首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with vector random fields on spheres with second-order increments, which are intrinsically stationary and mean square continuous and have isotropic variogram matrix functions. A characterization of the continuous and isotropic variogram matrix function on a sphere is derived, in terms of an infinite sum of the products of positive definite matrices and ultraspherical polynomials. It is valid for Gaussian or elliptically contoured vector random fields, but may not be valid for other non-Gaussian vector random fields on spheres such as a χ 2, log-Gaussian, or skew-Gaussian vector random field. Some parametric variogram matrix models are derived on spheres via different constructional approaches. A simulation study is conducted to illustrate the implementation of the proposed model in estimation and cokriging, whose performance is compared with that using the linear model of coregionalization.  相似文献   

2.
A critical step for kriging in geostatistics is estimation of the variogram. Traditional variogram modeling comprise of the experimental variogram calculation, appropriate variogram model selection and model parameter determination. Selecting of the variogram model and fitting of model parameters is the most controversial aspect of geostatistics. Shapes of valid variogram models are finite, and sometimes, the optimal shape of the model can not be fitted, leading to reduced estimation accuracy. In this paper, a new method is presented to automatically construct a model shape and fit model parameters to experimental variograms using Support Vector Regression (SVR) and Multi-Gene Genetic Programming (MGGP). The proposed method does not require the selection of a variogram model and can directly provide the model shape and parameters of the optimal variogram. The validity of the proposed method is demonstrated in a number of cases.  相似文献   

3.
In the linear model of coregionalization (LMC), when applicable to the experimental direct variograms and the experimental cross variogram computed for two random functions, the variability of and relationships between the random functions are modeled with the same basis functions. In particular, structural correlations can be defined from entries of sill matrices (coregionalization matrices) under second-order stationarity. In this article, modified t-tests are proposed for assessing the statistical significance of estimated structural correlations. Their specific aspects and fundamental differences, compared with an existing modified t-test for global correlation analysis with spatial data, are discussed via estimated effective sample sizes, in relation to the superimposition of random structural components, the range of autocorrelation, the presence of correlation at another structure, and the sampling scheme. Accordingly, simulation results are presented for one structure versus two structures (one without and the other with autocorrelation). The performance of tests is shown to be related to the uncertainty associated with the estimation of variogram model parameters (range, sill matrix entries), because these are involved in the test statistic and the degrees of freedom of the associated t-distribution through the estimated effective sample size. Under the second-order stationarity and LMC assumptions, the proposed tests are generally valid.  相似文献   

4.
Design-based sampling strategies based on classical sampling theory offer unprecedented potentials for estimation of non-ergodic variograms. Unbiased and uncorrelated estimates of the semivariance at the selected lags and of its sampling variance can be simply obtained. These estimates are robust against deviations from an assumed spatial autocorrelation model. The same holds for the variogram model parameters and their sampling (co)variances. Moreover, an objective measure for lack of fit of the fitted model can simply be derived. The estimators for two basic sampling designs, simple random sampling and stratified simple random sampling of pairs of points, are presented. The first has been tested in real world for estimating the non-ergodic variograms of three soil properties. The parameters of variogram models and their sampling (co)variances were estimated with 72 pairs of points distributed over six lags.  相似文献   

5.
Structural analysis of data displaying trends may be performed with the help of generalized increments, the variance of these increments being a function of a generalized covariance. Generalized covariances are estimated primarily by parametric methods (i. e., methods searching for the best coefficients of a predetermined function), but also may be computed by one known nonparametric alternative. In this paper, a new nonparametric method is proposed. It is founded on the following principles: (1) least-squares residues are generalized increments; and (2) the generalized covariance is not a unique function, but a family of functions (the system is indeterminate). The method is presented in a general context of a k order trend in Rd, although the full solution is given only fork = I in Ri. In Ri, higher order trends may be developed easily with the equations included in this paper. For higher dimensions in space, the problem is more complex, but a research approach is proposed. The method is tested on soil pH data and compared to a parametric and nonparametric method.  相似文献   

6.
Geostatistical analyses require an estimation of the covariance structure of a random field and its parameters jointly from noisy data. Whereas in some cases (as in that of a Matérn variogram) a range of structural models can be captured with one or a few parameters, in many other cases it is necessary to consider a discrete set of structural model alternatives, such as drifts and variograms. Ranking these alternatives and identifying the best among them has traditionally been done with the aid of information theoretic or Bayesian model selection criteria. There is an ongoing debate in the literature about the relative merits of these various criteria. We contribute to this discussion by using synthetic data to compare the abilities of two common Bayesian criteria, BIC and KIC, to discriminate between alternative models of drift as a function of sample size when drift and variogram parameters are unknown. Adopting the results of Markov Chain Monte Carlo simulations as reference we confirm that KIC reduces asymptotically to BIC and provides consistently more reliable indications of model quality than does BIC for samples of all sizes. Practical considerations often cause analysts to replace the observed Fisher information matrix entering into KIC with its expected value. Our results show that this causes the performance of KIC to deteriorate with diminishing sample size. These results are equally valid for one and multiple realizations of uncertain data entering into our analysis. Bayesian theory indicates that, in the case of statistically independent and identically distributed data, posterior model probabilities become asymptotically insensitive to prior probabilities as sample size increases. We do not find this to be the case when working with samples taken from an autocorrelated random field.  相似文献   

7.
Two important problems in the practical implementation of kriging are: (1) estimation of the variogram, and (2) estimation of the prediction error. In this paper, a nonparametric estimator of the variogram to circumvent the problem of the precise choice of a variogram model is proposed. Using orthogonal decomposition of the kriging predictor and the prediction error, a method for selecting, what may be considered, a statistical neighborhood is suggested. The prediction error estimates based on this scheme, in fact, reflects the true prediction error, thus leading to proper coverage for the corresponding prediction interval. By simulations and a reanalysis of published data, it is shown that the proposals made in this paper are useful in practice.  相似文献   

8.
Four variogram models for regional groundwater geochemical data are presented. These models were developed from an empirical study of the sample variograms for more than 10 elements in groundwaters from two geologic regions in the Plainview quandrangle, Texas. A procedure is given for the estimation of the variogram in the isotropic and anisotropic case. The variograms were found useful for quantifying the differences in spatial variability for elements within a geologic unit and for elements in different geologic units. Additionally, the variogram analysis enables assessment of the assumption of statistical independence of regional samples which is commonly used in many statistical procedures. The estimated variograms are used in computation of kriged estimates for the Plainview quadrangle data. The results indicate that an inverse distance weighting model was superior for prediction than simple kriging with the particular variograms used.  相似文献   

9.
Fitting trend and error covariance structure iteratively leads to bias in the estimated error variogram. Use of generalized increments overcomes this bias. Certain generalized increments yield difference equations in the variogram which permit graphical checking of the model. These equations extend to the case where errors are intrinsic random functions of order k, k=1, 2, ..., and an unbiased nonparametric graphical approach for investigating the generalized covariance function is developed. Hence, parametric models for the generalized covariance produced by BLUEPACK-3D or other methods may be assessed. Methods are illustrated on a set of coal ash data and a set of soil pH data.  相似文献   

10.
Robustness of variograms and conditioning of kriging matrices   总被引:1,自引:0,他引:1  
Current ideas of robustness in geostatistics concentrate upon estimation of the experimental variogram. However, predictive algorithms can be very sensitive to small perturbations in data or in the variogram model as well. To quantify this notion of robustness, nearness of variogram models is defined. Closeness of two variogram models is reflected in the sensitivity of their corresponding kriging estimators. The condition number of kriging matrices is shown to play a central role. Various examples are given. The ideas are used to analyze more complex universal kriging systems.Research performed while on leave at Centre de Geóstatistique et de Morphologie Mathématique, Fontainebleau.  相似文献   

11.
Estimation of linear combinations is accomplished by using the observed (available) data. Accordingly, to require the negative of a modeled variogram function to be positive definite for all possible data combinations is unnecessary when only the observed data are used in estimation. The requirement that the negative of a variogram model be conditionally positive semidefinite is then relaxed to apply at the observed spatial locations only. In this setting a simple, yet crude, sufficient condition is developed to ensure that a variogram model will yield nonnegative variances for the available data. It is seen that the condition is independent of the dimensionality of the data and applies to both isotropic and anisotropic models. An example of the application of the condition is also presented. The condition is harder to satisfy as the amount of data increases and must be adjusted as the variogram changes to accommodate new data.  相似文献   

12.
Covariance and variogram functions have been extensively studied in Euclidean space. In this article, we investigate the validity of commonly used covariance and variogram functions on the sphere. In particular, we show that the spherical and exponential models, as well as power variograms with 0<α≤1, are valid on the sphere. However, two Radon transforms of the exponential model, Cauchy model, the hole-effect model and power variograms with 1<α≤2 are not valid on the sphere. A table that summarizes the validity of commonly used covariance and variogram functions on the sphere is provided.  相似文献   

13.
When concerned with spatial data, it is not unusual to observe a nonstationarity of the mean. This nonstationarity may be modeled through linear models and the fitting of variograms or covariance functions performed on residuals. Although it usually is accepted by authors that a bias is present if residuals are used, its importance is rarely assessed. In this paper, an expression of the variogram and the covariance function is developed to determine the expected bias. It is shown that the magnitude of the bias depends on the sampling configuration, the importance of the dependence between observations, the number of parameters used to model the mean, and the number of data. The applications of the expression are twofold. The first one is to evaluate a priori the importance of the bias which is expected when a residuals-based variogram model is used for a given configuration and a hypothetical data dependence. The second one is to extend the weighted least-squares method to fit the variogram and to obtain an unbiased estimate of the variogram. Two case studies show that the bias can be negligible or larger than 20%. The residual-based sample variogram underestimates the total variance of the process but the nugget variance may be overestimated.  相似文献   

14.
Coregionalization analysis has been presented as a method of multi-scale analysis for multivariate spatial data. Despite an increasing use of this method in environmental and earth sciences, the uncertainty associated with the estimation of parameters in coregionalization analysis (e.g., sills and functions of sills) is potentially high and has not yet been characterized. This article aims to discuss the theory underlying coregionalization analysis and assess the robustness and limits of the method. A theoretical framework is developed to calculate the ergodic and fluctuation variance-covariance matrices of least-squares estimators of sills in the linear model of coregionalization. To adjust for the positive semidefiniteness constraint on estimated coregionalization matrices, a confidence interval estimation procedure for sills and functions of sills is presented. Thereafter, the relative importance of uncertainty measures (bias and variance) for sills and structural coefficients of correlation and determination is assessed under different scenarios to identify factors controlling their uncertainty. Our results show that the sampling grid density, the choice of the least-squares estimator of sills, the positive semidefiniteness constraint, the presence of scale dependence in the correlations, and the number and range of variogram models, all affect the level of uncertainty, sometimes through multiple interactions. The asymptotic properties of variogram model parameter estimators in a bounded sampling domain impose a theoretical limit to their accuracy and precision. Because of this limit, the uncertainty was found to be high for several scenarios, especially with three variogram models, and was often more dependent on the ratio of variogram range to domain extent than on the sampling grid density. In practice, in the coregionalization analysis of a real dataset, the circular requirement for sill estimates in the calculation of uncertainty measures makes the quantification of uncertainty very problematic, if not impossible. The use of coregionalization analysis must be made with due knowledge of the uncertainty levels and limits of the method.  相似文献   

15.
Is the ocean floor a fractal?   总被引:1,自引:0,他引:1  
The topographic structure of the ocean bottom is investigated at different scales of resolution to answer the question: Can the seafloor be described as a fractal process? Methods from geostatistics, the theory of regionalized variables, are used to analyze the spatial structure of the ocean floor at different scales of resolution. The key to the analysis is the variogram criterion: Self-similarity of a stochastic process implies self-similarity of its variogram. The criterion is derived and proved here: it also is valid for special cases of self-affinity (in a sense adequate for topography). It has been proposed that seafloor topography can be simulated as a fractal (an object of Hausdorff dimension strictly larger than its topological dimension), having scaling properties (self-similarity or self-affinity). The objective of this study is to compare the implications of these concepts with observations of the seafloor. The analyses are based on SEABEAM bathymetric data from the East Pacific Rise at 13°N/104°W and at 9°N/104°W and use tracks that run both across the ridge crest and along the ridge flank. In the geostatistical evaluation, the data are considered as a stochastic process. The spatial continuity of this process is described by variograms that are calculated for different scales and directions. Applications of the variogram criterion to scale-dependent variogram models yields the following results: Although the seafloor may be a fractal in the sense of the definition involving the Hausdorff dimension, it is not self-similar, nor self-affine (in the given sense). Mathematical models of scale-dependent spatial structures are presented, and their relationship to geologic processes such as ridge evolution, crust formation, and sedimentation is discussed.  相似文献   

16.
A method based on Bochner's theorem is described for demonstrating the positive-definiteness of variogram models and for generating classes of valid variogram functions.Work performed while on leave at the Centre de Géostatistique et de Morphologie Mathématique.  相似文献   

17.
The spatial distribution of cobalt-rich crust thicknesses on seamounts is partly controlled by water depth and slope gradients. Conventional distance–direction-based variogram have not effectively expressed the spatial self-correlation or anisotropy of the thicknesses of cobalt-rich crusts. To estimate resources in cobalt-rich crusts on seamounts using geostatistics, we constructed a new variogram model to adapt to the spatial distribution of the thicknesses of the cobalt-rich crusts. In this model, we defined the data related to cobalt-rich crusts on seamounts as three-dimensional surface random variables, presented an experimental variogram process based on the distance–gradient or distance–“relative water depth,” and provided a theoretical variogram model that follows this process. This method was demonstrated by the spatial estimation of the thicknesses of cobalt-rich crusts on a seamount, and the results indicated that the new variogram model reflects the spatial self-correlation of the thicknesses of cobalt-rich crusts well. Substituted into the Kriging equation, the new variogram model successfully estimated the spatial thickness distribution of these cobalt-rich crusts.  相似文献   

18.
Coregionalization analysis has been presented as a method of multi-scale analysis for multivariate spatial data. Despite an increasing use of this method in environmental and earth sciences, the uncertainty associated with the estimation of parameters in coregionalization analysis (e.g., sills and functions of sills) is potentially high and has not yet been characterized. This article aims to discuss the theory underlying coregionalization analysis and assess the robustness and limits of the method. A theoretical framework is developed to calculate the ergodic and fluctuation variance-covariance matrices of least-squares estimators of sills in the linear model of coregionalization. To adjust for the positive semidefiniteness constraint on estimated coregionalization matrices, a confidence interval estimation procedure for sills and functions of sills is presented. Thereafter, the relative importance of uncertainty measures (bias and variance) for sills and structural coefficients of correlation and determination is assessed under different scenarios to identify factors controlling their uncertainty. Our results show that the sampling grid density, the choice of the least-squares estimator of sills, the positive semidefiniteness constraint, the presence of scale dependence in the correlations, and the number and range of variogram models, all affect the level of uncertainty, sometimes through multiple interactions. The asymptotic properties of variogram model parameter estimators in a bounded sampling domain impose a theoretical limit to their accuracy and precision. Because of this limit, the uncertainty was found to be high for several scenarios, especially with three variogram models, and was often more dependent on the ratio of variogram range to domain extent than on the sampling grid density. In practice, in the coregionalization analysis of a real dataset, the circular requirement for sill estimates in the calculation of uncertainty measures makes the quantification of uncertainty very problematic, if not impossible. The use of coregionalization analysis must be made with due knowledge of the uncertainty levels and limits of the method.  相似文献   

19.
In linear geostatistics, models for the mean function (drift) and the variogram or generalized covariance function are selected on the basis of the modeler's understanding of the phenomenon studied as well as data. One can seldom be assured that the most appropriate model has been selected; however, analysis of residuals is helpful in diagnosing whether some important characteristic of the data has been neglected and, ultimately, in providing a reasonable degree of assurance that the selected model is consistent with the available information. The orthonormal residuals presented in this work are kriging errors constructed so that, when the correct model is used, they are uncorrelated and have zero mean and unit variance. It is suggested that testing of orthonormal residuals is a practical way for evaluating the agreement of the model with the data and for diagnosing model deficiencies. Their advantages over the usually employed standardized residuals are discussed. A set of tests are presented. Orthonormal residuals can also be useful in the estimation of the covariance (or variogram) parameters for a model that is considered correct.  相似文献   

20.
以浅剖数据为源数据,钻孔实测数据为验证数据,利用普通克里金法对海底地层厚度进行空间插值得到地层分布特征,采用3种半变异函数模型和不同取样间距对某井场3组地层厚度进行普通克里金插值并验证其插值效果。结果表明:普通克里金是一种有效的海底地层厚度预测方法;结构分析最佳的模型不一定是误差最小的模型,应对不同模型下的插值结果进行综合分析来选择最合适的模型,并提出球状模型在该井场厚度估计中最优,高斯模型次之;对于球状模型,增大取样间距对地层厚度变化剧烈的地层回归效果影响较小,对地层厚度变化不大的地层回归效果影响较大;同时,SE预测值变化率分析表明对于地层厚度变化剧烈的地层,减小取样间距可以大幅度地减少插值误差,而对于地层厚度变化不大的地层,减小取样间距对插值精度提高的意义不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号