首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Detailed geochemistry supported by geologic mapping has been used to investigate Sulphur Springs, an acid-sulfate hot spring system that issues from the western flank of the resurgent dome inside Valles Caldera. The most intense activity occurs at the intersection of faults offsetting caldera-fill deposits and post-caldera rhyolites. Three geothermal wells in the area have encountered pressures <1 MPa and temperatures of 200°C at depths of 600 to 1000 m. Hot spring and fumarole fluids may discharge at boiling temperatures with pH 1.0 and SO4 8000 mg/l. These conditions cause argillic alterations throughout a large area.Non-condensible gases consist of roughly 99% CO2 with minor amounts of H2S, H2, and CH4. Empirical gas geothermometry suggests a deep reservoir temperature of 215 to 280°C. Comparison of 13C and 18O between CaCO3 from well cuttings and CO2 from fumarole steam indicates a fractionation temperature between 200 and 300°C by decarbonation of hydrothermally altered Paleozoic limestone and vein calcite in the reservoir rocks. Tritium concentrations obtained from steam condensed in a mudpot and deep reservoir fluids (Baca #13, 278°C) are 2.1 and 1.0 T.U. respectively, suggesting the steam originates from a reservoir whose water is mostly >50 yrs old. Deuterium contents of fumarole steam, deep reservoir fluid, and local meteoric water are practically identical even though 18O contents range through 4‰, thus, precipitation on the resurgent dome of the caldera could recharge the hydrothermal system by slow percolation. From analysis of D and 18O values between fumarol steam and deep reservoir fluid, steam reaches the surface either (1) by vaporizing relatively shallow groundwater at 200°C or (2) by means of a two-stage boiling process through an intermediate level reservoir at roughly 200°C.Although many characteristics of known vapor-dominated geothermal systems are found at Sulphur Springs, fundamental differences exist in temperature and pressure of our postulated vapor-zone. We propose that the reservoir beneath Sulphur Springs is too small or too poorly confined to sustain a “true” vapor-dominated system and that the Sulphur Springs system may be a “dying” vapor-dominated system that has practically boiled itself dry.  相似文献   

2.
Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210–300°C) consist of roughly 98.5 mol% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas δ13C–CO2 values (−3 to −5‰) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ≤1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982–1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987–1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone).  相似文献   

3.
The Platanares geothermal area in western Honduras consists of more than 100 hot springs that issue from numerous hot-spring groups along the banks or within the streambed of the Quebrada de Agua Caliente (brook of hot water). Evaluation of this geothermal area included drilling a 650-m deep PLTG-1 drill hole which penetrated a surface mantling of stream terrace deposits, about 550 m of Tertiary andesitic lava flows, and Cretaceous to lower Tertiary sedimentary rocks in the lower 90 m of the drill core.Fractures and cavities in the drill core are partly to completely filled by hydrothermal minerals that include quartz, kaolinite, mixed-layer illite-smectite, barite, fluorite, chlorite, calcite, laumontite, biotite, hematite, marcasite, pyrite, arsenopyrite, stibnite, and sphalerite; the most common open-space fillings are calcite and quartz. Biotite from 138.9-m depth, dated at 37.41 Ma by replicate 40Ar/39 Ar analyses using a continuous laser system, is the earliest hydrothermal mineral deposited in the PLTG-1 drill core. This mid-Tertiary age indicates that at least some of the hydrothermal alteration encountered in the PLTG-1 drill core occured in the distant past and is unrelated to the present geothermal system. Furthermore, homogenization temperatures (Th) and melting-point temperatures (Tm) for fluid inclusions in two of the later-formed hydrothermal minerals, calcite and barite, suggest that the temperatures and concentration of dissolved solids of the fluids present at the time these fluid inclusions formed were very different from the present temperatures and fluid chemistry measured in the drill hole.Liquid-rich secondary fluid inclusions in barite and caicite from drill hole PLTG-1 have Th values that range from about 20°C less than the present measured temperature curve at 590.1-m depth to as much as 90°C higher than the temperature curve at 46.75-m depth. Many of the barite Th measurements (ranging between 114° and 265°C) plot above the reference surface boiling-point curve for pure water assuming hydrostatic conditions; however, the absence of evidence for boiling in the fluid inclusions indicates that at the time the minerals formed, the ground surface must have been at least 80 m higher than at present and underwent stream erosion to the current elevation. Near-surface mixed-layer illite-smectite is closely associated with barite and appears to have formed at about the same temperature range (about 120° to 200°C) as the fluid-inclusion Thvalues for barite. Fluid-inclusion Th values for calcite range between about 136° and 213°C. Several of the calcite Th values are significantly lower than the present measured temperature curve. The melting-point temperatures (Tm) of fluid-inclusion ice yield calculated salinities, ranging from near zero to as much as 5.4 wt. % NaCl equivalent, which suggest that much of the barite and calcite precipitated from fluids of significantly greater salinity than the present low salinity Platanares hot-spring water or water produced from the drill hole.  相似文献   

4.
Seventeen K/Ar dates were obtained on illitic clays within Valles caldera (1.13 Ma) to investigate the impact of hydrothermal alteration on Quaternary to Precambrian intracaldera and pre-caldera rocks in a large, long-lived hydrothermal system ( 1.0 Ma to present). Clay samples came from scientific core hole VC-2B (295°C at 1762 m) which was spudded in the Sulphur Springs thermal area and drilled into the boundary between the central resurgent dome and the western ring-fracture zone. Six illitic clays within Quaternary caldera-fill debris flow, tuffaceous sediment, and ash-flow tuff (48 to 587 m depth) yield ages from 0.35 to 1.09 Ma. Illite from Miocene pre-caldera sandstone (765 m) gives an age of 6.74 Ma. Two dates on illite from sandstones in Permian red beds (1008 and 1187 m) are 4.33 and 4.07 Ma, respectively. Surprisingly, three dates on illites from altered andesite pebbles within the red beds (1010–1014 m) are 0.95 to 1.06 Ma. Four illite dates on variably altered Precambrian quartz monzonite (1615–1762 m) range from 2.90 to 276 Ma.Post-Valles age illite is not correlated with alteration style (argillic to propylitic). Rather, post-Valles ages are uniformly obtained from illites in highly fractured, intensely altered, caldera-fill rocks and the Permian volcanic clasts. Generally, finer clay fractions from identical samples yield younger ages. Plots of 40Ar/36Ar versus 40K/36Ar and 40Ar* versus 40K for the illites in caldera-fill rocks lie close to a 1-Ma isochron. Most illite dates older than Valles caldera are difficult to interpret because they correspond to the ages of pre-Valles volcanic and hydrothermal episodes in the Jemez volcanic field ( 13 Ma). In addition, older dates may be caused by co-mingling of different illites during sample preparation, or by inherited argon or lost argon in illites from rocks with potentially complex hydrothermal histories. However, the range of ages obtained from illites in Permian sands and pebbles and from Precambrian crystalline rocks indicates that Valles hydrothermal activity is overwhelming illite produced by earlier geologic events.  相似文献   

5.
A 23-m.y.-old, fossil meteoric-hydrothermal system in the Lake City caldera (11 × 14 km) has been mapped out by measuring δ 18O values of 300 rock and mineral samples. δ 18O varies systematically throughout the caldera, reaching values as low as −2. Great topographic relief, regional tilting, and variable degrees of erosion within the caldera all combine to give us a very complete section through the hydrothermal system, from the surface down to a depth of more than 2000 m. The initial δ 18O value of the caldera-fill Sunshine Peak Tuff was very uniform (+7.2 ± 0.1), making it easy to determine the exact amount of 18O depletion experienced by each sample during hydrothermal alteration. Also, we have excellent stratigraphic control on depths beneath the mid-Tertiary surface, quantitative information on mineralogical alteration products, and accurate data on the shape of the central resurgent intrusion, which was the principal ‘heat engine’ that drove the hydrothermal circulation. Major conclusions are: (1) Although pristine mid-Tertiary meteoric waters in this area had δ 18O −14, these fluids were 18O-shifted upward to about δ18O = −8 to −5 prior to entering the shallow convective system associated with the resurgent intrusive rocks. Although there was undoubtedly radial inflow toward the caldera from all directions, the highly fractured Eureka Graben, southwest of the caldera, was probably the principal source of recharge groundwater for the Lake City system. (2) Fluid flow within the caldera was dominated by three major categories of permeable zones: the porous megabreccia units (which dip outward from the resurgent dome), vertical fractures and faults related to resurgence, and the caldera ring fault itself. All of these zones exhibit marked 18O depletions, and they are also typically intensely mineralogically altered. (3) The resurgent intrusive stock and its contact metamorphic aureole of hornfels both experienced water/rock ratios lower than the permeable zones; however, they have similarly low δ 18O values because they were altered at higher temperatures. (4) Throughout the caldera, the δ 18O of Sunshine Peak Tuff decreases with increasing depth (about 6 per mil/km), indicative of a shallow thermal gradient, typical of a convective hydrothermal system. The near-surface portion of this gradient was controlled by the temperature drop associated with boiling in the uprising fluid. (5) Deeply circulating meteoric water rose along permeable ring fractures 3 to 5 km beneath the mid-Tertiary surface. These fluids were drawn into the shallow convective system through the lower, porous, megabreccia units. Near the resurgent intrusions, fluid flow was again directed upward where resurgence-related, near-vertical fractures intersect the megabreccia units.  相似文献   

6.
The loci and abundance of U and Th were examined in tuffaceous rocks encompassing hydrothermal systems at the Long Valley caldera, California and the Valles caldera, New Mexico. Aspects of these systems may be analogous to conditions expected in a potential site for a high-level waste repository in welded tuff. Examination of radioelements in core from scientific drill holes at these sites was accomplished by gamma-ray spectrometry and fission-track radiography. In the lateral-flowing hydrothermal system at the Long Valley caldera, where temperatures range from 140 to 200 °C, U is concentrated to 20 ppm in Fe-rich zones of varved tuff and to 50 ppm with Fe-rich mineral phases in tuff fragments of a calcite-cemented breccia. U-series disequilibrium in some of these samples suggests mobilization/deposition of parent U and/or its daughters. In the vapor zone of the Valles caldera's hydrothermal system (temperature ˜ 100 °C), the concordance of high U, low Th/U and decreasing whole-rock O-isotope ratios suggests that U was concentrated in response to hydrothermal circulation when the system was formerly liquid-dominated. In the underlying present-day liquid-dominated zone (temperature to 210 °C), U, up to several tens of parts per million, occurs with pyrite and Fe-oxide minerals, and in concentrations to several percents with a Ti-Nb-Y-rare earth mineral. In the Valles system's outflow zone, U is also concentrated in Fe-rich zones as well as in carbonaceous-rich zones in the Paleozoic sedimentary rocks that underlie the Quaternary tuff. Th, associated with accessory minerals, predominates in breccia zones and in a mineralized fault zone near the base of the Paleozoic sedimentary sequence. Relatively high concentrations of U occur in springs representative of water recharging the Valles caldera's hydrothermal system. In contrast, considerably lower U concentrations occur in hot waters (> 220 °C) and in the system's outflow plume, suggesting that U is concentrating in the hotter part of the system. The Long Valley and Valles observations indicate that U and Ra are locally mobile under hydrothermal conditions, and that reducing conditions associated with Fe-rich minerals and carbonaceous material are important factors in the adsorption of U, and thus can retard its transport in water at elevated temperature.  相似文献   

7.
Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235–270 °C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220–240 °C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (< 6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (≤ 161 °C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N–S oriented normal faulting and E–W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5–10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal area where fumarolic temperatures are ≤ 123 °C. Lassen fumaroles discharge geothermal gases that indicate mixing between a N2-rich, arc-type component and gases derived from air-saturated meteoric recharge water. Most gases have relatively weak isotopic indicators of upper mantle or volcanic components, except for gas from Sulphur Works where δ13C–CO2, δ34S–H2S, and δ15N–N2 values indicate a contribution from the mantle and a subducted sediment source in an arc volcanic setting.  相似文献   

8.
Isotopic compositions were determined for hydrothermal quartz, calcite, and siderite from core samples of the Newberry 2 drill hole, Oregon. The δ15O values for these minerals decrease with increasing temperatures. The values indicate that these hydrothermal minerals precipitated in isotopic equilibrium with water currently present in the reservoirs. The δ18O values of quartz and calcite from the andesite and basalt flows (700–932 m) have isotopic values which require that the equilibrated water δ18O values increase slightly (− 11.3 to −9.2‰) with increasing measured temperatures (150–265°C). The lithic tuffs and brecciated lava flows (300–700 m) contain widespread siderite. Calculated oxygen isotopic compositions of waters in equilibrium with siderite generally increase with increasing temperatures (76–100°C). The δ18O values of siderite probably result from precipitation in water produced by mixing various amounts of the deep hydrothermal water (− 10.5 ‰) with meteoric water (− 15.5 ‰) recharged within the caldera. The δ13C values of calcite and siderite decrease with increasing temperatures and show that these minerals precipitated in isotopic equilibrium with CO2 of about −8 ‰.The δ18O values of weakly altered (<5% alteration of plagioclase) whole-rock samples decrease with increasing temperatures above 100°C, indicating that exchange between water and rock is kinetically controlled. The water/rock mass ratios decrease with decreasing temperatures. The δ18O values of rocks from the bottom of Newberry 2 show about 40% isotopic exchange with the reservoir water.The calculated δ18O and δD values of bottom hole water determined from the fluid produced during the 20 hour flow test are −10.2 and −109‰, respectively. The δD value of the hydrothermal water indicates recharge from outside the caldera.  相似文献   

9.
Whole-rock oxygen isotope compositions of cores and cuttings from Long Valley exploration wells show that the Bishop Tuff has been an important reservoir for both fossil and active geothermal systems within the caldera. The deep Clay Pit-1 and Mammoth-1 wells on the resurgent dome penetrate mildly to strongly altered Bishop Tuff with δ18OWR values as low as −2.6% (vs V-SMOW). The idfu 44-16 well intercepts a thinner Bishop Tuff section with δ18OWR values of +0.4 to +2.3%. in the western caldera moat, where milder and more sporadic 18O depletions occur in Tertiary volcanic rocks of the western caldera floor (δ18OWR = +2.2 to +6.4‰). Bishop Tuff samples from deeper parts of the 715 m rdo-8 (Shady Rest) well in the SW moat are also strongly depleted in 18O (δ18OWR = −1.5 to +0.6‰). Four shallow thermal gradient wells (469–715 m td drilled in the western moat did not penetrate Bishop Tuff, but Early Rhyolites from two of these holes are depleted in 18O (δ18OWR = −1.2 to +6.0‰ inplv-1 +4.6 to +5.3%. inmlgrap-1), compared to lithologic equivalents from the other two holes (δ18OWR = +6.3 to +8.0‰ inplv-2 andmlgrap-2).Whole-rock oxygen isotope profiles for the resurgent dome wells are unlike profiles calculated assuming alkali feldspar-H2O fractionation behavior and total O-isotopic equilibration with −14.3‰ fluids at measured temperatures. The sense of this divergence implies an earlier hydrothermal episode within the central caldera driven by one or more shallow intrusions. Geochemical similarities between an intrusive granophyre at the bottom of the Clay Pit-1 well and a nearby Moat Rhyolite dome with a K/Ar cooling age of 0.5 Ma suggest that vigorous hydrothermal activity beneath the central resurgent dome may have occurred as much as 0.5 m.y. ago. Calculated and measured O-isotope profiles are similar for deep wells that penetrate the western moat of the caldera, where steep temperature gradients and low δ18OWR values in Early Rhyolites from plv-1 are attributed to an active hydrothermal aquifer that has descended slightly from earlier, shallower elevations. Similarly, severe 18O depletions in Bishop Tuff samples from the idfu 44-16 and rdo-8 wells reflect active convection beneath the western moat, whereas milder 18O depletions in Early Rhyolites from mlgrap-1 were apparently caused by hydrothermal alteration at lower temperatures. The O-isotope profiles imply that surface discharge within and around the resurgent dome results from shallow, eastward-directed outflow from a zone of higher enthalpy hydrothermal upflow beneath the western caldera moat. Intrusive magmatic heat source(s) are inferred to exist beneath the western moat, perhaps beneath Mammoth Mountain.  相似文献   

10.
Chlorine- and sulphur-bearing compounds in fumarole discharges of the La Fossa crater at Vulcano Island (Italy) can be modelled by a mixing process between magmatic gases and vapour from a boiling hydrothermal system. This allows estimating the compounds in both endmembers. Magma degassing cannot explain the time variation of sulphur and HCl concentrations in the deep endmember, which are more probably linked to reactions of solid phases at depth, before mixing with the hydrothermal vapours. Based on the PT conditions and speciation of the boiling hydrothermal system below La Fossa, the HCl and Stot contents in the hydrothermal vapours were used to compute the redox conditions and pH of the aqueous solution. The results suggest that the haematite–magnetite buffer controls the hydrothermal fO2 values, while the pH has increased since the end of the 1970s. The main processes affecting pH values may be linked to Na–Ca exchanges between evolved seawater, feeding the boiling hydrothermal system, and local rocks. While Na is removed from water, calcium enters the solution, undergoes hydrolysis and produces HCl, lowering the pH of the water. The increasing water–rock ratio within the hydrothermal system lowers the Ca availability, so the aqueous solution becomes less acidic. Seawater flowing towards the boiling hydrothermal brine dissolves a large quantity of pyrite along its path. In the boiling hydrothermal system, dissolved sulphur precipitates as pyrite and anhydrite, and becomes partitioned in vapour phase as H2S and SO2. These results are in agreement with the paragenesis of hydrothermal alteration minerals recovered in drilled wells at Vulcano and are also in agreement with the isotopic composition of sulphur emitted by the crater fumaroles.  相似文献   

11.
A rhyolitic ash-flow tuff in a hydrothermally active area within the Yellowstone caldera was drilled in 1967, and cores were studied to determine the nature and distribution of primary and secondary mineral phases. The rocks have undergone a complex history of crystallization and hydrothermal alteration since their emplacement 600,000 years ago. During cooling from magmatic temperatures, the glassy groundmass underwent either devitrification to alkali feldspar + α-cristobalite ± tridymite or granophyric crystallization to alkali feldspar + quartz. Associated with the zones of granophyric crystallization are prismatic quartz crystals in cavities similar to those termed miarolitic in plutonic rocks. Vapor-phase alkali feldspar, tridymite, magnetite, and sporadic α-cristobalite were deposited in cavities and in void spaces of pumice fragments. Subsequently, some of the vapor-phase alkali feldspar crystals were replaced by microcrystalline quartz, and the vapor-phase minerals were frosted by a coating of saccharoidal quartz.Hydrothermal minerals occur primarily as linings and fillings of cavities and fractures and as altered mafic phenocrysts. Chalcedony is the dominant mineral related to the present hydrothermal regime and occurs as microcrystalline material mixed with various amounts of hematite and goethite. The chalcedony displays intricate layering and was apparently deposited as opal from silica-rich water. Hematite and goethite also replace both mafic phenocrysts and vapor-phase magnetite. Other conspicuous hydrothermal minerals include montmorillonite, pyrite, mordenite, calcite, and fluorite. Clinoptilolite, erionite, illite, kaolinite, and manganese oxides are sporadic. The hydrothermal minerals show little correlation with temperature, but bladed calcite is restricted to a zone of boiling in the tuff and clearly was deposited when CO2 was lost during boiling.Fractures and breccias filled with chalcedony are common throughout Y-5 and may have been produced by rapid disruption of rock caused by sudden decrease of fluid pressure in fractures, most likely a result of fracturing during resurgent doming in this part of the Yellowstone caldera. The chalcedony probably was deposited as opal or β-cristobalite from a pre-existing silica floc that moved rapidly into the fractures and breccias immediately after the sudden pressure drop.  相似文献   

12.
Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347°C and the final melting point of ice (Tm) between −0.2 and −4.3°C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content.Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater.  相似文献   

13.
The region encompassing Santa María, Cerro Quemado, and Zunil volcanoes, close to Quetzaltenango, the second largest city of Guatemala, is volcanically and tectonically complex. In addition, the huge Xela caldera, about 20 km in diameter, crosses this area and links up to the important Zunil fault zone located between the three volcanoes. Two highly active geothermal sites, named Zunil-I and Zunil-II, are also located between these three volcanic edifices at the southeastern boundary of Xela caldera. In order to determine the permeability variations and the main structural discontinuities within this complex volcano-tectonic setting, self-potential and soil CO2 flux measurements have been coupled, with a step of 20 m, along a 16.880 km-long profile crossing the entire area. Two shallow hydrothermal systems, with maximum lateral extensions of 1.5 km in diameter, are indicated by positive self-potential/elevation gradients below Santa María and Cerro Quemado volcanoes. Such small hydrothermal systems cannot explain the intense geothermal manifestations at Zunil-I and Zunil-II. Another minor hydrothermal system is indicated by self-potential measurements on the flank of Santa María along the edge of the Xela caldera. CO2 flux measurements display slight variations inside the caldera and decreasing values crossing outside the caldera boundary. We hypothesize the presence of a magmatic body, inside the southeastern border of Xela caldera, to explain the deeper and more intense hydrothermal system manifested by the Zunil-I and the Zunil-II geothermal fields. This magmatic system may be independent from Santa María and Cerro Quemado volcanoes. Alternatively, the hypothesized Xela magmatic system could have a common magmatic origin with the Cerro Quemado dome complex, consistent with previous findings on regional gas emissions. Sectors bordering the Cerro Quemado dome complex also have high amplitude minima-short wavelength anomalies in self-potential, interpreted as preferential rain water infiltration along faults of major permeability, probably related with the most recent stages of Cerro Quemado dome growth.  相似文献   

14.
Recent K-Ar dating of eruptions at Pantelleria, a peralkaline volcanic island in the Strait of Sicily, shows a correlation between eruption of pantellerite lavas from caldera ring fractures and low stands of sea level as determined from 18O stratigraphy. Post-caldera pantellerite lavas associated with an 114-ky-old caldera erupted along the ring-fracture zone during a major low stand of sea level at about 67 Ka. The most recent episode of lava-flow emplacement began about 20 ky ago during the last glacial maximum. Magma vented along the ring fault of a 45-ky-old caldera, from fractures radial to the caldera, and along faults formed by intracaldera trapdoor uplift. Two mechanical models based on elasticity theory are presented to explain the correlation of post-caldera ring-fracture eruptions at Pantelleria with lowering of sea level. A simple analysis of a bending circular plate of thickness,T r, and radius,R, representing the magma-chamber roof block, shows that tensile stress is concentrated by a factor of 0.75R 2/T r 2 at the lower perimeter of the plate when sea level drops. Stress changes may be even greater ifT r is effectively less than the stratigraphic thickness due to layering of rocks in the roof block. Calculated stress changes due to a 100-m drawdown of sea level are similar in magnitude to stresses associated with dike propagation. More realistic model geometries, including different chamber shapes, a conical volcanic edifice, and sea-level drawdown beyond the surface projection of the magma chamber, were tested using the boundary-element method. Lowering sea level generates a horizontal tensile stress above the chamber, even when sea water is removed outboard of the magma chamber. For some chamber geometries the magnitude of the tensile stress maximum is greater than the 1 MPa pressure of the 100 m of removed water and is of the right order of magnitude for dike propagation. Dikes initiated by the change of the stress field may originate and propagate along fractures inboard of the chamber margin. The magnitudes of tensile maxima along the top of the chamber decrease as original sea level is moved outboard of the chamber margin and as the chamber thickness decreases. When the depth to the top of the magma chamber reaches a critical value, dependent on chamber geometry, the propagation of dikes to the surface is inhibited.  相似文献   

15.
This study summarizes the results of structural, geochemical and seismological surveys carried out at Nisyros volcano (Aegean Sea, Greece) during 1999–2001. Field mapping and mesostructural measurements at the summit caldera (Lakki plain) indicate that faults follow two main strikes: NE-SW and N-S. The N-S striking fault depicts extensional features accommodating the left-lateral component of motion of the NE-SW- striking main faults. The NE-SW preferred strike of the Lakki faults and of the mineral-filled veins as well as the distribution and NE-SW elongation of the hydrothermal craters indicate that tectonics plays a major role in controlling the fluid pathway in the Nisyros caldera. The same NE-SW trend is depicted by CO2 anomalies revealed through detailed soil CO2 flux surveys, thus indicating a structural control on the pattern of the hydrothermal degassing. Degassing processes account for a thermal energy release of about 43 MW, most of which occurs at Lofos dome, an area that was affected by hydrothermal eruptions in historical times. The seismic study was conducted in June 2001, using a deployment specifically aimed at detecting signals of magmatic-hydrothermal origin. Our instruments recorded local and regional earthquakes, a few local long-period events (LP), and bursts of monochromatic tremor. Local earthquake activity is concentrated beneath the caldera, at depths generally shallower than 6 km. Plane-wave decomposition of tremor signal indicates a shallow (<200 m) source located in the eastern part of the caldera. Conversely, LP events depict a source located beneath the central part of the caldera, in the area of Lofos dome, at depths in the 1–2-km range. In agreement with geochemical and structural measurements, these data suggest that both the deeper and shallower part of the hydrothermal system are subjected to instability in the fluid flow regimes, probably consequent to transient pressurization of the reservoir. These instabilities may be related to input of hot fluids from the deeper magmatic system, as suggested by the variations in geochemical parameters observed after the 1997–1999 unrest episode. The significance of seismological and geochemical indicators as precursors of hydrothermal explosive activity at Nisyros is discussed.Editorial responsibility: H. Shinohara  相似文献   

16.
During 14–16 September 1988, a large intracaldera avalanche and an eruption of basaltic tephra and lava at Fernandina volcano, Galapagos, produced the most profound changes within the caldera since its collapse in 1968. A swarm of eight earthquakes (m b 4.7–5.5) occurred in a 14 h period on 24 February 1988 at Fernandina, and two more earthquakes of this size followed on 15 April and 20 May, respectively. On 14 September 1988, another earthquake (m b 4.6) preceded a complex series of events. A debris avalanche was generated by the failure of a fault-bounded segment of the east caldera wall, approximately 2 km long and 300 m wide. The avalanche deposit is up to 250 m thick and has an approximate volume of 0.9 km3. The avalanche rapidly displaced a preexisting lake from the southeast end of the caldera floor to the northwest end, where the water washed up against the lower part of the caldera wall, then gradually seeped into the avalanche deposit and was completely gone by mid-January 1989. An eruption began in the caldera within about 1–2 h of the earthquake, producing a vigorous tephra plume for about 12 h, then lava flows during the next two days. The eruption ended late on 16 September. Most of the eruptive activity was from vents on the caldera floor near the base of the new avalanche scar. Unequivocal relative timing of events is difficult to determine, but seismic records suggest that the avalanche may have occurred 1.6 h after the earthquake, and field relations show that lava was clearly erupted after the avalanche was emplaced. The most likely sequence of events seems to be that the 1988 feeder dike intruded upward into the east caldera wall, dislocated the unstable wall block, and triggered the avalanche. The avalanche immediately exposed the newly emplaced dike and initiated the eruption. The exact cause of the earthquakes is unknown.  相似文献   

17.
The attenuation of amplitude is seen in seismic waves which pass through the central region of the Aso caldera, in Kyushu, Japan. It is also recognized from spectral analysis of seismic waves that the higher frequencies of the P-wave are reduced in the waves which pass through the central region of the caldera. It is shown that the relative attenuation increases remarkably for the frequency range of 5 to 10 Hz. The specific attenuation factor Q of the P-wave train is about 100. From the surface projection of the ray paths with low Q values through the Aso caldera to each station, the attenuating region is located beneath the center of the caldera, extending to the north of the central cones. In conjunction with the low Q value of the P-wave and the decreases of S-wave amplitudes, the relative P-wave residual times have comparatively large values for seismic waves passing through the central region beneath the caldera. In order to attempt to provide additional information on the depth configuration of the attenuating material, the ray paths of P-wave's first arrivals are located in three-dimensional space. It indicates that the low-velocity material is located beneath the center of the caldera at depths of about 6 to 9 km. However, lowvelocity anomalies above the depth of 6 km and below the depth of 15 km were not able to be detected, because most of the available seismic ray paths had crossed the caldera at depths of about 6 to 15 km. Furthermore, the relative residual times have numerous errors resulting from incorrect hypocenter locations, origin times, inhomogeneities in the structure and uncertainty of the velocity structure. At shallow depths in the Aso caldera, refraction or reflection studies are required for an accurate estimate of the structure and more detailed properties of the attenuating material.  相似文献   

18.
The edifice of Mount Rainier, an active stratovolcano, has episodically collapsed leading to major debris flows. The largest debris flows are related to argillically altered rock which leave areas of the edifice prone to failure. The argillic alteration results from the neutralization of acidic magmatic gases that condense in a meteoric water hydrothermal system fed by the melting of a thick mantle of glacial ice. Two craters atop a 2000-year-old cone on the summit of the volcano contain the world's largest volcanic ice-cave system. In the spring of 1997 two active fumaroles (T=62°C) in the caves were sampled for stable isotopic, gas, and geochemical studies.Stable isotope data on fumarole condensates show significant excess deuterium with calculated δD and δ18O values (−234 and −33.2‰, respectively) for the vapor that are consistent with an origin as secondary steam from a shallow water table which has been heated by underlying magmatic–hydrothermal steam. Between 1982 and 1997, δD of the fumarole vapor may have decreased by 30‰.The compositions of fumarole gases vary in time and space but typically consist of air components slightly modified by their solubilities in water and additions of CO2 and CH4. The elevated CO2 contents (δ13CCO2=−11.8±0.7‰), with spikes of over 10,000 ppm, require the episodic addition of magmatic components into the underlying hydrothermal system. Although only traces of H2S were detected in the fumaroles, most notably in a sample which had an air δ13CCO2 signature (−8.8‰), incrustations around a dormant vent containing small amounts of acid sulfate minerals (natroalunite, minamiite, and woodhouseite) indicate higher H2S (or possibly SO2) concentrations in past fumarolic gases.Condensate samples from fumaroles are very dilute, slightly acidic, and enriched in elements observed in the much higher temperature fumaroles at Mount St. Helens (K and Na up to the ppm level; metals such as Al, Pb, Zn Fe and Mn up to the ppb level and volatiles such as Cl, S, and F up to the ppb level).The data indicate that the hydrothermal system in the edifice at Mount Rainier consists of meteoric water reservoirs, which receive gas and steam from an underlying magmatic system. At present the magmatic system is largely flooded by the meteoric water system. However, magmatic components have episodically vented at the surface as witnessed by the mineralogy of incrustations around inactive vents and gas compositions in the active fumaroles. The composition of fumarole gases during magmatic degassing is distinct and, if sustained, could be lethal. The extent to which hydrothermal alteration is currently occurring at depth, and its possible influence on future edifice collapse, may be determined with the aid of on site analyses of fumarole gases and seismic monitoring in the ice caves.  相似文献   

19.
18O/16O data from the 200-m-thick, 0.76 Ma Bishop Tuff outflow sheet provide evidence for a vigorous, short-lived (≈10 years), high-temperature, fumarolic meteoric–hydrothermal event. This is proved by: (1) the juxtaposition in the upper, partially welded Bishop Tuff of low-18O groundmass/glass (δ18O=−5 to +3) with coexisting quartz and feldspar phenocrysts having magmatic δ18O values (+8.7±0.3; +7.5±0.3); and (2) the fact that these kinds of 18O/16O signatures correlate very well with morphological features and mapped zones of fumarolic activity. Profiles of δ18O with depth in the Bishop Tuff within the fumarole area define a 40- to 50-m-thick, low-18O, stratigraphic zone that is sandwiched between the essentially unwelded near-surface portion of the tuff and an underlying, densely welded black tuff that displays magmatic 18O/16O values. Shallow-dipping columnar joints and other fumarolic features (i.e., subhorizontal tubular conduits and steep fissures) correlate very well with these pervasively devitrified, low-18O zones. The base of the low-18O zone is extremely sharp (3‰ per meter) and is located directly above the transition from partially welded tuff to densely welded black tuff. The observed average whole-rock 18O-depletions within this low-18O zone are about 6–7‰, requiring meteoric water/rock ratios in excess of 0.24 in mass units. Rainfall on the surface of the tuff would not have been high enough to supply this much H2O in the short lifetime of fumarolic activity, suggesting that some recharge must have been from groundwater flow through the upper part of the tuff, above the sloping (1°–5°) top of the impermeable lower zone. This is compatible with the observation that the fumarolic areas roughly correlate with the preeruptive regional drainage pattern. Some of this recharge may in part have been from the lake that filled Long Valley caldera, which was dammed by the Bishop Tuff up to the level of this boundary between the partially and densely welded zones (≈7000 ft, the elevation of the highest Long Valley Lake shorelines). Gazis et al. had previously shown that the 2.8-Ma intracaldera Chegem Tuff from the Caucasus Mountains exhibits exactly the same kind of 18O-signature that we have correlated with fossil fumaroles in the Bishop Tuff outflow sheet. Although not recognized as such by McConnell et al.; 18O/16O data from drill-hole samples from the intracaldera Bishop Tuff in Long Valley also display this characteristic 18O signature (i.e., analogous δ18O-depth profiles, as well as low-18O groundmass coexisting with high-18O feldspar phenocrysts). This fumarolic 18O/16O signature is observed to much greater depths (≈650–750 m) in the intracaldera tuffs (≈1500 m thick) than it is in the ≈200-m-thick Bishop Tuff outflow sheet (≈80 m depth).  相似文献   

20.
In this paper we study the variation of Vp/Vs and Poisson's ratio (δ) in the Yellowstone National Park region, using earthquakes which were well recorded by a local seismic network. We find that the average Vp/Vs value within the geothermally active Yellowstone caldera is about 7% lower than in the area outside the caldera. Within the caldera itself there may be a further 2–7% reduction of Vp/Vs in the hydrothermally active Norris Geyser Basin, the Upper and Lower Geyser Basins, and the Yellowstone Lake and Mud Volcano regions. After considering various possible causes for Vp/Vs changes, such as geologic and structural differences, thermal effects, partial melting, and hydrothermal activity, we conclude that the most plausible explanation for the observed Vp/Vs reduction is the presence of hot-water at temperatures and pore-pressures near the water steam transition in the caldera geothermal reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号