首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A preliminary finite elements model of the ground deformations observed at Phlegraean Fields is proposed. The model assumes an oblate-spheroid magma chamber at the depth of 5.4 km with major semiaxis of 1.5 km and minor semiaxis of 0.75 km. The dimensions of the magma chamber have been evaluated by using a thermal model based on the assumptions that a progressively cooling huge magmatic body is responsible for the volcanic activity at Phlegraean Fields in the last 35,000 years. Surface deformations caused by an over-pressure of 30 MPa in the magma chamber have been calculated. Constant, and temperature-dependent elastic parameters of the surrounding medium have been considered. Vertical displacements of the order of those presently observed at Phlegraean Fields can be obtained only with temperature-dependent elastic properties of the medium.  相似文献   

2.
The Phlegraean Fields are a densely inhabited volcanic area which includes part of the city of Napoli. During the past 2,000 years it has been subject to slow vertical movements (bradyseisms). A rapid uplift was observed in early 1970, which caused alarm in the population. Ground deformation started to be monitored by means of tide gauge observations and topographic levelling, making it possible to define the area interested in the phenomenon and to outline the pattern of deformation. Vertical deformation data are well fitted by radially symmetric sources, such as the Mogi’s model, while horizontal deformation data are best fitted by a linear source model. Contemporaneously, a tight seismic network was installed in the area. The frequency of seismic events and the released energies have shown that the seismicity of the volcanic area is very low. Seismic activity evolved both with regard to the relative occurrence rate of various kinds of shock and to the distribution of epicentres. The values of the Ishimoto-Iida coefficient, calculated for three kinds of shock, show that the focal medium is very heterogeneous down to a depth of a few kilometres. Observations suggest that the origin of the ground uplift can be attributed to the intrusion of magmatic masses. This hypothesis is coherent with data and is supported by structural information. Available data allow a rough estimation of the maximum magnitude possible for an earthquake with epicenter in the Phlegraean Fields.  相似文献   

3.
On Oct. 4th, 1983 the area of Phlegraean Fields, near Naples (Southern Italy) was shaked by an earthquake of magnitude (M L) 4.0 that caused some damage in the town of Pozzuoli and its surroundings. This seismic event was the largest one recorded during the recent (1982–84) inflation episode occurred in the Phlegraean volcanic area, and a detailed macroseismic reconstruction of the event was carried out.Failing macroseismic data on other earthquakes occurred in Phlegraean Fields, the attenuation law of the intensity as a function of the distance as obtained for the Oct. 4th earthquake was compared with those obtained for other volcanic areas in central Italy —i.e., Tolfa, Monte Amiata — in order to check the reliability of the results obtained for Phlegraean Fields.The Blake's model of the earthquake of Oct. 4th, 1983 does not agree with the experimental data because isoseismals contain areas larger than those shown by the model. This result has been interpreted as an effect of energy focusing due to a reflecting layer 6–8 km deep.  相似文献   

4.
Phenomena occurring since 1982 in the Phlegraean Fields, interpreted as precursors of a potential renewal of volcanic activity, have forced us to anticipate some conclusions of a volcanic-hazard study based on the reconstruction of past eruptions in the area, to serve as basis for civil defense preparedness plans. The eruptive history of the Phlegraean Fields suggests a progressive decrease with time in the strength of eruptive phenomena paralleling a migration of vents towards the center of the Phlegraean caldera. Studies concerning the volcanic risk zonation were therefore concentrated on activities during the last 4,500 years and two eruptions (Monte Nuovo and Agnano Monte Spina), that occurred in 1538 and 4,400 years B.P., respectively were selected as the «reference eruptions» from which possible eruption scenarios were drawn.  相似文献   

5.
The Phlegraean Fields caldera is an active volcanic system where episodes of ground deformation are accompanied by significant changes in geochemical and geophysical parameters monitored at the surface. These changes derive from a complex interaction between magmatic system and hydrothermal fluid circulation. We calculate the gravity changes associated with the variable density of hydrothermal fluids. We simulate the multi-phase and multi-component fluid circulation triggered by a pulsating magma degassing, periodically increasing the discharge of CO2-enriched fluids into the shallow hydrothermal system. The simulated evolution of the hydrothermal system successfully reproduces the observed composition of gas discharged at the surface. At the same time, results indicate that changes in average fluid density generate a detectable gravity signal that is of the same order of magnitude of the observed changes. This contribution to gravity changes can explain the peculiar behavior of gravity data collected at Solfatara, where surface hydrothermal phenomena are present. Simultaneous fitting of two independent sets of monitoring data (gas composition and gravity changes) confirms the conceptual model proposed for the hydrothermal system at Solfatara, and it provides new insights for the interpretation of gravity data.  相似文献   

6.
During the summer of 1982 a continuous uplift began at Phlegraean Fields, an active volcanic area in southern Italy (Fig. 1), that persisted up to September 1984. The uplift, which reached a maximum value of about 160 cm in the central part of the Phlegraean caldera, was characterized by variable velocity and occurred within an area that extended about 7 km outward from the town of Pozzuoli (Fig. 1); the surface deformation performs a bell-shape pattern.The uplift was accompanied by horizontal displacements and gravity changes that closely correlate with the described elevation changes.The horizontal displacements displayed an anomalous pattern within a narrow belt about 1 km from the center of the uplift and approximately coincident with the area of maximum seismic activity. The change in gravity is attributed primarily to a free-air effect to which a small Bouguer effect must be added.Several models have been invoked in order to explain the observed phenomenon. The one which gives the best fit to the observed data is an increasing pressure source of radial simmetry, at a constant depth of about 3 km beneath the town of Pozzuoli, and having a diameter of several hundred meters. Migration of magma at depth is believed to be responsible for the observed activity in the Phlegraean Fields caldera.  相似文献   

7.
An attempt is made to reproduce by numerical simulation the last 50,000 years of the Phlegraean Fields volcanic history in terms of a magma chamber with volume progressively reduced by magma extraction to the surface and without refillings from depth. Since the aim is just to verify the plausibility of such an assumption, attention is focused on the major volcanic events, and a rather crude model is adopted. It turns out that the main features of the Phlegraean Fields thermal history, namely the Campanian Ignimbrite, the yellow tuffs emission and the high temperatures measured in the geothermal wells drilled inside the caldera, can reasonably be reproduced under the not-refilled-system assumption. The magmatic body is predicted to have an average temperature of 1000°C at present.  相似文献   

8.
The essential features of the ongoing potential pre-eruptive crisis at the Phlegraean Fields begun in August 1982 are summarized and the main problems faced by scientists responsible of volcanic hazards evaluation in such a densely populated area are discussed.  相似文献   

9.
Volcanological and petrological data suggest that the Phlegraean Fields volcanic activity has been fed, at least in the last 10,500 years, by a not-refilled magma chamber where trachytic residual liquids were produced by fractionation of a trachybasaltic magma. Using estimated volumes of the erupted products andP–T data obtained through petrological studies, a conductive thermal model of the chamber was built up in order to estimate its past and present size. Results suggest a volume decrease from approximately 14 to 1.4 km3 of the trachybasaltic magma in 10,500 years. Trachytic liquid would also be present in the chamber in a minimum amount of 0.4 km3. The model allowed some insights on the petrogenesis of the Phlegraean trachytes, suggesting that they were erupted as liquids because thermally buffered within the magma chamber.  相似文献   

10.
The H2O, CO2 and H2S outputs at the Solfatara of Pozzuoli have been measured and a map of the exhaling areas has also been made. The energy released at the surface by the fluids has been estimated to be 1019 ergs/day.The presence of aquifers at Phlegraean Fields increases the phreatic and phreatomagmatic explosion risk.Our results suggest that even if an uprising magma may interact with water at depth, an explosion could occur only at the shallow levels of a few hundred meters. Since the transfer of energy toward the surface is favoured by the presence of fractures, a detailed analysis of the deep fracture network would help to evaluate the risk levels of the various areas of Phlegraean Fields.  相似文献   

11.
A preliminary statistical analysis of the space-time distribution of small seismic events in the volcanic area of Phlegraean Fields, south-central Italy, was done on the basis of a catalogue of earthquakes recorded by the local seismic stations in the period January 1, December 31, 1983.The non-random character of the sequence has been tested by matching the observed time-dstribution of seismic events with the theoretical Poisson process.A clustered occurrence of seismic events seems to be the main cause of the departure from a Poisson process as the inter-arrival times distribution clearly shows.Furthermore, the non-random behaviour of the events space-time distribution mainly due to quiescient and clustered recursive seismic phases could be studied by using the method proposed byVon Seggern et al. (1981). The analysis and the space-time diagrams confirm the swarm-type character of the entire seismic sequence.  相似文献   

12.
Digital recordings of microearthquake codas from shallow seismic events in the Phlegraean Fields region (south-central Italy) were used to calculate the attenuation factor Qc.A quite unusual frequency dependence was found for the coda attenuation comparable to Hawaii pattern of Qc. This is interpreted as due to the presence of magma that increases the amount of anelasticity. Amount of scattering at Phlegraean Fields was estimated through the « turbidity » coefficient (Dainty model), that shows a high degree of scattering due to inhomogeneities as compared to Hawaii. Probably this is due to the greater crustal thickness of Phlegraean Fields with respect to Hawaii that produces more scattering.  相似文献   

13.
A simple geochemical model of Solfatara, Phlegraean Fields (Italy), is proposed on the basis of gas composition and temperature at the surface.Data on the Solfatara fumaroles have been collected since 1979 within the framework of a geochemical monitoring for the surveillance of the Phlegraean volcanic system.Surface manifestations of Solfatara are likely to be fed through isoenthalpic expansion of dry steam, which separates from a geothermal liquid in an intensively fractured zone at about 236°C. This value is consistent both with gas composition and surface temperature.The gas/steam ratio appears to be the most effective parameter to detect changes of heat flow at depth.Actually a remarkable decrease in the gas/steam ratio has been observed since 1981, while the gas composition and the temperature did not change significantly. These facts suggest increased heat flow at depth.  相似文献   

14.
Two uplift episodes have recently been recorded at Phlegraean Fields, a volcanic region near Naples (south-central Italy). The first episode occurred in 1970 and lasted up to 1972; the second has begun at the end of 1982 and is still in progress.An attempt to model the ground deformations which occurred during the 1970–1972 event is made in this paper. The source has been assumed to be a two-dimensional fluid-filled fracture, similar to a sill. A good fit with experimental data has been obtained for a short (1–2 km long) shallow (3 km deep) source and a driving pressure ranging from 60 to 210 bars. Rigidity values have been fixed at 3.5–4.0 × 1010 c.g.s., with Poisson ratio equal to 0.3.This solution which differs from previous approaches byMogi (1958) andWalsh andDecker (1971) is non-unique, but the present results are in good agreement with observed horizontal and vertical displacements. Notwithstanding the oversimplification made in assuming a homogeneous elastic semi-infinite medium, the predicted stress field seems to be in agreement with the fault-plane solutions and the pattern of epicenters determined for the uplift-seismic swarm episode that is still in progress.  相似文献   

15.
A fairly detailed structural model of the lithosphere-asthenosphere system (thickness, S- and P-wave velocities of the crust and of the uppermost mantle layers) has been defined in the Calabrian Arc region (Southern Tyrrhenian Sea, Calabria and the northwestern part of the Ionian Sea) in Southern Italy using seismic data from literature as a priori constraints of the nonlinear inversion of surface-wave data. The main features identified by this study are: (1) A very shallow (less then 10 km deep) crust-mantle transition in the Southern Tyrrhenian Sea and a very low vs just below a very thin lid, in correspondence of the submarine volcanic bodies Magnaghi, Marsili and Vavilov, while the vs in the lid is quite high in the area that separates Marsili from Magnaghi-Vavilov; (2) a shallow and very low vs layer in the uppermost mantle in the areas of the Aeolian Islands, Vesuvius, Phlegraean Fields and Ischia, which represents their shallow-mantle magma source; (3) a thickened continental crust and lithospheric doubling in Calabria; (4) a crust about 25-km thick and a mantle velocity profile versus depth consistent with the presence of a continental rifted lithosphere, now thermally relaxed, in the investigated part of the Ionian Sea; (5) the subduction towards northwest of the Ionian lithosphere below the Southern Tyrrhenian Sea; (6) the subduction of the Adriatic/Ionian lithosphere underneath the Vesuvius and Phlegraean Fields.  相似文献   

16.
A geological, chemical and petrographical study of the Campanian ignimbrite, a pyroclastic flow deposit erupted about 30,000 years ago on the Neapolitan area (Italy), is reported. The ignimbrite covered an area of at least 7,000 km2; it consists of a single flow unit, and the lateral variations in both pumice and lithic fragments indicate that the source was located in the Phlegraean Fields area. Textural features, areal distribution and its morphological constraints suggests that the eruption was of the type of highly expanded low-temperature pyroclastic cloud. The original composition was strongly modified by post-depositional chemical changes involving most of the major and trace elements. No primary differences in the composition of the magma have been recognized. The Campanian ignimbrite is a nearly saturated potassic trachyte, similar to many other trachytes of the Quaternary volcanic province of Campania. Its chemistry indicates an affinity with the so-called «low-K association» of the Roman volcanic province.  相似文献   

17.
Available gravity and magnetic data of the Phlegraean Fields geothermal area, Naples, Italy, have been interpreted and the obtained structural models discussed in the light of the other available geological, volcanological and geophysical data.On the basis of the results of a previous seismic reflection survey in the Gulf of Naples and in the Pozzuoli Bay, which delineated a basement characterized by a seismic velocity of 4–6 km/s, it has been possible to evaluate the gravity anomaly connected with the morphology of this horizon ( = 2.7 g/cm3).The residual anomaly map, obtained after subtraction of the regional long-wavelength components relative to mantle and deep crustal structures and the computed components relative to the above-mentioned seismic basement, shows up as a circular low with an amplitude of 10 mgal centred in the Pozzuoli Bay. This gravity low has been interpreted as due to the occurrence, in the centre of Pozzuoli Bay, of light (Δ = −0.2 g/cm3) material with a maximum thickness of about 2 km. However, a contribution to the anomaly due to a narrow magmatic body intruded in the basement, as suggested by volcanological and ground deformation data, cannot be excluded.The aeromagnetic map of the Phlegraean Fields is characterized by three main anomalies which have been fitted by superficial tridimensional parallelepipedic bodies, schematically representing lava flows and domes. Their anomalies have been subsequently subtracted from the observed field, obtaining as a residual a large anomaly centred in the southwestern area of the Pozzuoli Bay. It has been interpreted as being due to a lowmagnetized body which, taking into account the thermal state of the area, should represent that part of the pyroclastic sequence which has lost part of its magnetization by thermo-chemical alteration.  相似文献   

18.
Fracture system in Phlegraean Fields (Naples,southern Italy)   总被引:2,自引:0,他引:2  
During the 1983 seismic crisis in the Phlegraean Fields bradyseismic region (southern Italy), a structural analysis of the area was carried out.With a detailed field survey based on a net of 34 measure stations, a total of 536 fractures (mainly joints and a few normal faults) were measured on a 10 × 10 km area in volcanites capable of memorizing post depositional stress activity by fracturing.The analysis of the collected data was performed with the data bank of the University of Rome computer facilities. The azimuthal analysis of total fractures showed a nonrandom distribution with 5 major sets: N13°E, N45°E, N14°W, N55°W and E-W. These preferential orientations have been detected with an automatic fitting of gaussian curves (bell curves) on the azimuthal histograms. The areal distribution showed that all these fracture sets are in general present in the main collapse area. An azimuthal analysis performed by selecting the data collected for rocks older than 4,600 y BP showed a possible youngest age for the N14°W set (domain) (E-W extension). Fractures with an «opening» wider than 1 cm presented the same 5 azimuthal sets and fit fairly well with a concentric distribution around the main collapse area. The presence of an analogous radial pattern is not evident. A tentative interpretation model relates the superficial fracture sets to two possible causes: volcanic activity, including doming and collapsing, and propagation of active tensile deformations in the sedimentary basement due to regional stress trajectories.Contribution of «Centro di Studio per la Geologia dell'Italia Centrale», CNR, Roma.  相似文献   

19.
The ground level in the Campi Flegrei caldera has never been stationary in the last 2,000 years. Historical data, and a nearly continuous tide-gauge record 20 years long, show that uplift and sinking have taken place on a variety of different time scales. In addition, the Campi Flegrei volcanic system appears to be sensitive to weak external forces such as tidal forces. We infer from these elements that the Campi Flegrei system is far from thermodynamic equilibrium, and suggest that its dynamics may be chaotic. We analyze the short-term variations of the ground level, and find that they can be described in a low-dimensional phase space. The dynamics of the Campi Flegrei system seems to have been phase-locked with tidal forces in the period following the 1970–1972 climax, and to have undergone a transition to chaos in some moment that preceded the presently continuing sinking phase.  相似文献   

20.
Two helium surveys were carried out at Phlegraean Fields in July and September 1983 aiming at locating loci of discontinuities (fractures) in the area on the basis of variations in helium concentrations following the bradyseismic crisis then in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号