首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Low-mature gases and typical low-mature gas fields in China   总被引:2,自引:0,他引:2  
No natural gas pool of industrial importance could be formed at the low-evolution stage of organic matter. In the 1980s, on the basis of the development in exploration practice, the hypotheses of bio-thermo-catalytic transitional zone gases and early thermogenic gases were proposed. The lower-limit Ro values for the formation and accumulation of natural gases of industrial importance have been expanded to 0.3%―0.4%. In the light of the two-stage model established on the basis of carbon isotope fractionation in coal-type natural gases, the upper-limit Ro values have been set at 0.8%―1.0%. In terms of the geological practice in the low-mature gas zones and China's main coal-type gas fields, it is feasible and proper to set the upper-limit Ro value of low-mature gases at 0.8%. Supper-large gas fields such as the Urengoy gas field in western Siberian Basin should belong to low-mature gas fields, of which the natural gas reserves account for more than 20% of the global proven reserves, providing strong evidence for the significance of such a type of resources. The proven natural gas reserves in the Turpan-Hami Basin of China have almost reached 1000 × 108 m3. The main source rocks in this area are the Jurassic Xishanyao Formation, which occurs as a suite of coal series strata. The corresponding thermal evolution indices (Ro ) are mainly within the range of about 0.4%―0.8%, the δ 13C1 values of methane vary between-44‰ and-39‰ (correspondingly Ro =0.6%―0.8%), and those of ethane are within the range of-29‰―-26‰, indicating that natural gases in the Turpan-Hami Basin should be designated to coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also fall within the area of low evolution while the precursor type of light hydrocarbons also shows the characteristics of the coal-type. The geological background, carbon isotopic composition and light hydrocarbon index all provide strong evidence suggesting that the proven natural gases in the Turpan-Hami Basin are low-mature gases. In China a gas field with the gas reserves reaching 300 ×108 m3 can be defined as a large gas field, and thus the proven low-mature gases in the Turpan-Hami Basin are equivalent to the reserves of three large gas fields. Its existence is of great significance in research on and exploration of low-mature gases in China.  相似文献   

2.
Reservoir-forming features of abiotic origin gas in Songliao Basin   总被引:4,自引:0,他引:4  
The vertical structure of the crustal block of the Songliao Basin can be divided into upper, middle and low Earth’s crust according to density. There is an about 3-km-thick low density interval between the upper crust and the middle crust. This interval may be a magma chamber accumulated in crust by “fluid phase” which is precipitated and separated from upper mantle meltmass. The abiogenetic natural gas, other gaseous mass and hydrothermal fluids are provided to the Songliao rifted basin through crustal faults and natural earthquakes. This is a basic condition to form an abiogenetic gas reservoir in the Songliao Basin. On both flanks of the upper crust (or named basin basement) fault there are structural traps in and above the basement and unconformity surface or lateral extended sand, which contains communicated pores, as migration pathway and natural gas reservoir; up to gas reservoirs there is shale as enclosed cap rock, and the suitable arrangement of these conditions is the basic features of abiogenetic gas reservoir. Project supported by the National Natural Sc~ence Foundation of China.  相似文献   

3.
Based on the analysis of the geological characteristics and controlling factors, we analyzed the formation mechanism of different types of gas reservoirs. The main characteristics of gas provinces with low porosity and permeability are mainly as follows: large area, low abundance, small gas pools and large gas provinces; widely distributed excellent hydrocarbon source rocks with closely contacted source-reservoir-cap association; development mainly in large continental depressions or in paralic shallow-river delta systems; many kinds of traps coexisting in large areas, dominantly para-layered lithologic, digenetic and capillary pressure traps; double fluid flow mechanisms of Darcy flow and non-Darcy flow; complicated gas and water relations; and having the resource distribution of highly productive “sweet spots”, banding concentration, and macroscopically large areas integrated. The main controlling factors of large sandstone gas provinces with low porosity and permeability are stable dynamic backgrounds and gentle structural frameworks which control the extensive distribution of alternate (interbedded) sandstones and mudstones; weak hydropower of large gentle lake basins controlling the formation of discontinuous, low porosity and permeability reservoirs in shallow-water deltas; regionally differential diagenesis and no homogeneous digenetic facies controlling the development of favorable reservoirs and digenetic traps; and weak and dispersive reservoir-forming dynamic forces leading to the widely distributed small traps with low abundance. Low porosity and permeability gas provinces with different trap types have different formation mechanisms which include fluid diversion pressure difference interactive mechanism of lithologic-trap gas accumulations, separated differential collection mechanism of digenetic-trap gas accumulations, and the Non-Darcy flow mechanism of capillary-pressure gas accumulations. Supported by PetroChina Science and Technology Project (Grant No. 07-01C-01-07) and Youth Innovation Fund Project (Grant Nos. 10100042KT96, 07-06D-01-04-01-03)  相似文献   

4.
Using ground temperature data from meteorological stations as well as earthquake, ground tilt and precipitation data, the spatial-temporal distribution of “Underground Hot Vortex” (UHV) in China was analyzed in detail. The results show that concerning an “Underground Hot Vortex” cell, its life-span is 3–8 seasons, 1.5 years on average; the mean horizontal scale is 600 km and its characteristic velocity is about 400 km/a; UHV is likely to appear in some areas where the crustal movement is intense and the absolute value of vertical deformation rate is relatively high; its activity could hardly be detected in the area where the crust is stable and the vertical deformation is weak; most of “Underground Hot Vortex Groups” originate from the edge of Indian Plate, then migrate eastwards with a leaping-frog style. 5–10 years are needed for their arrival in the eastern border of China. Their horizontal migrating velocity is 200–500 km/a which is nearly equal to the characteristic velocity of a single UHV. Project sponsored by the National Climbing Project and Key Project of the Chinese Academy of Sciences.  相似文献   

5.
Hydrocarbon source systems and formation of gas fields in Sichuan Basin   总被引:1,自引:0,他引:1  
The formation of large and middle gas fields in Sichuan Basin is investigated based on source wntrolling theory and hydrocarbon source systems. It is indicated that Є1, Sl, P1, P2 and T3 are the main source beds and Є1/Z2 d, C2 h/S1, P1/P2, P2 ch/P2, T1,2/P,T3 x /T3 x are important hydrocarbon source systems in the basin. All these source systems are the prospective formations and exploration spaces of large and middle gas fields. It is also emphasized that hydrocarbon generation intensity is the most important geochemical factor to estimate large and middle gas fields. Project supported by the “85–102” Chinese National Key Science and Technology Project.  相似文献   

6.
Based on the examination of the global researches on oil and gas provinces and large gas fields and the analysis of the features,attributes and distribution of large gas provinces and gas fields,this paper puts forward three indicators of determining large oil and gas provinces:spatial indicator,reservoir-forming indicator and resource indicator.It classifies the gas accumulated areas and large gas provinces in China and analyzes the controlling factors on the distribution of large gas provinces and large gas fields:the lateral distribution is mainly controlled by high-energy sedimentary facies and constructive diagenetic facies,palaeo-highs and their periclinal zones,deep faults,etc,and the vertical distribution is mainly controlled by unconformities,series of evaporates and deep low-velocity highly-conductive beds,etc.It also reveals the main geological characteristics of large gas provinces and large gas fields in China.Large gas fields in four-type basins have their own characteristics and onland large gas fields are dominantly developed in foreland basins and craton basins;there are three types of gas sources,of which,coal is the main source with high gas generating intensity and varying origins;reservoir rocks of the large gas fields(provinces)are of various types and dominated generally by low-middle permeability and porosity pore-type reservoirs;structural traps and litho-stratigraphic traps coexist in Chinese large gas fields and form dense high abundance and large-area low and middle-abundance large gas fields;most of the large gas fields have late hydrocarbon-generation peaks and reservoir formation,and experienced the process of multiple-stage charging and late finalization; large gas provinces(fields)have good sealing and preservation conditions,and evaporates seals are largely developed in large and extra-large gas fields.This paper intends to shed light on the exploration and development of large gas fields(provinces)through analyzing their geological characteristics.  相似文献   

7.
Based on the examination of the global researches on oil and gas provinces and large gas fields and the analysis of the features, attributes and distribution of large gas provinces and gas fields, this paper puts forward three indicators of determining large oil and gas provinces: spatial indicator, reservoir-forming indicator and resource indicator. It classifies the gas accumulated areas and large gas provinces in China and analyzes the controlling factors on the distribution of large gas provinces and large gas fields: the lateral distribution is mainly controlled by high-energy sedimentary facies and constructive diagenetic facies, palaeo-highs and their periclinal zones, deep faults, etc, and the vertical distribution is mainly controlled by unconformities, series of evaporates and deep low-velocity highly-conductive beds, etc. It also reveals the main geological characteristics of large gas provinces and large gas fields in China. Large gas fields in four-type basins have their own characteristics and onland large gas fields are dominantly developed in foreland basins and craton basins; there are three types of gas sources, of which, coal is the main source with high gas generating intensity and varying origins; reservoir rocks of the large gas fields (provinces) are of various types and dominated generally by low-middle permeability and porosity pore-type reservoirs; structural traps and litho-stratigraphic traps coexist in Chinese large gas fields and form dense high abundance and large-area low and middle-abundance large gas fields; most of the large gas fields have late hydrocarbon-generation peaks and reservoir formation, and experienced the process of multiple-stage charging and late finalization; large gas provinces (fields) have good sealing and preservation conditions, and evaporates seals are largely developed in large and extra-large gas fields. This paper intends to shed light on the exploration and development of large gas fields (provinces) through analyzing their geological characteristics.  相似文献   

8.
Several typical exinites in China including alginite, cultinite, suberinite and bituminite are analysed by means of13C high solution solid state CP MAS TOSS NMR spectra to determine their chemical structures and hydrocarbon potential. Thermal simulation solid products (TSSP) of hydrogen-rich coals are studied to discuss the generation and expulsion mechanism of coal-generating hydrocarbon. The preliminary results are quite encouraging, wntaining useful information about genesis of coal-generating oil and gases. Project supported by the “85–102” Chinese National Key Science and Technology Project.  相似文献   

9.
Studyonthepatternandmodeofverticalcrustaldeformationduringtheseismogenicprocessofintraplatestrongearthquakes杨国华,桂昆长,巩曰沐,杨春花,韩...  相似文献   

10.
Current horizontal strain field in Chinese mainland derived from GPS data   总被引:3,自引:0,他引:3  
Introduction In the years when the reliable data could not be obtained and in the analysis of strain property and magnitude in history, the intensity, property and activity pattern of strain field were mainly inferred on the bases of geometric characters of surface traces and behaviors (especially the faults) as well as the characteristics of petrology (XIE, et al, 1993; Molnar, Tapponnier, 1975, 1977; Tapponnier, Molnar, 1977; FU, et al, 2000). However, they are the averaged results accumu…  相似文献   

11.
The effectiveness of gas accumulation processes is controlled by several main geological factors in-cluding charging force,features of gas conduit,sealing properties of caprock,etc. Based on the analysis and statistics of the large-medium size gas accumulations in China,the main parameters,in-cluding the excess pressure difference between the source rock and reservoir bed,the area coefficient of the gas conduit,and the thickness or displacement pressure of caprock,and the criteria for the as-sessment of gas accumulation processes have been established. Using the parameters and the criteria above,the effectiveness of gas accumulation processes in the Kuqa depression was quantitatively evaluated. By integrating the parameters of the excess pressure difference between the source rock and reservoir bed,the area coefficient of fault conduit system,and the caprock thickness in gas charging period,a comprehensive assessment of the effectiveness of gas accumulation in the Kuqa depression has been made. The result reveals that the Tubei-Dawan area,the Central Kelasu area and the Dongqiu-Dina area are three highly-effective areas for gas accumulation in the Kuqa depression.  相似文献   

12.
Gas formation mechanism of marine carbonate source rocks in China   总被引:5,自引:1,他引:4  
It has been proven in exploration practice that thecarbonates in China not only can generate hydrocar-bons, but also form commercial reservoirs. The car-bonates are different from clastic rocks in view of theirdeposition environment as well as their sedimentaryand diagenetic processes. Therefore, the evaluationcriteria and hydrocarbon generation mechanism forcarbonates can not be the same as that for clasticrocks, and it is important to establish a special hydro-carbon generation mechanism and…  相似文献   

13.
The purpose of the research was to determine parameters of ground-motion models for two areas characterized by considerable induced seismicity and different geology. Fifty-nine events collected from surface seismological stations of coal mine “Bielszowice” (at the Main Anticline, South Poland) and 144 events from coal mine “Ziemowit” (at the Main Syncline, South Poland) were used for computation. For both areas, simple ground-motion prediction equations (GMPEs) without site effects were derived, but the model was acceptable only for “Bielszowice” area. The GMPE was calculated once again for “Ziemowit”, but this time we took into consideration the amplification coefficient, which significantly improved the model solution. Finally, the theoretical value of amplification was calculated. Knowing that the amplification is associated with subsurface layers, we used three different models of overburden: (i) with Quaternary sediments only, (ii) with a complex of Quaternary-Tertiary sediments, and (iii) with a complex of Quaternary-Tertiary-Triassic sediments and Carboniferous as a basement. Usually, the amplification of vibrations appears in the Quaternary sediments. However, theoretical calculations of amplification were consistent with the results obtained from GMPE when a rigid Carboniferous substratum was applied.  相似文献   

14.
In diatremes and other volcanic vents, steep bodies of volcaniclastic material having differing properties (particle size distribution, proportion of lithic fragments, etc.) from those of the surrounding vent-filling volcaniclastic material are often found. It has been proposed that cylindrical or cone-shaped bodies result from the passage of “debris jets” generated after phreatomagmatic explosions or other discrete subterranean bursts. To learn more about such phenomena, we model experimentally the injection of gas-particulate dispersions through other particles. Analogue materials (glass beads or sand) and a finite amount of compressed air are used in the laboratory. The gas is made available by rapidly opening a valve—therefore the injection of gas and coloured particles into a granular host is a brief (<1 s), discrete event, comparable to what occurs in nature following subterranean explosions. The injection assumes a bubble shape while expanding and propagating upwards. In reaction, the upper part of the clastic host moves upward and outward above the ‘bubble’, forming a ‘dome’. The doming effect is much more pronounced for shallow injection depths (thin hosts), with dome angles reaching more than 45°. Significant surface doming is also observed for some full-scale subterranean blasts (e.g. buried nuclear explosions), so it is not an artefact of our setup. What happens next in the experiments depends on the depth of injection and the nature of the host material. With shallow injection into a permeable host (glass beads), the compressed air in the “bubble’ is able to diffuse rapidly through the roof. Meanwhile the coloured beads sediment into the transient cavity, which is also closing laterally because of inward-directed granular flow of the host. Depending on the initial gas pressure in the reservoir, the two-phase flow can “erupt” or not; non-erupting injections produce cylindrical bodies of coloured beads whereas erupting runs produce flaring upward or conical deposits. Changing the particle size of the host glass beads does not have a large effect under the size range investigated (100–200 to 300–400 μm). Doubling the host thickness (injection depth) requires a doubling of the initial gas pressure to produce similar phenomena. Such injections—whether erupting or wholly subterranean—provide a compelling explanation for the origin and characteristics of multiple cross-cutting bodies that have been documented for diatreme and other vent deposits.  相似文献   

15.
It has been proved to be a difficult problem to determine directly trapping pressure of fluid inclusions. Recently, PVT simulation softwares have been applied to simulating the trapping pressure of petroleum inclusions in reservoir rocks, but the reported methods have many limita-tions in practice. In this paper, a method is suggested to calculating the trapping pressure and temperature of fluid inclusions by combining the isochore equations of a gas-bearing aqueous inclusion with its coeval petroleum inclusions. A case study was conducted by this method for fluid inclusions occurring in the Upper-Paleozoic Shanxi Formation reservoir sandstones from the Ordos Basin. The results show that the trapping pressure of these inclusions ranges from 21 to 32 MPa, which is 6–7 MPa higher than their minimum trapping pressure although the trapping temperature is only 2–3°C higher than the homogenization temperature. The trapping pressure and temperature of the fluid inclusions decrease from southern area to northern area of the basin. The trapping pressure is obviously lower than the state water pressures when the inclusions formed. These data are consistent with the regional geological and geochemical conditions of the basin when the deep basin gas trap formed.  相似文献   

16.
In a 3-D closed geological body, in case “structural expanding” inside is induced by stress, it can produce the pressure difference between the expanding cell and surrounding rock, then generate a pumping force directed toward the cell and accelerate the directional flow of fluid in the strata. The structural style and conditions of gas reservoir-formation in the Kuqa depression are favorable to the structural pumping. According to similarity principle, a physical modeling of structure formation and gas filling process of the Kela 2 gas field has justified the occurrence of structural pumping and its important role in gas-reservoir formation with high efficiency under the compressive and well-sealed circumstance. Therefore, authors propose that structural pumping is an important mechanism of gas reservoir-formation with high efficiency in the Kuqa depression.  相似文献   

17.
Variation of snow water resources in northwestern China, 1951–1997   总被引:19,自引:0,他引:19  
Two models are used to simulate the high-altitude permafrost distribution on the Qinghai-Xizang Plateau. The two models are the “altitude model”, a Gaussian distribution function used to describe the latitudinal zonation of permafrost based on the three-dimensional rules of high-altitude permafrost, and the “frost number model”, a dimensionless ratio defined by manipulation of freezing and thawing degree-day sums. The results show that the “altitude model” can simulate the high-altitude permafrost distribution under present climate conditions accurately. Given the essential hypotheses and using the GCM scenarios from HADCM2, the “altitude model” is used for predicting the permafrost distribution change on the Qinghai-Xizang Plateau. The results show that the permafrost on the plateau will not change significantly during 20–50 a, the percentage of the total disappeared area will not be over 19%. However, by the year 2099, if the air temperature increases by an average of 2.91°C on the plateau, the decrease in the area of permafrost will exceed 58%—almost all the permafrost in the southern plateau and in the eastern plateau will disappear. Project “Fundamental Research of Cryosphere” supported by the Chinese Academy of Sciences.  相似文献   

18.
Unique volcanic structures, known in the literature as “lava trees” and “tree molds”, have formed at several sites on Mt. Etna volcano (northeastern Sicily, Italy). They form when a fluid lava flow runs over a tree, wraps around it and, while the wood burns off, solidifies forming a hollow cast of the tree. The inhabitants of the Etna area call these formations “pietre cannone” (“cannon stones”) because of their cylindrical shape. The first documentation of lava trees is from Hawaii, but the first eye-witnessed accounts of their formation are, to our knowledge, from Etna’s 1865 eruption. Although many of the literature examples of lava trees and tree molds formed in pahoehoe, many of those reported in this work formed in a’a. The sites where we have found the lava tree molds are located within the territory of the Etna Regional Park; most occur next to walking trails and have a high potential for geotourism.  相似文献   

19.
In the work 2D and 3D fields of stresses of several scale levels close to the off of the main fault (vertical strike-slip fault) in conditions of compression are mathematically calculated and investigated. The solution is found for the elastic task for a 2D “horizontal” field; a 3D field of stresses is obtained by the imposition of a “vertical” unaxis compression. It is shown that the surroundings of the fault are subdivided into three (not two, as is usually considered) regions of types of predictable secondary fractures: “extension,” “strike-slip fault,” and “compression.” In regions close to the off of the main fault, three different microregions occur. The type of destruction in these microregions depends on the parameters of the outer load. Natural and model data of second order fractures that are compared with the calculated data are examined and generalized. The performed investigation is important for the determination of the genesis of secondary fractures, located close to the main fault. The calculated parageneses of secondary fractures may be used for the estimation of the stress tensor type of the regional field.  相似文献   

20.
The distribution of two formation pathways of biogenic methane, acetate fermentation and reduction of CO2, has been extensively studied. In general, CO2 reduction is the dominate pathway in marine envi- ronment where acetate is relatively depleted because of SRB consuming. While in terrestrial freshwater or brackish environment, acetate fermentation is initially significant, but decreases with increasing buried depth. In this paper, character of biogenic gases is profiled in the XS3-4 well of the Sebei 1 gas field in the Sanhu depression, Qaidam Basin. It indicates that those two pathways do not change strictly with increasing buried depth. CO2 reduction is important near the surface (between 50 m and 160 m), and at the mesozone (between 400 and 1650 m). While acetate fermentation is the primary pathway at two zones, from 160 to 400 m and from 1650 to 1700 m. δ 13C of methane generated in those two acetate fermentation zones varies greatly, owing to different sediment circumstances. At the sec- ond zone (160-400 m), δ 13C1 ranges from ?65‰ to ?30‰ (PDB), because the main deposit is mudstone and makes the circumstance confined. At the fourth zone of the well bottom (1650-1700 m), δ 13C1 is lighter than ?65‰ (PDB). Because the deposit is mainly composed of siltstone, it well connects with outer fertile groundwater and abundant nutrition has supplied into this open system. The high con- centration of acetate is a forceful proof. δ 13C of methane would not turn heavier during fermentation, owing to enough nutrition supply. In spite of multi-occurrence of acetate fermentation, the commercial gas accumulation is dominated by methane of CO2-reduction pathway. A certain content of alkene gases in the biogenic gases suggests that methanogensis is still active at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号