首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fresh water supplied are often limited in mainland China, reducing agricultural productivity. However the use of straw mulch is the main management technique for agronomic water saving. This paper investigates the movement of soil water under straw mulch compared to a non-mulch test plot. Results demonstrated that straw mulch effected soil water movement primarily during drought periods and throughout shallow soil (i.e. depths of less than 200 cm). The soil moisture and soil water potential at the mulch test plot in drought period are both higher than that of contrast test plot, and along with increasing soil depth, the straw mulch effect weakens. When evaporation is dominated by surface evaporation, straw mulch will effectively restrict the evaporation of soil water; when evaporation dominated by vegetation transpiration, the straw mulch promotes the transpiration of vegetation. In drought periods, straw mulch is not effective for deep soil water infiltration, but is advantageous for soil water utilization of mid- and shallow- soils (0-120 cm), however the infiltration speed rate of straw mulch point during high water period is higher than that of contrast plot. This paper highlights the importance of good management practices of agricultural land in order to limit soil water losses, which is essential when water is such a limited resource.  相似文献   

2.
To study the effect of straw mulching on soil water evaporation, it is necessary to measure soil water evaporation under different conditions of straw mulching during the soil thawing period. A field experiment was conducted in winter, and soil evaporation was measured using a microlysimeter on bare land (LD) and 4500 (GF4500), 9000 (GF9000) and 13500 \(\hbox {kg/hm}^{2}\) (GF13500) straw mulch. The influence of different quantities of straw mulch on soil water evaporation during the thawing period was analyzed using the Mallat algorithm, statistical analysis and information cost function. The results showed that straw mulching could delay the thawing of the surface soil by 3–6 d, decrease the speed at which the surface soil thaws by 0.40–0.80 cm/d, delay the peak soil liquid water content, increase the soil liquid water content, reduce the cumulative evaporation by 2.70–7.40 mm in the thawing period, increase the range of soil evaporation by 0.04–0.10 mm in the early stage of the thawing period, and reduce the range of soil evaporation by 0.25–0.90 mm in the late stage of the thawing period. Straw mulching could reduce the range of and variation in soil evaporation and can reduce the effect of random factors on soil evaporation. When the amount of straw mulch exceeded 9000 \(\hbox {kg/hm}^{2}\), the effect of increasing the amount of straw mulch on daily soil water evaporation was small.  相似文献   

3.
基于有限元(FEM)和改进的积分型Richards方程解法(IRE方法)对蒸发条件下5种土体土壤水分响应进行了研究.数值实验结果表明:在土壤表面潜在蒸发量0.50 cm/d的情况下,5种土体土壤含水率变化曲线均呈现单拐点两阶段的特点,拐点出现在地表下20cm左右,拐点上部区域曲线曲率大于下部区域,两阶段的划分以15d左右为界,前阶段比后阶段的土壤水分变化快;蒸发模拟结果很好的证明了蒸发三阶段理论.总蒸发量和下边界排水量与土壤结构密切相关,而总水量变化量和变化率与土壤质地有关.IRE方法与FEM模拟结果基本一致,解法相对简单,模拟结果可靠性高.  相似文献   

4.
In situ soil micro electrical resistivity measurements were carried out in a pilot plot within the Teaching and Research Farm of Ekiti State University with the aim of establishing relationships between such measurements, soil horizons, and textural classifications. The vertical electrical sounding (VES) technique was adopted for horizon mapping, while the horizontal profiling (HP) technique was used to determine the spatial distribution of in situ soil electrical resistivity of the topmost horizon. Twenty-five VES points were occupied with the Wenner electrode array and electrode spacing that was varied from 2 to 128 cm (0.02 to 1.28 m). The VES data were interpreted by partial curve matching and computer assisted 1-D forward modeling with the IPI2Win software. HP data were also acquired with the Wenner electrode array with a constant electrode separation of 8 cm and station interval of 1 m. Resistivity measurements were taken at 729 stations. The HP data were classified into resistivity-derived soil classes using a standard table. Eighty-one soil samples were collected from the topmost (0–3 cm) horizon and textural classification was derived from the particle size distributions. The resistivity range of values for the identified three layers was 38–590, 328–5222, and 393–900 Ω·m respectively. The average resistivities of the three layers were 263, 2554, and 703 Ω·m, with respective thicknesses of 2.85 cm, 45.52 cm, and infinite. The above resistivity regimes of the three horizons were attributed to responses from the O, A, and B soil horizons. The resistivity values of the O-horizon ranging from 210 to 750 Ω·m were classified as clayey sand while values greater than 750 Ω·m were classified as sand. The soil textural classifications obtained within the horizon were the sandy loam and loamy sand types. The cross-tabulation and spatial pattern comparison of resistivity-derived soil classes and textural classifications showed that whereas there existed some overlapping relationships, the sandy loam textural class had stronger association with the resistivity-derived clayey sand soil type, and the loamy sand textural class had stronger association with the more resistive sand soil type. This study therefore established that in situ soil electrical resistivity can be used for soil horizon mapping and textural classification.  相似文献   

5.
为探讨农田在不同调控措施下的土壤水蒸发量,以衡水试验场为例,以土壤水流动系统为指导,设计沟播盖腐熟秸秆、沟播不盖秸秆、盖膜穴播、平播对照4种不同调控措施下的田间试验,运用土壤水分均衡原理和土壤水分通量法,计算了不同调控措施下的土壤水蒸发量.结果表明,盖膜穴播田块的土壤水蒸发量最小,沟播盖腐熟秸秆次之,沟播不盖秸秆最大,说明盖膜穴播的土壤水分调控效果最好,而秸秆覆盖的效果优于不盖秸秆.  相似文献   

6.
Radon gas is a human health hazard; long-term exposure to high radon concentrations through inhalation is the second leading cause of lung cancer. Nova Scotia has been previously identified as a potential high risk region because of the geology. As such, the gas transport through Halifax’s fine grained leucomonzogranite (FGL) unit of the South Mountain Batholith needed to be quantified to further remediation efforts. Using controlled laboratory experiments, four different soil columns were created using the Halifax Regional Municipality’s (HRM) highest producing field tills and bedrock. Permeability, diffusivity, radon-222 gas concentrations, and gas transit time/speed were measured in both dry tills (field moisture) and wet tills (simulated rain event moisture). Columns with HRM till displayed the highest radon concentrations, and were less permeable with additional moisture. Radon diffusivity calculated from CO2 was 7.52 × 10?8 m2 (dry), and 3.37 × 10?8 m2 (wet); diffusivity calculated from 222Rn was 7.30 × 10?7 m2 (dry), and 6.47 × 10?7 m2 (wet). The average FGL transit time in a 60 cm column was 3.57 days (dry), and 3.82 days (wet). Locally this study presents two different methods for diffusivity calculations, for a unit lacking previous diffusivity information. The radon gas concentrations and transport speeds quantified the transport mechanisms within the till. Globally, the correlation between soil moisture, and radon/permeability values was established using these results. The link between diffusivity and permeability was also confirmed using field tills. Implications were made for building foundations, as well as the depth and type of material necessary to reduce radon gas from reaching the surface.  相似文献   

7.
Effects of biological soil crusts (BSCs) on soil evaporation is quite controversial in literature, being either facilitative or inhibitive, and therein few studies have actually conducted direct evaporation measurements. Continuous field measurements of soil water evaporation were conducted on two microlysimeters, i.e., one with sand soil collected from bare sand dune area and the other with moss-crusted soil collected from an area that was revegetated in 1956, from field capacity to dry, at the southeastern edge of the Tengger Desert. We mainly aimed to quantify the diurnal variations of evaporation rate from two soils, and further comparatively discuss the effects of BSCs on soil evaporation after revegetation. Results showed that in clear days with high soil water content (Day 1 and 2), the diurnal variation of soil evaporation rate followed the typical convex upward parabolic curve, reaching its peak around mid-day. Diurnal evaporation rate and the accumulated evaporation amount of moss-crusted soil were lower (an average of 0.90 times) than that of sand soil in this stage. However, as soil water content decreased to a moderately low level (Day 3 and 4), the diurnal evaporation rate from moss-crusted soil was pronouncedly higher (an average of 3.91 times) than that of sand soil, prolonging the duration of this higher evaporation rate stage; it was slightly higher in the final stage (Day 5 and 6) when soil moisture was very low. We conclude that the effects of moss crusts on soil evaporation vary with different evaporation stages, which is closely related to soil water content, and the variation and transition of evaporation rate between bare soil and moss-crusted soil are expected to be predicted by soil water content.  相似文献   

8.
Macropores resulting from soil pedogenesis and biological activity play important roles in soil water and chemical transport. Numerous studies have examined individual macropores and the effects of their size on solute transport, but few have assessed the effects of macropore continuity and of neighboring macropores. This paper describes a laboratory investigation of the effects of macropores, with varying degrees and types of continuity, on the transport and distribution of solutes in a sandy soil from the northern Loess Plateau, China. Breakthrough curves were obtained from 60 cm tall, 2-D columns containing standardized artificial macropores using an input solution of 1,190 mg/L KBr and 100 mg/L FD&C Blue #1 under a constant hydraulic head of 8 cm. The types of macropore were: open at both the surface and bottom of the soil column (O–O); open at the surface, closed at the bottom (O–C); and closed at the surface, open at the bottom (C–O). Columns with no macropores served as a control. In the O–O columns the solution reached the bottom 10–50 times faster than in any other treatment, bypassing most of the soil matrix. The presence of an O–C macropore resulted in weak retardation and much deeper penetration of the bromide and FD&C Blue #1 solution than in the control columns. However, the C–O macropore had little effect on either breakthrough curves or solute distributions. In further experiments that considered neighboring macropores effects, an inclined macropore strongly affected solute concentrations in the profile around a nearby vertical macropore. It was concluded that the length, type and position of single macropores, and the presence of neighboring macropores, all affect soil water flow and solute infiltration parameters in a sandy loam soil.  相似文献   

9.
The effects of organic matter, humic acid and Tween-80 on decabromodiphenyl ether (BDE-209) behavior in soil columns were investigated. The BDE-209 transport was simulated in 4-cm-length soil columns whether organic matter was added or not. A high concentration of BDE-209 was washed out of the soil column in the presence of 500 mg L?1 of Tween-80 for forming and suspending contaminated soil colloids in more than 4-cm-length ones (especially in 10-cm-length ones). While the humic acid was to facilitate BDE-209 adsorption onto soil particles (like soil colloids), Tween-80 was to enhance BDE-209 movement in porous media. The significant concentration averaged from 0.2 to 0.1 μg L?1 in soil columns of length from 10 to 24 cm with Tween-80 addition by comparing the estimated marginal means (p < 0.05, SPSS). Contrasted with humic acid-binding BDE-209 in soil particles, Tween-80 could carry contaminant soil colloids into deeper layers and even affect the final effluents of 25-cm-length columns. It was visibly presented that the BDE-209 concentration in the effluents was mainly induced by Tween-80. Thus, BDE-209 was carried by soil colloids to transport and pollute longer and wider soil distance with the help of the effective promoters and stabilizers of Tween-80 and humic acid in soil matrix.  相似文献   

10.
为弄清阿拉善沙漠湿沙层的水分来源,在该地区进行了人工模拟降水入渗的示踪试验。模拟单次降水量为59 mm,观察剖面最大入渗深度仅为46 cm,这一结果表明该地区的降水几乎不能通过沙层入渗到地下水中。对4个沙丘湿沙层剖面中不同深度的含水率、Cl-、δD与δ18O进行了分析,数据显示在蒸发能力极强的阿拉善地区,地下水是以薄膜水的形式,通过蒸发、凝结向地表运动,最终蒸发排泄。泉水、井水、湖水与土壤水中的同位素特征表明具有相同的补给源,均来自于地下水。推断横穿阿拉善地块的杂多-雅布赖断裂带与狼山-日喀则断裂带中可能存在地下水深循环通道,青藏高原河流、湖泊的渗漏水可能是阿拉善地下水的主要补给源。  相似文献   

11.
Soil moisture variability and controls are little known in large gullies of the Loess Plateau which represent complex topography with steep slopes. This study analyzed spatial–temporal variability of soil moisture at the 0–20, 20–40, 40–60, and 60–80 cm depths in a large gully of the Loess Plateau based on root-zone soil moisture measurements for 3 years (2009–2011). The result showed that mean soil moisture, standard deviation (SD), and coefficient of variation, were highly dependent on depth; the highest mean value was observed at the 20–40 cm depth, while the lowest one was at the 0–20 cm depth. The SD increased with mean soil moisture for various depths as soil moisture was relatively wet; however, a transition that SD decreased with mean soil moisture occurred when soil moisture was relatively dry. Positive correlations exist between moisture contents over different depths, and that the relationships of the neighboring layers are relatively high with R 2 from 0.70 to 0.76. Correlation analysis, principle component analysis, and stepwise multiple regression analysis showed that soil particle size distribution and topography (slope and elevation) were the main environmental factors controlling soil moisture variability in the large gully.  相似文献   

12.
In arid regions, knowledge of the evaporation rate from the water table is essential for appropriate management of scarce resources and to prevent land degradation. Soil chloride profiles in the unsaturated zone of a bare soil in an arid area of south-eastern Morocco were used to assess the evaporation flux, using chloride inventories in conjunction with evaporative demand. Moisture fluxes were calculated from measured chloride concentrations on the basis of a steady-state flow model. The chloride profiles displayed large variations in concentrations and had (1) low chloride concentrations near the soil surface, (2) maximum chloride concentrations at depths of 11–14 cm beneath the soil surface, respectively in July and February, and (3) gradually decreasing chloride concentrations while depth increased below these peaks. Evaporative demands were found to be inversely proportional to the depth of evaporation fronts and proportional to evaporation fluxes. In addition, the evaporation along the profiles seems to be controlled by the soil composition and texture. The investigation of chloride profiles in February and July enabled the determination of a value for annual evaporation (~30 mm), which is in good agreement with the value estimated by the Allison-Barnes type model (~32 mm).  相似文献   

13.
认识沙漠土壤水分的时空变异性,是揭示沙漠生态系统生态-水文格局的基础。利用中子土壤水分仪的实测数据,对古尔班通古特沙漠树枝状沙丘土壤水分时空变异进行了系统分析。研究表明:① 沙丘不同部位土壤水分随时间具有一致性变化规律,上层土壤和下层土壤的变化趋势有所不同。0~1 m土层坡顶>坡中>坡脚,1~2 m土层坡脚>坡中>坡顶。② 土壤水分具有明显的季节变化和分层变化特征。春季是古尔班通古特沙漠土壤水分最丰富、变化最迅速的时期;0~40 cm、40~140 cm、140~200 cm土层土壤水分变异系数分别为13.56%、5.35%和0.80%,与不同土层水分来源和消耗以及植物根系分布相对应;不同土层土壤水分的变异强度要大于不同部位土壤水分的变异强度。③ 植被和地形对土壤水分的空间分异作用明显,沙丘坡脚处以及荒漠灌木梭梭根区始终存在土壤水分相对富集区。  相似文献   

14.
Evaporation capacity is an important factor that cannot be ignored when judging whether extreme precipitation events will produce groundwater recharge. The evaporation layer’s role in groundwater recharge was evaluated using a lysimeter simulation experiment in the desert area of Dunhuang, in the western part of the Hexi Corridor in northwestern China’s Gansu Province. The annual precipitation in the study area is extremely low, averaging 38.87 mm during the 60-year study period, and daily pan evaporation amounts to 2,486 mm. Three simulated precipitation regimes (normal, 10 mm; ordinary annual maximum, 21 mm; and extreme, 31 mm) were used in the lysimeter simulation to allow monitoring of water movement and weighing to detect evaporative losses. The differences in soil-water content to a depth of 50 cm in the soil profile significantly affected rainfall infiltration during the initial stages of rainfall events. It was found that the presence of a dry 50-cm-deep sand layer was the key factor for “potential recharge” after the three rainfall events. Daily precipitation events less than 20 mm did not produce groundwater recharge because of the barrier effect created by the dry sand. Infiltration totaled 0.68 mm and penetrated to a depth below 50 cm with 31 mm of rainfall, representing potential recharge equivalent to 1.7 % of the rainfall. This suggests that only extreme precipitation events offer the possibility of recharge of groundwater in this extremely arid area.  相似文献   

15.
Improper cultivation practices are seriously degrading native forest ecosystems in northern Iran. Hence, the objectives of this study are to compare selected soil properties, runoff amount, erosion and also introducing equations to predict the runoff and soil erosion in three types of land use (forest, garden and cultivated). A simple portable rainfall simulator has been set in 90 random points to create experimental rainfall. Result showed that changes in natural forest led to a significant clay, organic carbon of soil, total N and antecedent soil moisture decrease and sand, pH and bulk density increasing. The rainfall runoff experiments indicate that runoff content of the natural forest soils was 35 % and respectively 38.45 % higher than the garden and cultivated land soils .This result could be related to the higher antecedent soil moisture in natural forest compared with the other land uses. According to the obtained results, garden soil erosion and cultivated land was 1.351 and respectively 1.587 times higher than the forest. The correlation matrix revealed that runoff content was positively correlated with antecedent soil moisture, bulk density and silt, and negatively with soil organic carbon, total N and sand. Also, soil organic carbon, total N, clay and sand showed negative correlation with soil erosion, while there is a positive correlation between erosion and silt, bulk density, pH and antecedent soil moisture. The results of multiple linear regression showed that runoff in forest, garden and cultivated land can be predicted with correlation coefficient of 0.637, 0.547 and 0.624, respectively. The correlation coefficients of 0.798, 0.628 and 0.560 in equations indicate their moderate potential in simulating soil erosion.  相似文献   

16.
The critical area around an oasis where desertification occurs determines the ecological security and stability of the oasis. In this study, the soil quality in the critical area of desertification surrounding the Ejina Oasis was evaluated by using a soil quality index (SQI). The soil surface moisture content was related to vegetation cover; it remained high to a distance of 600 m from the oasis, decreased at distances of 600 to 1,700 m, and then gradually increased to a distance of 1,900 m. The sand content and soil bulk density gradually decreased to a distance of 300 m from the oasis; however, the silt and clay contents, soil pH, soil organic matter (SOM), and total and available nutrients increased away from the oasis. From 300 to 1,900 m, the sand content and soil bulk density increased; however, values of other soil properties decreased. Thus, a distance of 300 m from the edge of the oasis represents an obvious demarcation point for soil properties. SOM and the clay content were the key factors that determined soil quality. SQI increased from 0.284 at the edge of the oasis to 0.793 at 300 m, decreased to 0.262 at 1,400 m, and then decreased further to 0.142 at 1,900 m. SQI was lowest at distances of 1,400–1,900 m. The area beyond 300 m from the oasis was most vulnerable to desertification, and is thus the area where desertification control measures should be strengthened.  相似文献   

17.
Normalized difference vegetation index (NDVI) is an important indicator for measuring vegetation coverage, which is of great significance for evaluating vegetation dynamics and vegetation restoration. It can clearly analyze the suitable growth condition of vegetation by studying the relationship between meteorological factors, soil moisture and NDVI. Based on MODIS/NDVI data, the spatio-temporal characteristics of vegetation coverage in the Weihe River Basin (WRB) were analyzed by the trend analysis method. The relationship of NDVI with meteorological factors and NDVI with soil moisture simulated by the soil and water assessment tool (SWAT) model was analyzed in this paper. The results show that NDVI values gradually change with an increase from north to south in the WRB. The maximum of the average monthly NDVI is 0.702 (August) and the minimum is 0.288 in February from 2000 to 2015. The results of the seven grades of NDVI trend line slope indicate that the improvement area of vegetation coverage accounts for 30.93% of the total basin, and the degradation area and basically unchanged area account for 23% and 42.9%, respectively. The annual mean soil moisture is 19.37% in the WRB. There was a strong correlation between NDVI and precipitation, temperature, evaporation and soil moisture, and the correlation coefficients were 0.78, 0.89, 0.71 and 0.65, respectively. The ranges of the most suitable growth conditions for vegetation are 80–145 mm (precipitation), 13–23 °C (temperature), 94–144 mm (evaporation) and 25–33% (soil moisture), respectively.  相似文献   

18.
Soil moisture and its variations are key factors for understanding hydrological processes, which are characterized by a high temporal variability at different scales. The study was conducted at three field stations in the desert regions of northwestern China, where soil moisture measurements with gravimetric method were used to characterize the temporal stability of soil moisture using various statistical parameters and an index of temporal stability (ITS). The soils are a gray–brown desert soil at the Linze station, an aeolian sandy soil at the Fukang station, and a brown desert soil at the Cele station. Soil textures are accordingly sandy loam at Linze and Cele, and loamy sand at Fukang. The dynamic variation in soil moisture depends strongly on the rainfall pattern (amount and frequency) in these desert ecosystems. Soil moisture content is low and significantly different among the three desert ecosystems, with the maximum at the Linze station (6.61 ± 2.08 %), followed by the Cele (4.83 ± 0.81 %) and Fukang (3.46 ± 0.47 %) stations. The temporal pattern exhibits high variability because soil moisture is characterized by low temporal stability and a high coefficient of variation (CV). The standard deviation, CV, and ITS increase significantly with increasing soil moisture. Soil moisture displays a skewed frequency distribution that follows a logarithmic function at lower soil moisture but a log-normal distribution at higher values.  相似文献   

19.
膜下滴灌微区环境对土壤水盐运移的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
基于膜下滴灌特有的"膜中"、"膜间"、"膜边"、"膜外"微区环境,利用2011—2013年田间对比试验方法获取的5 960个数据,运用柯布-道格拉斯模型,构建膜下滴灌环境土壤层次、灌水定额、土壤水分、气温、蒸发综合因素与土壤水盐关系及影响效应分析模型.结果表明,在气候干旱、蒸发强烈灌区,地膜覆盖与滴灌结合的地表介面灌溉形式下,土壤水盐具有水平方向由"膜中"向"膜边"地表裸露区定向迁移,垂直方向土壤水盐则由下向上层运移且趋于"膜外"边界积累的趋势,尤其是气温与蒸发因素交互作用,推进膜下滴灌土壤水盐在地膜覆盖与土壤裸露区域空间运移,研究结果进一步揭示了膜下滴灌"土壤水盐定向迁移"形成机理,为膜下滴灌土壤水盐地表排放模式应用提供了依据.  相似文献   

20.
Surface albedo plays a crucial role in the energy balance of soils. The surface albedo and surface soil moisture of bare sand and biological soil crusts (BSCs) were concurrently observed on field plots of shifting sand dune and in revegetated desert ecosystems at Shapotou, northwestern China, to study relationships between surface albedo, solar elevation angle, and surface soil moisture. Results indicated that rainfall exerted a remarkable lowering effect on the variation of surface albedo by increasing surface soil moisture. Surface albedo was an exponential function of solar elevation angle, and the normalized surface albedo (solar elevation angle effect was removed) decreased exponentially with the increase of surface soil moisture. Sand surface had a higher albedo (0.266) than BSCs (0.226) when the surfaces were very dry. However, sand surface albedo became increasingly lower than that of BSCs when the surfaces were in wet conditions and when the soil moisture exceeded a critical value. The changes in soil surface albedo from sand dune to BSCs after revegetation in shallow soil profiles associated with the variation of the surface soil moisture can be seen as an indicator of the degree of sand dune stabilization when compared with the original shifting sand dune soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号