首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Natural radioactivity in sediment of Wei River,China   总被引:1,自引:0,他引:1  
The concentrations of natural radionuclides in sediment of Wei River of China were measured using γ-ray spectrometry with the aim of estimating the radiation hazard as establishing a database for radioactivity levels of river sediment of China. The activity concentrations of 226Ra, 232Th and 40K in sediment samples ranged from 10.4 to 39.9 Bq kg−1, 15.3 to 54.8 Bq kg−1 and 514.8 to 1,175.5 Bq kg−1, respectively. The concentrations of these radionuclides were compared with the typical world values and the average activities of Chinese soil and Shaanxi soil. Radium equivalent activity (Raeq), external hazard index (H ex) and representative level index (I γr) were calculated for the samples to assess the radiation hazards arising due to the use of these sediment samples in the construction of dwellings. All the sediment samples have Raeq lower than the limit of 370 Bq kg−1, H ex less than unity and I γr close to 1 Bq kg−1. The overall mean outdoor terrestrial gamma dose rate is 64.8 nGy h−1 and the corresponding outdoor annual effective dose is 0.079 mSv. None of the studied location is considered a radiological risk and sediment can be safely used in construction.  相似文献   

2.
The mean activity concentrations of 226Ra, 232Th, and 40K in Eshidiya phosphogypsum samples were measured as 351.4 ± 23.4, 3.8 ± 0.3, and 120.7 ± 8.3 Bq kg?1, respectively. The results show that the mean values of activity concentration of 226Ra, 232Th, and 40K are in the lower range of typical values reported for phosphogypsum samples collected worldwide. Radiological hazard indices such as the radium-equivalent activity (Raeq), the gamma index (I γ ) alpha index (I α ), the absorbed gamma dose rate (D in), and the corresponding annual effective dose (E in) were assessed for building materials for dwellings. The results of assessment exhibit that all phosphogypsum samples are higher than the recommended safe limit for building materials for dwellings, except for the radium-equivalent activity (Raeq). Overall assessment, it can be concluded that the possibility of using Eshidiya phosphogypsum in building materials in proportions lower than 100 % will be safe. The mixture of phosphogypsum with normal gypsum can dilute the concentrations of natural radionuclides allowing the use of the mixed building materials to be safe from a radiological point of view.  相似文献   

3.
Oil mineral leases (30, 58 and 61) in Delta and River States are the major oil blocks in the oil and gas rich Niger Delta region of Nigeria that is characterized by environmental degradation from oil and gas activities. This research work presents an analytical approach on natural radioactivity assessment in soil and sediment in 15 oil fields of these OMLs. Concentrations of natural radionuclides (226Ra, 232Th and 40K) were determined using gamma spectroscopy. The mean activity concentration of 226Ra, 232Th and 40K for OML30 is 40.2 ± 5.1, 29.9 ± 4.2 and 361.5 ± 20.0 Bq kg?1, respectively; the corresponding values obtained for OML58 is 20.9 ± 2.8, 19.4 ± 2.5 and 260.0 ± 14.1 Bq kg?1, respectively. While the mean activity concentration of 226Ra, 232Th and 40K for OML61 is 29.3 ± 3.5, 21.6 ± 2.6 and 262.1 ± 14.6 Bq kg?1, respectively. These values obtained show enhanced NORMs, but are well within the world range and values reported in some regions and countries of the world, and are slightly above control values, values obtained in Southwestern region of Nigeria and some countries reported average values. The study also examined some radiation hazard indices, the mean values obtained are 86.6 ± 9.3 Bq kg?1, 0.6 Bq kg?1, 40.8 ηGy h?1, 0.05 μSv y?1, 0.2 and 0.3 for radium equivalent activity (Raeq), representative level index (Iγ), absorbed dose rates (D), annual effective dose rates (E ff dose), external hazard index (H ex) and internal hazard index (H in), respectively. These calculated hazard indices to estimate the potential radiological health risk in soil and sediment are well below their permissible limits. The soil and sediments from the study area provide no excessive exposures for the inhabitants and can be used as construction materials without posing any radiological threat or harm to the public users. However, oil-field workers and host community residents are cautioned against excess exposure to avoid future accumulative dose of these radiations from sludge and sediment of this area.  相似文献   

4.
Ambient gamma radiation study was carried out in South Konkan using thermo luminescent dosimeters (TLDs). A statistical analysis was carried out to understand the distribution of gamma radiation in the study area. The annual effective doses (AEDs) received by the local population from the selected villages were 0.31 and 0.09 mSv year?1 for indoor and outdoor locations, respectively. For indoor conditions, the maximum dose rate occurred for winter season and the minimum occurred in monsoon season while for outdoor conditions the maximum dose rate occurred in spring season and minimum occurred in the monsoon season. The terrestrial radioactivity in the corresponding villages was measured by a HpGe detector. The radiation hazard indices like absorbed dose rate in air (D), radium equivalent activity (Raeq), external hazard index (H ex) and internal hazard index (H in), and AED were calculated using soil radioactivity data. The minimum absorbed dose rate in air (33.97 nGy h?1) corresponds to the Dale village and the maximum (101.86 nGy h?1) corresponds to the Mithgawane village. Radiation hazard indices as Raeq, H ex, and H in were found to be within the limit. The average AED from natural radionuclides was found to be lower than the worldwide value. The AEDs of this study were compared with previous studies carried out worldwide. A positive correlation was observed for the absorbed dose rate in air and the activity concentration of U-238, Th-232, and K-40. A positive correlation between activity concentrations of U-238, Th-232, and K-40 was also observed. The comparison between the AEDs calculated using absorbed dose measured by TLDs and the values calculated from soil’s gamma spectrometry showed some variation in the villages of South Konkan.  相似文献   

5.
Gamma activity from the naturally occurring radionuclides namely, 226Ra, 232Th, the primordial radionuclide 40K was measured in the soil of Cuihua Mountain National Geological Park, China using γ-ray spectrometry technique. The mean activity of 226Ra, 232Th and 40K were found to be 27.2 ± 6.5, 43.9 ± 6.2 and 653.1 ± 127.6 Bq kg−1, respectively. The concentrations of these radionuclides were compared with the typical world values and the average activities of Chinese soil. The radium equivalent activity, the air absorbed dose rate, the annual effective dose rate, and the external hazard index were evaluated and compared with the internationally approved values. All the soil samples have Raeq lower than the limit of 370 Bq kg−1 and H ex less than unity. The overall mean outdoor terrestrial gamma dose rate is 66.3 nGy h−1 and the corresponding outdoor annual effective dose is 0.081 mSv.  相似文献   

6.
The natural radiological characteristics and their respective annual effective dose (AED) rates, produced by 226Ra, 232Th and 40K in coal, fly ash and bottom ash from two large coal-fired power plants (CFPPs) of Xi’an were determined by means of γ-ray spectrometry. The average activity concentrations of 226Ra, 232Th and 40K in all ash samples (fly ash and bottom ash samples) from the two CFPPs were 67.6, 74.3 and 225.3 Bq kg−1, respectively. The results are compared with data from other locations. To evaluate the radiological hazards of the natural radioactivity, the radium equivalent activity (Raeq), air absorbed dose rate (D), AED and external hazard index (H ex) are compared with internationally accepted values. Raeq and H ex of all samples except three fly ash samples were less than the limits of 370 Bq kg−1 and unity, respectively. The average D and AED for ash samples were 86.8 nGy h−1 and 0.11 mSv y−1, respectively, which exceed the world average and Xi’an average values.  相似文献   

7.
In this study, activity concentrations of 40K, 226Ra and 232Th in fertilized soil samples and different organic and inorganic fertilizers used in agricultural soil were analysed using gamma-ray spectrometry NaI (Tl) detector in order to access the implications of extended use of fertilizers in 2–3 years. The concentrations of radionuclides in some granular fertilizer brands were discovered to be higher for 40K, 226Ra and 232Th than those obtained in leafy fertilizer, animal fertilizer and fertilized soil samples. From the results, the highest overall mean concentrations of the specific activities of 40K, 226Ra and 232Th were 2301.8 (granular fertilizer), 42.5 (leafy fertilizer) and 327.1 (animal fertilizer) in Bq kg?1, while the lowest values observed in the specific activities of the same radionuclides were 357.7 (leafy fertilizer), 28.1 (animal fertilizer) and 36.5 (animal fertilizer). The radiological hazards of the radium equivalent (Raeq), normative value (NRN), outdoor radium equivalent (Raeq-out), external hazard index (H ext), internal hazard index (H in), dose rate, annual effective dose rate, activity utilization index and concentration accumulation index (CAI) and RaFZ due to the presence of these radionuclides in the investigated samples were calculated. Nevertheless, some of the fertilizer brands have higher concentration values than the recommended limit, and the values of hazard indices of fertilizer brands used in the selected teaching and research farms were within acceptable limit. Therefore, the fertilized soil samples in the studied farms are safe.  相似文献   

8.
Koprubasi, located within Manisa Province near the Izmir, is the biggest uranium mine where uranium ores originate from Neogene aged altered sandstone and conglomerate layers. The main objective of this study is to determine the radiation hazard associated with radioactivity levels of uranium ores, and the rocks and sediments around Koprubasi. In this regard, measured activity levels of 226Ra, 232Th and 40K were compared with world averages. The average activity levels of 226 Ra, 232Th and 40K were measured to be 5369.75, 124.78 and 10.0 Bq/kg in uranium ores, 24.32, 52.94 and 623.38 Bq/kg in gneiss, 46.24, 45.13 and 762.26 Bq/kg in sandstone and conglomerate, 73.11, 43.15 and 810.65 Bq/kg in sediments, respectively. All samples have high 226Ra and 40K levels according to world average level. As these sediments are used as construction materials and in agricultural activities within the study area, the radiation hazard are calculated by using dose rate (D), annual effective dose rate (He), radium equivalent activity (Raeq) and radiation hazard index (Iyr). All the samples have Raeq levels that are lower than the world average limit of 370 Bq/kg. On the other hand, D, He and Iyr values are higher than world average values. These results indicate that the uranium ores in the Koprubasi is the most important contributor to the natural radiation level. The radioactivity levels of sediments and rocks make them unsuitable for use as agricultural soil and as construction materials. Moreover, it is determined that shallow groundwater in sediments and deep groundwater in conglomerate rocks and also surface water sources in the Koprubasi have high 226Ra content. According to environmental radioactive baseline, some environmental protection study must be taken in Koprubasi uranium site and the environment.  相似文献   

9.
The natural radioactivity levels and magnetic measurements in sediment samples of Bharathapuzha river for the first time have been determined. Bottom sediments from 33 locations were collected to determine 226Ra, 232Th and 40K using a HPGe detector based on the high-resolution gamma spectrometry system, and magnetic susceptibility by using Bartington MS2 magnetic susceptibility meter. The calculated activity concentrations of 226Ra, 232Th and 40K have been found to vary from 21.21 to 66.03 Bq kg?1, 33.49 to 93.10 Bq kg?1 and 232.25 to 899.66 Bq kg?1, respectively. The results have been compared with worldwide recommended values and also with radioactivity measurements in river sediments of India and other parts of the world. The air-absorbed dose rate, indoor and outdoor annual effective dose rates and radium equivalent activity are calculated with an aim to access the radiation hazards arising due to the use of these materials in the construction of buildings and their mean values obtained are 74.83 nGy h?1, 367.08 μSv y?1, 91.77 μSv y?1 and 157.09 Bq kg?1, respectively. The mass-specific magnetic susceptibility values ranged widely from 35.4 to 2,160.5 × 10?8 m3 kg?1 and compared with other rivers in South India. Multivariate statistical analyses were performed to describe the magnetic and radioactivity relevance of the different groups of samples. The data obtained in the present study may be useful for radiological and magnetic mapping of the study area in the future.  相似文献   

10.
Concentration of natural radionuclides in three major staple food crops cultivated around a fertilizer plant in Onne, Rivers State Nigeria and the cultivated soil samples were determined using gamma spectroscopy operated on a Canberra vertical high purity 3″ × 3″ NaI(TI) detector. The average activity concentration of 238U, 232Th and 40K was determined, for cassava flour (U 19.3 ± 5.0, Th 11.4 ± 3.3, K 426.9 ± 33.8) Bq kg?1, for yam flour (U 6.3 ± 1.8, Th 8.4 ± 2.6, K 227.0.9 ± 27.3) Bq kg?1 while for cocoyam flour (U 7.5 ± 2.7, Th 7.1 ± 2.3, K 195.8 ± 25.83) Bq kg?1. The mean activity concentration for soil samples is 18.7 ± 3.7 Bq kg?1, 18.0 ± 3.8 Bq kg?1 and 308.4 ± 22.4 Bq kg?1 for 238U, 232Th and 40K, respectively. These values obtained show enhanced 40K concentration which is attributed to the effluent discharge from a fertilizer plant and its applications to farmlands, but 238U, 232Th values are well within the global average and values reported in some regions and countries of the world. Radiation hazard indices obtained to estimate potential radiological health risk in both foodstuffs and soil samples are well below their permissible limit as set by UNSCEAR [Sources and effects of ionizing radiation (Report to the General Assembly), 2000]. The rate of radionuclides transfer from soil to crops was moderate with mean transfer factors of 232Th < 238U < 40K.  相似文献   

11.
We measured 228Raex/226Raex and 226Raex/Baex ratios in suspended and sinking particles collected at the Oceanic Flux Program (OFP) time-series site in the western Sargasso Sea and compared them to seawater ratios to provide information on the origin and transport of barite (BaSO4) in the water column. The 228Raex/226Raex ratios of the suspended particles down to 2000 m are nearly identical to those of seawater at the same water depth. These ratios are much lower than expected if suspended barite was produced in surface waters and indicate that barite is produced throughout the mesopelagic layer. The 228Raex/226Raex activity ratios of sinking particles collected at 1500 and 3200 m varied mostly between 0.1 and 0.2, which is intermediate between the seawater ratio at these depths (<0.03) and the seawater ratios found in the upper 250 m (0.31-0.42). This suggests that excess Ba (i.e., Baex = Batotal − Balithogenic), considered to be mainly barite, present in the sinking flux is a mixture of crystals formed recently in the upper water column, formed several years earlier in the upper water column, or formed recently in deeper waters. We observe a sizeable temporal variability in the 228Raex/226Raex ratios of sinking particles, which indicates temporal variability in the relative proportion of barite crystals originating from surface (with a high 228Raex/226Raex ratio) and mesopelagic (with a low 228Raex/226Raex ratio) sources. However, we could not discern a clear pattern that would elucidate the factors that control this variability. The 226Ra/Ba ratios measured in seawater are consistent with the value reported from the GEOSECS expeditions (2.3 dpm μmol−1) below 500 m depth, but are significantly lower in the upper 500 m. High 226Raex/Baex ratios and elevated Sr concentrations in suspended particles from the upper water column suggest preferential uptake of 226Ra over Ba during formation of SrSO4 skeletons by acantharians, which must contribute to barite formation in shallow waters. Deeper in the water column the 226Raex/Baex ratios of suspended particles are lower than those of seawater. Since 228Raex/226Raex ratios demonstrate that suspended barite at these depths has been produced recently and in situ, their low 226Raex/Baex ratios indicate preferential uptake of Ba over Ra in barite formed in mesopelagic water.  相似文献   

12.
In this study, the environmental radioactivity measurements for Tokat and Sivas provinces in the northeast of Turkey were performed. Using gamma ray spectrometry, the activity concentrations of natural radionuclides in soil and travertine samples (232Th, 226Ra, and 40K) were determined. The annual effective dose equivalent, the absorbed doses rate in air, the radium equivalent, and the external hazard index were obtained from these activities. The activity concentrations vary from 9.09 to 17.04 Bq kg?1 for 232Th, from 36.53 to 76.95 Bq kg?1 for 226Ra, and from 216.56 to 576.59 Bq kg?1 for 40K in soil samples. The activity concentrations in travertines vary from 15.99 to 21.01 Bq kg?1 for 232Th, from 19.89 to 67.71 Bq kg?1 for 226Ra, and from 179.89 to 314.43 Bq kg?1 for 40K. The average dose rate in air for soil and travertine samples was 43.41 and 41.05 nGy h?1 respectively. The obtained results are presented and compared with other studies, and the results of this study are lower than the international recommended value (55 nGy h?1) given by UNSCEAR ( 2000). The results show that the region has a background radiation level within the natural limits.  相似文献   

13.
We analyzed 238U, 234U, 232Th, 230Th, and 226Ra by thermal ionization mass spectrometry (TIMS) and Ba by inductively coupled plasma optical emission spectrometry (ICP-OES) on eight Mn/Fe crusts from the Mecklenburg Bay (SW Baltic) and on one from the Bothnian Bay (N Baltic) to test the 226Raex/Ba ratio as potential geochronometer. 226Raex/Ba ratios decrease as a function of depth within the concretions in all analyzed profiles. Calculated diffusion coefficients are relatively low (∼9 · 10−7 cm2/yr for Ra and 5 · 10−7 cm2/yr for Ba) and suggest that diffusion is negligible for the Ra and Ba record. In addition, 226Raex/Ba ages are consistent and independent from the growth rate and growth direction within a crust. Thus, the decline in 226Raex/Ba ratio is most likely due to radioactive decay of 226Raex, although the influence of varying oxic conditions has still to be evaluated. 226Raex/Ba growth rates range from 0.021 to 0.0017 mm/yr and tend to be lower than those calculated and based on stratigraphic methods (1 to 0.013 mm/yr). 226Raex/Ba ages of concretions from shallow water environment (20 m depth, Mecklenburg Bay/SW Baltic) cover a time interval from 990 ± 140 yr to 4310 ± 310 yr BP corresponding to the stabilization of the sea level close to the present position about 5500 to 4500 yr ago. One sample from greater depth (70 m, Bothnian Bay-/N Baltic) showed a higher 226Raex/Ba age of 6460 ± 520 yr BP.  相似文献   

14.
The state of Azad Kashmir is rich in three types of rocks, namely, sedimentary, metamorphic, and igneous rocks. These rocks contain extensive deposits of graphite, marble, limestone, quartzite, granite, dolerite, and sandstone, which are widely used for the construction of dwellings in Azad Kashmir and Pakistan. Therefore, knowledge about the presence of natural radioactivity in these materials is desirable to assess the radiological hazards associated with it. In this context, 30 rock samples were collected from different geologic formations of the Muzaffarabad Division, Azad Kashmir. After processing the samples, the specific activities of 226Ra, 232Th, and 40 K in them were measured using a P-type coaxial high-purity germanium detector. The observed highest dose rate values for sedimentary, metamorphic, and igneous rocks have been found to be 83.16 ± 1.08, 135.87 ± 1.18, and 115.98 ± 1 nGy ⋅ h–1, respectively. The radium equivalent activity (Raeq) varied from 23.76 ± 1.15 for dolerite sample (igneous rock) to 293.69 ± 2.60 Bq ⋅ kg–1 for marble (metamorphic rock). The Raeq values of all rock samples are lower than the limit mentioned in the Organization for Economic Cooperation and Development (OECD, 1979) report (370 Bq ⋅ kg–1, equivalent to γ-dose of 1.5 mSv ⋅ y–1). The values of external (Hex) and internal hazard indices (Hin) are less than unity. The mean outdoor and indoor annual effective dose equivalents are 0.073 mSv ⋅ y–1 and 0.29 mSv ⋅ y–1, respectively. The mean (over all types of rock samples) annual effective dose equivalent is reported as 0.36 mSv ⋅ y–1.  相似文献   

15.
Due to the widespread use of granites as building and ornamental materials, measurements of natural radioactivity for a total 27 selected samples of commercial granites used in Egypt were carried out by using a high pure germanium detector. The activity concentrations of 226Ra, 232Th and 40K of commercial granites ranged from 25 to 356, 5 to 161, and 100 to 1,796?(Bq?kg?1), respectively. The concentrations of these radionuclides are compared with the international recommended values. To evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity, the absorbed dose rate, the effective dose rate, and the hazard index have been calculated. The radium equivalent activity Raeq varied from 41 to 669?(Bq?kg?1) which exceeds the permitted value (370?Bq?kg?1) and the internal hazard index H in varied from 0.2 to 2.8 which is higher than 1. The absorbed dose rate due to the natural radioactivity in the samples under investigation ranged from 19 to 310?(nGy?h?1). The total effective dose rates per person indoors were determined to be 0.09 to 1.5?(mSv?year?1).  相似文献   

16.
Radiometric measurements were carried out for the beach sands from East Rosetta estuary to determine the activity concentrations of 238 U, 226 Ra, 232 Th, and 40 K, using a Hyper Pure Germanium spectrometer, to estimate the dose rates and radiation hazard indices. The average specific activities are 778.20 Bq/kg for 238 U; 646.89 Bq/kg for 226 Ra; 621.92 and 627.85 Bq/kg for the 222 Rn daughters 214 Pb and 214 Bi respectively. The average specific activity of 232 Th is 1510.25 Bq/kg, while the calculated specific activity for 40 K has an average of 8.41 Bq/kg. The average specific activity of 235 U is 38.61 Bq/kg. The average absorbed dose rate is 1211.36 nGy/h, 20 times higher than the estimated average global primordial radiation of 60 nGy/h and 6 times higher than that of the world range (10-200 nGy/h). The radium equivalent (Ra eq ) values are from 6 to 9 times the recommended value. The internal and external hazard indices (H int , H ex ) indicate that their values are from 6 to 11 times the permissible values of these indices. These higher values may be due to the presence of economic heavy minerals containing radionuclides as zircon and monazite as well as some trace minerals, thorite and uranothorite. The mineralogical study indicates the beach sands contain heavy minerals, zircon, monazite, rutile, ilmenite, leucoxene, magnetite and garnet. The average abundance of zircon is 0.175 wt% ranging from 0.125 wt% to 0.239 wt%, while it is 0.004wt% ranging from 0.001 wt% to 0.007 wt% for monazite. The average abundance is 0.087 wt% for rutile; 2.029 wt% for ilmenite; 1.084 wt% for magnetite; 0.384 wt% for leucoxene and 0.295 wt% for garnet.  相似文献   

17.
In this study we investigate the radiological hazard of naturally occurring radioactive material in Tunisian and Algerian phosphorite deposits. Eight samples of phosphorite were collected from the phosphorite mines. The Tunisian and Algerian phosphorites occur in the Late Paleocene and Lower Eocene (Ypresian-Lutetian) in age (Béji Sassi 1984 and Zaïer 1999). Activity concentrations in all the samples were measured by alpha spectrometry and gamma spectrometry. Alpha spectrometry analyses show that the specific activity values of 238U, 234U and 235U in the samples of Tunisian phosphorite were 327?±?7 (321–327), 326?±?6 (325–331) and 14.50?±?0.72 (13.90–15.57) Bq kg?1, respectively. Specific activity measured by gamma spectrometry in the samples of the Tunisian and Algerian phosphorite shows a small difference. Specific activity levels of 40K, 226Ra, 232Th, 235U and 238U in the phosphorite samples from Tunisia were, respectively, 71.10?±?3.80, 391.54?±?9.39, 60.38?±?3.74, 12.72?±?0.54 and 527.42?±?49.57 Bq kg?1 and Algeria were 15.72?±?1.73, 989.65?±?12.52, 12.08?±?1.20, 47.50?±?1.52 and 1,148.78?±?7.30 Bq kg?1, respectively. The measured value of specific activity of 232Th and 40K in the Tunisian phosphorite samples is relatively higher than that found in the samples of Algerian phosphorite. The measured activity of uranium (238U) in the Tunisian phosphorite (527?±?49) Bq kg?1 is lower than in Algerian phosphorite. The measured activity of 238U in the Tunisian phosphorite samples was (527–1,315?±?65) 238U Bq kg?1 which is higher than its maximum background value of 110 Bq kg?1 in soils of the various countries of the world (Tufail et al. Radiat Meas 41:443–451, 2006). Different geological origins of phosphorites deposits are the main reason for the large spread in worldwide specific activities. The obtained results of uranium concentrations in phosphorites of different types (Algerian and Tunisian) demonstrate that the uranium concentrations are mainly governed by the phosphatic material. The present study reveals that phosphorite deposits contain natural radioactivity higher than background level.  相似文献   

18.
Sediment cores were collected from deep-water areas of Lake Chenghai, China in June 1997. The vertical profile of 137Cs activity gives reliable geochronological results. The results also indicate that sediment accumulation rates in deep-water areas of Lake Chenghai were relatively constant in recent decades, averaging 0.43 g cm− 2 y− 1, despite a variable organic carbon influx. 210Pbeq (= 226Ra) activity was relatively constant also, with an average value of 54.3 ± 3.2 Bq kg− 1. Vertical profiles of 210Pbex (= 210Pbtotal − 226Ra) decreased exponentially, resulting in somewhat lower sediment accumulation rates (0.3 g cm− 2 y− 1). These lower rates are likely less reliable, as the relatively large fluctuations in 210Pbex activities correlate closely to the organic carbon (Corg) content of the sediments. For example, the vertical profile of 210Pbex activity displays peaks at mass depths of 3.7-4.7 g cm− 2 (10-12 cm) and 10-11 g cm− 2(25-28 cm), similar to the maxima in the vertical profile of Corg. This phenomenon must be related to the delivery of particulate organic matter (POM) from the water to the sediments, or to watershed soil erosion. Since the mean atomic ratios of Horg / Corg and Corg / Norg in Lake Chenghai sediments are 5.5 and 7.0, respectively, indicating that POM was predominantly derived from the remains of authigenic algae, this eliminates watershed erosion rates as a primary control on lake sedimentation rates as resolved by 210Pbex. Sedimentation fluxes (F(Corg)) of particulate organic carbon since 1970 varied between 60 to 160 g m− 2 y− 1, and appeared to closely influence variations in 210Pbex concentrations. For example, sedimentation fluxes of 210Pbex (F(210Pbex)) showed maxima in the years 1972-1974 and 1986-1989, likely reflecting historical variations of lake biological productivity or carbon preservation.  相似文献   

19.
226Ra, 228Ra and Ba distributions as well as 228Ra/226Ra and 226Ra/Ba ratios were measured in seawater, suspended and sinking particles at the DYFAMED station in the Western Mediterranean Sea at different seasons of year 2003 in order to track the build-up and fate of barite through time. The study of the 228Raex/226Raex ratios (Raex = Ra activities corrected for the lithogenic Ra) of suspended particles suggests that Baex (Baex = Ba concentrations corrected for the lithogenic Ba, mostly barite) formation takes place not only in the upper 500 m of the water column but also deeper (i.e. throughout the mesopelagic layer). Temporal changes in the 228Raex/226Raex ratios of sinking particles collected at 1000 m depth likely reflect changes in the relative proportion of barite originating from the upper water column (with a high 228Ra/226Ra ratio) and formed in the mesopelagic layer (with a low 228Ra/226Ra ratio). 228Raex/226Raex ratios measured in sinking particles collected in the 1000 m-trap in April and May suggest that barite predominantly formed in the upper water column during that period, while barite found outside the phytoplankton bloom period (February and June) appears to form deeper in the water column. Combining ratios of both the suspended and sinking particles provides information on aggregation/disaggregation processes. High 226Raex/Baex ratios were also found in suspended particles collected in the upper 500 m of the water column. Because celestite is expected to be enriched in Ra [Bernstein R. E., Byrne R. H. and Schijf J. (1998) Acantharians: a missing link in the oceanic biogeochemistry of barium. Deep-Sea Res. II45, 491-505], acantharian skeletons may contribute to these high ratios in shallow waters. The formation of both acantharian skeletons and barite enriched in 226Ra may thus contribute to the decrease in the dissolved 226Ra activity and 226Ra/Ba ratios of surface waters observed between February and June 2003 at the DYFAMED station.  相似文献   

20.
In this study, radioactivity measurements in the environment of Akhisar, Gölmarmara, Gördes and Sindirgi regions in Western Turkey were investigated in order to evaluate the implications of any excess radioactivity in the environment of geological formation. The radioactivity concentrations of 40K, 238U and 232Th radionuclides in the soil samples were measured by a NaI(Tl) gamma spectrometer system, and the radium activity concentrations in the water samples were also analyzed by an ZnS(Ag) alpha counter by the collector chamber method. The radioactivity of 40K, 238U and 232Th in soils ranged 2.80–2,347.77, 9.90–256.19 and 9.66–106.53 Bq kg?1, respectively. The activity of 226Ra in the water samples ranged from 0.03 Bq L?1 (0.89pCi/L) to 0.80 Bq L?1 (21.58pCi/L). In addition, the external terrestrial gamma dose rate in air (nGy h?1), annual effective dose rate (mSv year?1) and radium equivalent activity (Bq kg?1) were calculated and compared with international standard values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号