRT eruption is reduced by c. 12% from previous estimates and explosive eruptions from the Yellowstone volcanic field occurred more frequently, producing more homogeneous magma than was previously believed. High-precision 40Ar/39Ar dating is key for resolving the eruptive history of Yellowstone, temporal dissection of voluminous ignimbrites, and rigorous investigation of what constitutes a ‘super-eruption’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号