首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
珠江口的黏性泥沙输运对区域海洋工程和河口海洋环境有着重要的影响。本文利用SELFE模型,针对珠江河口海域建立了一个采用非结构三角形网格的三维斜压水动力模型,可耦合模拟海流、潮流及风海流水动力环境,并在此基础上开发了包括底床模块的黏性泥沙输运模型。模拟结果与实测值验证较好,再现了丰水期珠江河口的泥沙输运特征以及最大浑浊带的变化和分布特点。研究表明,丰水期珠江口悬沙质量浓度西侧大于东侧,泥沙主要来自河口上游。河口浅滩上会形成最大浑浊带,最大质量浓度可达0.5 g/L。珠江口最大浑浊带的形成主要受潮动力、重力环流及泥沙再悬浮和沉积过程影响,其中泥沙再悬浮和沉积过程对中滩的最大浑浊带影响显著,而重力环流作用对西滩的最大浑浊带影响显著。  相似文献   

2.
鸭绿江河口最大浑浊带水动力特征对叶绿素分布的影响   总被引:3,自引:1,他引:2  
在河口最大浑浊带有独特的生态动力过程。利用鸭绿江河口最大浑浊带上下游两个定点站和大面站的流速、叶绿素和浊度数据,在分析最大浑浊带形成的基础上探讨了悬沙浓度与叶绿素浓度分布的对应关系及最大浑浊带水动力特征对叶绿素分布的影响。分析结果表明,定点站大小潮涨落潮时均出现悬沙浓度与叶绿素a浓度的高值分布中心,该中心主要出现在底部,且高叶绿素a浓度与高悬沙浓度中心相对应。通过对最大浑浊带形成机制的分析发现,强烈的底部泥沙再悬浮是鸭绿江河口最大浑浊带形成的主要原因。最大浑浊带内悬沙浓度与叶绿素a浓度的相关关系均为底层大于表层,大潮高于小潮;高叶绿素a浓度与高悬沙浓度时刻有很好的对应关系,在一定程度上表明水动力特征对叶绿素a浓度在时间和空间上的分布有重要影响。初步分析认为鸭绿江河口最大浑浊带内的高叶绿素a浓度主要是由再悬浮作用使底部沉积物中的底栖藻类和沉积物一起聚集在水体的底部造成的,但是该结论还有待结合其他相关研究进一步检验。  相似文献   

3.
l 环境信息及其数据建库方法 河口最大浑浊带是河口区局河段的高含沙量区,又称最大浊度带(Turbidity maximum),是河口输沙中普遍存在的一种重要现象。最大浑浊带的形成机制与该地区的动力、环境特征有关,所以,它的环境信息量极大。反映最大浑浊带环境信息的数据建库方法是在计算  相似文献   

4.
应用数值模拟方法探讨河口最大浑浊带若干机理   总被引:1,自引:0,他引:1  
利用平面二维潮流方程结合悬沙输运方程模拟了河口最大浑浊带现象。并且对河口边界进行进一步概化 ,比较了恒定流与非恒定流、稳定源与非稳定源、矩形河口与线性河口等不同条件下河口悬沙浓度的平面分布特点。结果表明河口地形边界和非恒定潮流作用对河口最大浑浊带的悬沙富集有重要贡献。  相似文献   

5.
应用数值模拟方法探讨河口最大浑浊带若干机理   总被引:2,自引:0,他引:2  
利用平面二维潮流方程结合悬沙输运方程模拟了河口最大浑浊带现象。并且对河口边界进行进一步概化,比较了恒定流与非恒定流、稳定源与非稳定源、矩形河口与线性河口等不同条件下河口悬沙浓度的平面分布特点。结果表明河口地形边界和非恒定潮流作用对河口最大浑浊带的悬沙富集有重要贡献。  相似文献   

6.
河口“浑浊带”(Turbidity maximum),又称“最大浑浊带”,“最大浊度带”,“大含沙量区”等,是广泛存在于河口的一种动力沉积表征。它的主要特征是含沙量明显高于上游和下游地区,而且在不同的水文条件下持续出现。河口浑浊带对河流泥沙向海的输移、对河口泥沙的淤积产生巨大影响,对各种化学元素(包括有害元素)具有过滤器的作用;在浑浊带内透光性弱,生物活动受到  相似文献   

7.
高浑浊度河口沉积物的沉积机理评述   总被引:2,自引:0,他引:2  
该文主要介绍了潮流对沉积作用的影响,沉积物的再悬浮和最大浑浊带的形成机制以及影响沉积物絮凝沉降的因素。潮流是搬运河口泥沙的主要动力,沉积在河口拦门沙的泥沙会在潮流的作用下向河口外继续搬运。沉积物的再悬浮和最大浑浊带密不可分,正是由于沉积物在周期性潮流的作用下引起再悬浮,为最大浑浊带的形成提供了条件。影响沉积物絮凝沉降的因素很多,有内因,也有外因。内因是颗粒物自身的性质;外因如盐度、流速、pH值等。  相似文献   

8.
径流量和海平面变化对河口最大浑浊带的影响   总被引:2,自引:0,他引:2  
应用改进的ECOM模式,耦合泥沙输运方程,研究径流量和海平面变化对河口最大浑浊带的影响.河口最大浑浊带位于滞流点处,底层上下游余流均向该处输运泥沙,造成该处泥沙汇合,而由流场辐合产生的上升流又使该处的泥沙不易落淤.由于盐水入侵带来的高盐水位于北岸的底层,其斜压效应使底层的横向环流由北向南流动,把底层高浓度的泥沙向南岸平流,使得最大浑浊带位于南岸.研究河口最大浑浊带现象必须使用三维泥沙输运模式.在径流量增大的情况下,与控制试验相比底层向陆的密度流减弱,滞流点下移,导致最大浑浊带也下移;因上游来沙量增加,在最大浑浊带中心和河口拦门沙处悬浮泥沙浓度趋于增加.在径流量减少的情况下,最大浑浊带的变化趋势与径流量增大情况的结果相反.在海平面上升的情况下,拦门沙区域底层向陆的密度流趋于增强,滞流点上移,最大浑浊带也相应向上游移动;最大浑浊带中心处泥沙浓度趋于增大,但口门拦门沙处泥沙浓度趋于减小.径流量和海平面变化对最大浑浊带影响明显.  相似文献   

9.
王亚  何青  沈健 《海洋学报》2014,36(1):48-55
利用水龄理论的新方法,借助环境水动力学模型定量讨论了多年平均径流条件下长江河口径流和潮汐作用对河口水流输运时间的影响。研究给出了长江河口水流输运时间的时空格局:多年平均流量条件下,水流从徐六泾输出至河口(122.5°E)大约需要24d,南、北槽分流口以上河段水流输运时间主要由径流控制,水流输运时间为8d,向下至拦门沙滩顶水域由径流和潮汐共同控制,水龄为16d,说明最大浑浊带区域的水流输运速度较上下游为慢,从一个侧面阐述了最大浑浊带区域水动力的特征;长江河口水流输运时间存在明显的层化现象,表底层相差最大值可达6d。数值模拟试验结果表明长江河口的潮汐作用是影响河口水流输运时间的关键要素,河口巨大的进潮量增强河口水流交换能力并减小水流输运时间,从而显著影响随水体运动的物质输运格局。水流输运时间研究,不仅可以成功应用于河口水动力环境的量化研究,而且可以为泥沙输运及污染物输运等环境变化研究提供动力的基础。  相似文献   

10.
河口最大浑浊带形成的动力模式和数值试验   总被引:8,自引:0,他引:8  
应用改进的ECOM模式,耦合泥沙输运模型,研究理想河口最大浑浊带形成的动力机制。河口最大浑浊带位于滞流点处,上下游余流均向该处输运泥沙,造成该处泥沙汇合,而由流场辐合产生的上升流又使该处的泥沙不易落淤。南岸(河口东向)的泥沙浓度比北岸高,最大浑浊带位于南岸,这是由于盐水入侵带来的高盐水位于北岸的底层,其斜压效应使底层的环流由北向南流动,把底层高浓度的泥沙向南岸平流,聚集于南岸底层。除上游河流泥沙来源外,强大的涨落潮流冲刷床面,使沉降于床面的泥沙再次悬浮,成为余流输运泥沙的来源之一。  相似文献   

11.
长江河口与瓯江河口最大浑浊带的比较研究   总被引:5,自引:0,他引:5  
长江河口与瓯江河口均发育了庞大的最大浑浊带(TM),但这两条河口的河流性质、几何形态、径潮流动力条件、盐淡水混合类型和泥沙来源等差异极为明显,长江口与瓯江口TM的变化特点是:前者洪盛枯衰,后者枯盛洪衰;所在部位,前者在口门附近,后者在口门之内,研究结果表明,除了径潮流动力平均带和丰富的泥沙来源是发育长江口、瓯江河口TM的两个基本条件外,河口环流和潮汐不对称分别在长江、瓯江河口的TM形成、发育、维持过程中起了第二位作用。  相似文献   

12.
长江河口最大浑浊带含沙量垂线分布状态的分析   总被引:2,自引:0,他引:2  
计算表明,潮泵效应在长江河口最大浑浊带悬沙输移中起着重要的作用。含沙量垂线分布的潮周期变化反映悬沙与床沙之间存在双向交换。据此讨论了最大浑浊带与拦门沙的关系。  相似文献   

13.
基于波-流耦合模型的珠江口悬浮泥沙数值模拟   总被引:1,自引:0,他引:1  
为研究珠江口悬浮泥沙输运动力机制,本文发展了一套三维波、流、泥沙耦合数值模型。模型结果与观测数据吻合较好,统计显示模型获得良好的评分分值。利用数值模拟研究了不同强迫(径流,波浪和风)对珠江口中悬浮泥沙的影响。模型结果表明,河口重力环流对珠江口最大浑浊带的发展起着重要作用,特别是在小潮期间。另外,径流的增加可导致泥沙向海输运。底部的悬浮泥沙浓度随着波浪底部轨迹速度和波高的增大而增加。由于西滩水深较浅,波浪对西滩悬浮泥沙的影响大于东槽。西南风引起的波浪对悬沙的影响大于东北风引起的波浪的影响,而东北风致流对悬沙的影响略大于对西南风致流的影响。在其他条件相同情况下,稳定的西南风比稳定的东北风更有利于伶仃洋悬浮泥沙浓度的增加;在稳定的西南风下,伶仃洋平均悬浮泥沙浓度约为稳定东北风下的1.1倍。  相似文献   

14.
长江口最大浑浊带及邻近水域营养盐的分布特征   总被引:11,自引:0,他引:11       下载免费PDF全文
根据2003年11月~2004年8月4个航次的调查数据,探讨了长江口最大浑浊带及邻近水域营养盐的分布特征。结果表明,营养盐浓度一般随盐度的增加而减小,不同营养盐表现出不同的平面分布和季节变化特点。最大浑浊带所处地理位置、水动力状况、高悬浮体含量以及生物活动等决定了营养盐分布不同于整个调查水域。与整个调查水域相比,最大浑浊带营养盐浓度更高;无机N的硝化作用进行得更为充分;高的DIN/PO4-P和SiO3-Si/PO4-P比(远高于Redfield比),相对低的SiO3-Si/DIN比等。透明度是最大混浊带浮游植物生长的主要限制因素。营养盐在河口的转移除了海水稀释作用外,还有部分的生物转移以及受悬浮体-沉积物系统的影响,特别是PO4-P。在最大浑浊带,富营养化现象更为严重。  相似文献   

15.
长江口南汇咀岸滩围垦工程潮流数值模拟研究   总被引:3,自引:0,他引:3  
南汇咀岸滩地处长江河口最大浑浊带,是长江河口淤涨速度最快的岸滩,是上海市规划围垦的重点区域。目前上海在南汇咀岸滩上已实施了围垦工程,围垦工程改变了长江口南汇岸线,也改变了南汇咀的水动力条件。为了解围垦工程实施后的水动力条件的变化,本文利用Delft3D-flow建立了长江口-杭州湾垂向平均的二维水动力模型,在对现场实测资料验证良好的基础上,对南汇咀海域围垦工程前后的潮流场进行了数值模拟,就围垦工程对周边海域的影响进行了分析研究。同时,对比南汇咀围垦前后的海图,采用GIS方法分析地形变化,利用地形变化来进一步验证海域的水动力变化。结果表明:工程后,杭州湾北岸流速增强,地形冲刷加剧;南汇东滩流速减弱,地形淤涨。  相似文献   

16.
中国强混合河口最大浑浊区成因研究   总被引:13,自引:2,他引:13       下载免费PDF全文
孙志林 《海洋学报》1993,15(3):63-72
最大浑浊区在潮汐河口普遍存在,并对河床冲淤演变有重大影响.本文在笔者多年研究基础上,首次系统地探讨我国强混合河口最大浑浊区的形成机理.认为此类河口形成最大浑浊区的根本原因在于床面水流切应力(或流速)有规律地先沿程增强继而递减,而潮波不对称引起的相向净输沙是导致泥沙在最大浑浊区聚集的重要因子,絮凝沉降则加强了泥沙的这种滞留富集趋势.此外,细泥沙补给是最大浑浊区发育的物质基础,并主要控制其浓度和规模.  相似文献   

17.
珠江口最大浑浊带的形成与季节变化   总被引:3,自引:0,他引:3  
应用Delft3D研究了珠江口最大浑浊带的分布以及影响因素。盐度和悬沙浓度的垂向分布揭示出最大浑浊带范围的变化。最大浑浊带在干季的悬沙浓度比湿季更大,而其中心位置与湿季相比向上游移动10 km。最大浑浊带的形成受到潮汐、径流和地形的综合影响,而沉积物的再悬浮和垂向环流为影响最大浑浊带的主要因素。  相似文献   

18.
根据汛期黄河口多船同步水文泥沙实测资料,对黄河口最大浑浊带特征及其时空演变进行研究,得出汛期黄河口最大浑浊带在整个潮周期始终存在,其含沙量和范围形态受潮相的控制,在落急和落平时最为发育.文中还探讨了黄河口最大浑浊带的形成机制,指出其形成主要受河流携带大量泥沙、泥沙异重流、河口密度环流及湍流的作用.  相似文献   

19.
长江河口盐水入侵锋研究   总被引:14,自引:4,他引:14  
茅志昌 《海洋与湖沼》1995,26(6):643-649
根据1959-1988年部分年份长江口南港南槽、南港-北槽-北港和北支共22个纵向测次资料,计算分析各入海通道向盐水入侵锋的伸退区域及其特征。利用密度佛氏数F'x的计算结果,提出确定盐度锋迁移范围和滞流点的判据。研究结果表明,盐度锋对河口量大浑浊带主要有两大贡献:锋区含盐有利于泥沙絮凝;锋面附近形成的重力环流,有利于泥沙富集,形成最大浑浊带。  相似文献   

20.
黄河口最大浑浊带特征及其时空演变   总被引:6,自引:0,他引:6  
根据汛期黄河口多船同步水文泥沙实测资料,对黄河口最大浑浊特征及其时空演变进行研究,得出汛期黄河口最大浑浊带在整个潮周期始终存在,其含沙量和范围形态受潮相的控制,在落急和落平时最为发育。文中还探讨了黄河口最大浑浊带的形成机制,指出其形成主要受河流携带大量泥沙、泥沙异重流、河口密度环流及湍流的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号