首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
AUDETAT  A.; PETTKE  T. 《Journal of Petrology》2006,47(10):2021-2046
The magmatic processes leading to porphyry-Cu mineralizationat Santa Rita are reconstructed on the basis of petrographicstudies, thermobarometry, and laser-ablation inductively-coupled-plasmamass-spectrometry analyses of silicate melt and sulfide inclusionsfrom dikes ranging from basaltic andesite to rhyodacite. Combinedresults suggest that magma evolution at Santa Rita is similarto that of sulfur-rich volcanoes situated above subduction zones,being characterized by repeated injection of hot, mafic magmainto an anhydrite-bearing magma chamber of rhyodacitic composition.The most mafic end-member identified at Santa Rita is a shoshoniticbasaltic andesite that crystallized at 1000–1050°C,1–3 kbar and log fO2 = NNO + 0·7 to NNO + 1·0,whereas the rhyodacite crystallized at 730–760°C andlog fO2 = NNO + 1·3 to NNO + 1·9. Mixing betweenthe two magmas caused precipitation of 0·1–0·2wt % magmatic sulfides and an associated decrease in the Cucontent of the silicate melt from 300–500 ppm to lessthan 20 ppm. Quantitative modeling suggests that temporal storageof ore-metals in magmatic sulfides does not significantly enhancethe amount of copper ultimately available to ore-forming hydrothermalfluids. Magmatic sulfides are therefore not vital to the formationof porphyry-Cu deposits, unless a mechanism is required thatholds back ore-forming metals until late in the evolution ofthe volcanic–plutonic system. KEY WORDS: porphyry-Cu; sulfur; sulfides; magma mixing; LA-ICP-MS  相似文献   

2.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

3.
A detailed study of the pyroclastic deposits of the AD 79 ‘Pompei’Plinian eruption of Vesuvius has allowed: (1) reconstructionof the thermal, compositional and isotopic (87Sr/86Sr) pre-eruptivelayering of the shallow magma chamber; (2) quantitative definitionof the syn-eruptive mixing between the different magmas occupyingthe chamber, and its relationships with eruption dynamics; (3)recognition of the variability of mafic magma batches supplyingthe chamber. During the different phases of the eruption 25–30%of the magma was ejected as white K-phonolitic pumice, and 70–75%as grey K-tephri-phonolitic pumice. The white pumice resultsfrom the tapping of progressively deeper magma from a body (T= 850–900%C) consisting of two distinct layers mainlyformed by crystal fractionation. The grey pumice results fromsyn-eruptive mixing involving three main end-members: the phonolitic‘white’ magmas (salic end-member, SEM), mafic cumulates(cumulate end-member, CEM) and a crystal-poor ‘grey’phono-tephritic magma (mafic end-member, MEM), which was nevererupted without first being mixed with ‘white’ magma.Evidence is provided that mixing occurred within the chamberand was characterized by a transition with time from physicalmixing at a microscopic scale to chemical hybridization. TheMEM magma had a homogeneous composition and constant 87Sr86Srisotopic ratio, possibly as a result of sustained convection.No unambiguous liquidus phases were found, suggesting that theMEM magma was superheated (T = 1000–1100C); its verylow viscosity was a main cause in the establishment of a physicaldiscontinuity separating the white and the grey magmas. Thewhite-grey boundary layer possibly consisted of a multiply diffusiveinterface, periodically broken and recreated, supplying thephonolitic body through mixing of moderate amounts of fractionatedgrey melts with the overlying white magma. The presence of alarge overheated mass indicates the young, growing stage ofthe AD 79 chamber, whose main engine was the periodic arrivalof hot mafic magma batches. These were characterized by K-tephriticto K-basanitic compositions, high temperatures (>1150C),high volatile contents (20–25% H2O +Cl+F+S), low viscosities[(1+2 102 poises)] and relatively low densities (2500–2600kg/m3). The birth of the Pompei chamber followed the repeatedarrival of these batches (on average characterized by 87Sr/86Sr070729)into a reservoir containing a tephriticphonolitic, crystal-enriched,magma, a residue from the preceding ‘Avellino’ Plinianeruption (3400 BP).In fact, about half of magma ejected duringthe AD 79 eruption could have been inherited from pre-Avellinotimes. KEY WORDS: Vesuvius; magma chamber; magma mixing; compositional layering phonolites; magma supply; potassic magmas *Correponding author  相似文献   

4.
Scapolite and other halogen-rich minerals (phlogopite, amphibole,apatite, titanite and clinohumite) occur in some high-pressureamphibolite facies calc-silicates and orthopyroxene-bearingrocks at Sare Sang (Sar e Sang or Sar-e-Sang), NE Afghanistan.The calc-silicates are subdivided into two groups: garnet-bearingand garnet-free, phlogopite-bearing. Besides garnet and/or phlogopite,the amphibolite facies mineral assemblages in the calc-silicatesinclude clinopyroxene, calcite, quartz and one or more of theminerals scapolite, plagioclase, K-feldspar, titanite, apatiteand rarely olivine. Orthopyroxene-bearing rocks consist of clinopyroxene,garnet, plagioclase, scapolite, amphibole, quartz, calcite andaccessory dolomite and alumosilicate (kyanite?). Retrogradephases in the rocks are plagioclase, scapolite, calcite, amphibole,sodalite, haüyne, lazurite, biotite, apatite and dolomite.The clinopyroxene is mostly diopside and rarely also hedenbergite.Aegirine and omphacite with a maximum jadeite content of 29mol % were also found. Garnet from the calc-silicates is Grs45–95Py0–2and from the orthopyroxene-bearing rocks is Grs10–15Py36–43.Peak P–T metamorphic conditions, calculated using availableexchange thermobarometers and the TWQ program, are 750°Cand 1·3–1·4 GPa. Depending on the rock type,the scapolite exhibits a wide range of composition (from EqAn= 0·07, XCl =0·99 to EqAn = 0·61, XCl =0·07).Equilibria calculated for scapolite and coexisting phases atpeak metamorphic conditions yield XCO2 = 0·03–0·15.XNaCl (fluid), obtained for scapolite, ranges between 0·04and 0·99. Partitioning of F and Cl between coexistingphases was calculated for apatite–biotite and amphibole–biotite.Fluorapatite is present in calc-silicates, but orthopyroxene-bearingrocks contain chlorapatite. Cl preferentially partitions intoamphibole with respect to biotite. All these rocks have sufferedvarious degrees of retrogression, which resulted in removalof halogens, CO2 and S. Halogen- and S-bearing minerals formedduring retrogression and metasomatism are fluorapatite, sodalite,amphibole, scapolite, clinohumite, haüyne, pyrite, andlazurite, which either form veins or replace earlier formedphases. KEY WORDS: scapolite; fluid composition; high-pressure; amphibolite facies; Western Hindukush; Afghanistan  相似文献   

5.
The Younger Andesites and Dacites of Iztacc?huatl volcano, Mexico,constitute a medium-K calcalkaline rock suite (58–66 wt.per cent SiO2) characterized by high Mg-numbers (100Mg/(Mg+0?85Fe2+=55–66) and relatively high abundances of MgO (2?5–6?6wt. per cent), Ni(17–158 p.p.m.), and Cr (42–224p.p.m.). Chemical stratigraphy plots of eruptive sequences indicatethe existence of a plexus of long-lived dacite magma chambersperiodically replenished by influxes of basaltic magma ascendingfrom depth. Short-term geochemical evolution after batch influxwas dictated by magma mixing and eventual dilution of the basalticcomponent by ‘quasi-steady state’ hornblende dacitemagma. The chemical data support textural and mineralogicalevidence for rapid homogenization of originally diverse magmasby convective blending of residual liquids accompanied by dynamicfractional crystallization (Nixon, 1988). Internally-consistent mixing calculations used to derive thecomposition of basaltic magma influx incorporate analyticaluncertainties and the observed range of salic end-member compositions.Mafic end-members are basalts to basaltic andesites (52–54wt. per cent SiO2) with Mg-numbers (73–76), MgO (9–11wt. per cent), Ni (250 p.p.m.), and Cr (340–510 p.p.m.)concentrations, and liquidus olivine compositions (Fo90–88),appropriate for unfractionated partial melts of mantle peridotite.The majority of model compositions are Ol-Hy-normative, similarto those of primitive basaltic lavas on the flanks of Iztacc?huatland in the Valley of Mexico. However, calculated magma batchesrange from weakly Qz-normative to strongly Ne-normative. Bothcalculated and analyzed basaltic compositions are distinguishedby highly variable abundances of alkalies and incompatible traceelements, notably Rb, Ba, Sr, P, Zr, and Y. Initial 87Sr/86Sr ratios for Iztacc?huatl lavas (0?7040–0?7046;n=24) are comparable to those for primitive basaltic rocks (0?7037–0?7045;?=4) and indicate that (1) mantle source regions are isotopicallyheterogeneous; and (2) contamination of iztacc?huatl magma chambersby radiogenic crustal rocks was not a significant factor inthe evolution of calc-alkaline andesites and dacites. The replenishment of Iztacc?huatl dacite reservoirs by Ne-normativemagmas late in the history of cone growth precludes exhaustionof mantle source regions by progressive partial melting. Thewaning stages of volcanic activity at Iztacc?huatl appear toreflect the inability of dense basaltic influxes to successfullypenetrate a large high-level chamber of low density hornblendedacite magma.  相似文献   

6.
La Pacana is one of the largest known calderas on Earth, andis the source of at least two major ignimbrite eruptions witha combined volume of some 2700 km3. These ignimbrites have stronglycontrasting compositions, raising the question of whether theyare genetically related. The Toconao ignimbrite is crystal poor,and contains rhyolitic (76–77 wt % SiO2) tube pumices.The overlying Atana ignimbrite is a homogeneous tuff whose pumiceis dacitic (66–70 wt % SiO2), dense (40–60% vesicularity)and crystal rich (30–40 % crystals). Phase equilibriaindicate that the Atana magma equilibrated at temperatures of770–790°C with melt water contents of 3·1–4·4wt %. The pre-eruptive Toconao magma was cooler (730–750°C)and its melt more water rich (6·3–6·8 wt% H2O). A pressure of 200 MPa is inferred from mineral barometryfor the Atana magma chamber. Isotope compositions are variablebut overlapping for both units (87Sr/86Sri 0·7094–0·7131;143Nd/144Nd 0·51222–0·51230) and are consistentwith a dominantly crustal origin. Glass analyses from Atanapumices are similar in composition to those in Toconao tubepumices, demonstrating that the Toconao magma could representa differentiated melt of the Atana magma. Fractional crystallizationmodelling suggests that the Toconao magma can be produced by30% crystallization of the observed Atana mineral phases. Toconaomelt characteristics and intensive parameters are consistentwith a volatile oversaturation-driven eruption. However, thelow H2O content, high viscosity and high crystal content ofthe Atana magma imply an external eruption trigger. KEY WORDS: Central Andes; crystal-rich dacite; eruption trigger; high-silica rhyolite; zoned magma chamber  相似文献   

7.
Over the last several hundred years, Stromboli has been characterizedby steady-state Strombolian activity. The volcanic productsare dominated by degassed and highly porphyritic (HP-magma)black scoria bombs, lapilli and lava flows of basaltic shoshoniticcomposition. Periodically (about one to three events per year),more energetic explosive eruptions also eject light colouredvolatile-rich pumices with low phenocryst content (LP-magma)that have more mafic compositions than the HP-magma. An in situmajor and trace element and Sr isotope microanalysis study ispresented on four samples chosen to characterize the differentmodes of activity at Stromboli: a lava flow (1985–1986effusive event), a scoria bomb from the ‘normal’present-day activity of Stromboli (April 1984), and a scoriaand coeval pumice sample from a recent more explosive eruption(September 1996). Plagioclase (An62–90) and clinopyroxene(Mg-number between 0·69 and 0·91) phenocrystsin all samples record marked major element variations. Largeand comparable Sr isotope variations have been detected in plagioclaseand clinopyroxene. HP-magma crystals have resorbed cores, witheither high 87Sr/86Sr (0·70635–0·70630)or low 87Sr/86Sr (0·70614–0·70608); thelatter values are similar to the values of the outer cores.Mineral rims and glassy groundmasses generally have intermediate87Sr/86Sr (0·70628–0·70613). Similarly,mineral growth zones with three groups of 87Sr/86Sr values characterizeminerals from the LP-pumice, with the lowest values presentin mineral rims and groundmass glass. These results define amixing process between HP- and LP-magmas, plus crystallizationof clinopyroxene, plagioclase and olivine, occurring in a shallowmagma reservoir that feeds the present-day magmatic activityof Stromboli. An important observation is the presence of athird component (high 87Sr/86Sr in mineral cores) consideredto represent a pre-AD 1900 cumulus crystal mush reservoir situatedjust below the shallow magma chamber. These cumulus phases areincorporated by the LP-magma arriving from depth and transportedinto the shallow reservoir. A rapid decrease of 87Sr/86Sr inthe replenishing LP-magma immediately prior to eruption of theAD 1985 lava flow is associated with an increased volume ofLP-magma in the shallow magma chamber. The HP-magma in the shallowreservoir is not fully degassed when it interacts with the LP-magma,making efficient mixing possible that ultimately produces awell overturned homogeneous magma. Further degassing and crystallizationoccur at shallower levels as the HP-magma moves through a conduitto the surface. KEY WORDS: isotopic microsampling; mineral recycling; mixing; Sr isotope disequilibria; Stromboli  相似文献   

8.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

9.
Crystallization experiments were conducted on dry glasses fromthe Unzen 1992 dacite at 100–300 MPa, 775–875°C,various water activities, and fO2 buffered by the Ni–NiObuffer. The compositions of the experimental products and naturalphases are used to constrain the temperature and water contentsof the low-temperature and high-temperature magmas prior tothe magma mixing event leading to the 1991–1995 eruption.A temperature of 1050 ± 75°C is determined for thehigh-temperature magma based on two-pyroxene thermometry. Theinvestigation of glass inclusions suggests that the water contentof the rhyolitic low-temperature magma could be as high as 8wt % H2O. The phase relations at 300 MPa and in the temperaturerange 870–900°C, which are conditions assumed to berepresentative of the main magma chamber after mixing, showthat the main phenocrysts (orthopyroxene, plagioclase, hornblende)coexist only at reduced water activity; the water content ofthe post-mixing dacitic melt is estimated to be 6 ± 1wt % H2O. Quartz and biotite, also present as phenocrysts inthe dacite, are observed only at low temperature (below 800–775°C).It is concluded that the erupted dacitic magma resulted fromthe mixing of c. 35 wt % of an almost aphyric pyroxene-bearingandesitic magma (1050 ± 75°C; 4 ± 1 wt % H2Oin the melt) with 65 wt % of a phenocryst-rich low-temperaturemagma (760–780°C) in which the melt phase was rhyolitic,containing up to 8 ± 1 wt % H2O. The proportions of rhyoliticmelt and phenocrysts in the low-temperature magma are estimatedto be 65% and 35%, respectively. It is emphasized that the strongvariations of phenocryst compositions, especially plagioclase,can be explained only if there were variations of temperatureand/or water activity (in time and/or space) in the low-temperaturemagma. KEY WORDS: Unzen volcano; magma mixing; experimental study  相似文献   

10.
The petrology of the East Otago Volcanic Province (late Miocene),including the Dunedin Complex, is dominated by undersaturatedsodic lavas and shallow intmsives whose compositions range fromalkali basalt, basanite, and nephelinite to trachyte and phonolite.A range of relatively potassic volcanic rocks is also developedin the Province. The degree of undersaturation and ratios suchas (FeO+Fe2O3):MgO and K2O:Na2O vary widely in rocks with comparabledifferentiation indices. Chemical and mineralogical data onwhole rock-glass pairs and variants of shallow intrusives inthe Province, assessed in conjunction with similar data fromother volcanic provinces, demonstrate the production of trachyticliquids from alkali basaltic parents and of phonolitic liquidsfrom basanitic parents. Fractionation trends in both sodic andpotassic series, defined by variation in differentiation indexand normative nepheline, indicate that the degree of undersaturationof the derivative salic liquids is dependent on that of theparent; the slope of the fractionation trend lines is influencedby additional factors, including Po2. The unequivocal productionof phonolite from trachyte in the East Otago Province has notbeen demonstrated. The mafic variants of theralites from Waihola and a basanite-pegmatoidassociation from Omimi are similar in composition, but the mostsalic differentiates from these differentiation sequences displaypronounced differences in their KO:Na2O ratios, tending towardsleuco-theralitic (cf. lugarite) and malignitic compositionsrespectively. A multicomponent spectrum of fractionation lineages is suggestedfor individual differentiated bodies and for lava series. Sodiclineages include: (I) alkali basalt–hawaiite–mugearite–benmoreite–trachyte;(2) a more undersaturated series from basanite through nephelinehawaiite, nepheline mugearite, and nepheline benmoreite, tophonolite; (3) a nephelinite series, more restricted in compositionalrange. The relatively high Fe: Mg ratios characterizing themugearitic variants are sometimes exhibited by members of themore potassic series in which, however, Fe:Mg ratios tend tobe characteristically lower. This feature is correlated withthe frequent occurrence of kaersutitic amphibole or its resorptionproducts, indicative of intratelluric fractionation under relativelyhydrous conditions and probably relatively high Po2. Certainnepheline trachyandesites from East Otago are described in detail.Trachy-basalt-trachyandesite-tristanite-trachyte and sanidinebasanite-nepheline trachyandesite-nepheline tristanite-phonolitelineages are also proposed, and the nomenclature of these moreseries discussed.  相似文献   

11.
High-magnesian andesite occurs at Hachimantai, northern Honshu,Japan. Disequilibrium zoning features indicate that the phenocrystminerals were derived from three different magmas. Chemicalcompositions and zoning profiles are accounted for by two-stagemagma mixing: the first mixing occurred between a crystal-freebasalt magma and a more differentiated olivine basalt magma;the second stage occurred by mixing between the resultant ofthe first-stage mixing and a hypersthene–augite andesitemagma. Mass balance of phenocryst crystals shows that end-membercompositions were c. 52·0 wt % SiO2 and 10·1 wt% MgO for the mafic end-member and 57·0 wt % SiO2 forthe felsic end-member of the second-stage mixing. Phenocrystminerals of the first-stage mixing end-member indicate the similarityof the end-member composition to that of basalts from nearbyvolcanoes. The counterpart aphyric magma in the first-stagemixing was more magnesian than the estimated mafic end-member.Calculations of the phase equilibria of similar basalts fromnearby volcanoes and comparison of results with previous phaseequilibrium experiments showed that the olivine basalt end-memberof the first stage was hydrous and situated at a depth wherethe pressure was less than 2 kbar. Two-pyroxene thermometryestimates are about 1050°C for the pyroxenes derived fromthe felsic end-member of the second-stage mixing, and about1180°C for groundmass pyroxenes. Crystallization temperaturesof 1170–1230°C are estimated for minerals from themafic end-member of the second-stage mixing based on phase equilibriumcalculations. These similar temperature estimates between thegroundmass and the mafic end-member imply achievement of thermalequilibrium between end-members preceding crystallization. Themagma plumbing system of the eastern Hachimantai is illustratedby a recent volcanic event, involving lateral dike intrusiontoward a pressure source. The encounter of a laterally migratingbasalt dike and an andesite magma chamber triggered the magmamixing that produced the high-magnesian andesite. The modelcan account for the relation between the petrological modeland surface distribution of volcanic rocks. The infrequencyof such mixing-derived high-magnesian andesite stems from therarity of high-magnesian basalt as a potential mixing end-memberin northern Honshu. KEY WORDS: high-magnesian andesite; Hachimantai; Northern Honshu; high-magnesian basalt; two-stage magma mixing  相似文献   

12.
The Oto-Zan lava in the Setouchi volcanic belt is composed ofphenocryst-poor, sparsely plagioclase-phyric andesites (sanukitoids)and forms a composite lava flow. The phenocryst assemblagesand element abundances change but Sr–Nd–Pb isotopiccompositions are constant throughout the lava flow. The sanukitoidat the base is a high-Mg andesite (HMA) and contains Mg- andNi-rich olivine and Cr-rich chromite, suggesting the emplacementof a mantle-derived hydrous (7 wt % H2O) HMA magma. However,Oto-Zan sanukitoids contain little H2O and are phenocryst-poor.The liquid lines of descent obtained for an Oto-Zan HMA at 0·3GPa in the presence of 0·7–2·1 wt % H2Osuggest that mixing of an HMA magma with a differentiated felsicmelt can reasonably explain the petrographical and chemicalcharacteristics of Oto-Zan sanukitoids. We propose a model wherebya hydrous HMA magma crystallizes extensively within the crust,resulting in the formation of an HMA pluton and causing liberationof H2O from the magma system. The HMA pluton, in which interstitialrhyolitic melts still remain, is then heated from the base byintrusion of a high-T basalt magma, forming an H2O-deficientHMA magma at the base of the pluton. During ascent, this secondaryHMA magma entrains the overlying interstitial rhyolitic melt,resulting in variable self-mixing and formation of a zoned magmareservoir, comprising more felsic magmas upwards. More effectiveupwelling of more mafic, and hence less viscous, magmas througha propagated vent finally results in the emplacement of thecomposite lava flow. KEY WORDS: high-Mg andesite; sanukitoid; composite lava; solidification; remelting  相似文献   

13.
Disequilibrium phenocryst assemblages in the Younger Andesitesand Dacites of Iztacc?huatl, a major Quaternary volcano in theTrans-Mexican Volcanic Belt, provide an excellent record ofepisodic replenishment, magma mixing, and crystallization processesin calc-alkaline magma chambers. Phenocryst compositions andtextures in ‘mixed’ lavas, produced by binary mixingof primitive olivine-phyric basalt and evolved hornblende dacitemagmas, are used to evaluate the mineralogical and thermal characteristicsof end-members and the physical and chemical interactions thatattend mixing. Basaltic end-members crystallized olivine (FO90–88) andminor chrome spinel during ascent into crustal magma chambers.Resident dacite magma contained phenocrysts of andesine (An45–35),hypersthene (En67–61), edenitic-pargasitic hornblende,biotite, quartz, .titanomagnetite, and ilmenite. On reachinghigh-level reservoirs, basaltic magmas were near their liquidiat temperatures of about 1250–1200?C according to theolivine-liquid geothermometer. Application of the Fe-Ti-oxidegeothermometer-oxygen barometer indicates that hornblende dacitemagma, comprising phenocrysts (<30 vol. per cent) and coexistingrhyolitic liquid, had an ambient temperature between 940 and820?C at fO2s approximately 0?3 log units above the nickel-nickeloxide buffer assemblage. Mixing induced undercooling of hybridliquids and rapid crystallization of skeletal olivine (Fo88–73),strongly-zoned clinopyroxene (endiopside-augite), calcic plagioclase(An65–60); and orthopyroxene (bronzite), whereas low-temperaturephenocrysts derived from hornblende dacite were resorbed ordecomposed by hybrid melts. Quartz reacted to form coronas ofacicular augite and hydroxylated silicates were heated to temperaturesabove their thermal stability limit ({small tilde}940?C foramphibole, according to clinopyroxene-orthopyroxene geothermometry,and {small tilde}880?C for biotite). Calculations of phenocrystresidence times in hybrid liquids based on reaction rates suggestthat the time lapse between magma chamber recharge and eruptionwas extremely short (hours to days). It is inferred that mixing of magmas of diverse compositionis driven by convective turbulence generated by large differencesin temperature between end-members. The mixing mechanism involves:(1)rapid homogenization of contrasting residual liquid compositionsby thermal erosion and diffusive transfer (liquid blending);(2) assimilation of phenocrysts derived from the low-temperatureend-member; and (3) dynamic fractional crystallization of rapidlyevolving hybrid liquids in a turbulent boundary layer separatingbasaltic and dacitic magmas. The mixed lavas of lztacc?huatlrepresent samples of this boundary layer quenched by eruption.  相似文献   

14.
Within the Zitácuaro–Valle de Bravo (ZVB) regionof the central Mexican Volcanic Belt (MVB), three lava serieshave erupted during the Quaternary: (1) high-K2O basaltic andesitesand andesites; (2) medium-K2O basaltic andesites, andesitesand dacites; (3) high-TiO2 basalts and basaltic andesites. Thedominant feature of the first two groups is the lack of plagioclaseaccompanying the various ferromagnesian phenocrysts (olivine,orthopyroxene, augite, and hornblende) in all but the dacites.This absence of plagioclase in the phenocryst assemblages ofthe high-K2O and medium-K2O intermediate lavas is significantbecause it indicates high water contents during the stage ofphenocryst equilibration. In contrast, the high-TiO2 group ischaracterized by phenocrysts of plagioclase and olivine. Thespatial distribution of these three lava series is systematic.The southern section of the ZVB transect, 280–330 km fromthe Middle America Trench (MAT), is characterized by high-K2Omelts that are relatively enriched in fluid-mobile elementsand have the highest 87Sr/86Sr ratios. Medium-K2O basaltic andesiteand andesite lavas are present throughout the transect, butthose closest to the MAT are MgO-rich (3·5–9·4wt %) and have phenocryst assemblages indicative of high magmaticwater contents (3·5–6·5 wt % water) andrelatively low temperatures (950–1000°C). In markedcontrast, the northern section of the ZVB transect (380–480km from the MAT) has high-TiO2, high field strength element(HFSE)-enriched magmas that have comparatively dry (< 1·5wt % magmatic water) and hot (1100–1200°C) phenocrystequilibration conditions. The central section of the ZVB transect(330–380 km from the MAT) is a transition zone and producesmoderately light rare earth element (LREE) and large ion lithophileelement (LILE)-enriched, medium-K2O lavas with phenocryst assemblagesindicative of intermediate (1·5–3·5 wt %)water contents and temperatures. The high-K2O series compositionsare the most enriched in LILE and LREE, with a narrow rangeof radiogenic 87Sr/86Sr from 0·704245 to 0·704507,143Nd/144Nd values ranging from 0·512857 to 0·512927(Nd = 4·27–5·63), and 208Pb/204Pb valuesfrom 38·248 to 38·442, 207Pb/204Pb values from15·563 to 15·585, and 206Pb/204Pb values from18·598 to 18·688. The medium-K2O series compositionsare only moderately enriched in the LILE and LREE, with a broaderrange of 87Sr/86Sr, but similar 143Nd/144Nd and 208Pb/204Pbvalues to those of the high-K2O series. In contrast, the high-TiO2series compositions have little enrichment in LILE or LREE andinstead are enriched in the HFSE and heavy rare earth elements(HREE). The high-TiO2 lavas are isotopically distinct in theirlower and narrower range of 143Nd/144Nd. The isotopic variationsare believed to reflect the upper mantle magma source regionsas the low content of phenocrysts in most lavas precludes significantupper crustal assimilation or magma mixing, other than thatrepresented by the presence of quartz xenocrysts (< 2 vol.%) with rhyolitic glass inclusions, which are found in manyof these lavas. The systematic spatial variation in compositionof the three lava series is a reflection of the underlying subduction-modifiedmantle and its evolution. KEY WORDS: central Mexico; geochemistry; isotopes; Quaternary volcanism; hydrous lavas  相似文献   

15.
Volcanic activity in Askja central volcano and its fissure swarmin 1875 occurred in response to a crustal rifting episode inIceland, resulting in up to 70 km lateral flow of magma withinthe crust, caldera collapse and a plinian eruption of acid magma(0·2 km3 dense-rock equivalent). Petrologic studies ofthe predominantly rhyolitic and crystal-poor ejecta reveal thata complex array of other liquid compositions was also present,including icelandite (0.75 per cent) and basalt (1.9 per cent),as well as leucocratic xenoliths of trondhjemite type. Mineralgeothermometers indicate that the rhyolite evolved at 990 to1010 °C and 0·5 Kb PH2O, the icelandite at 1005 to1020 °C and at fO2 10–10 atm. and the basalt at 1140to 1170 °C. A petrologic model of Askja in 1875 consists of a density-stratifiedmagma chamber with a rhyolitic upper part and a lower part offerrobasalt, with an intervening layer of icelandite. The modelcalculations show that the icelandite can be derived from ferrobasaltby 50 per cent fractional crystallization, but one-stage fractionalcrystallization models cannot account for generation of theacid magma. Simple partial or complete fusion of the field-associatedtrondhjemite xenoliths cannot produce the acid magma. Instead,a more complex fusion, hybridization and fractional crystallizationmodel is presented, which is consistent with the available petrologicevidence. This model involves large-scale fusion of pre-existingtrondhjemite intrusions or reactivation of previously consolidatedroof-rock in the magma chamber followed by hybridization ofthe acid magma with 7 to 14 per cent basaltic magma. Finally,10 to 11 per cent fractional crystallization of the dacite hybridis required to produce the observed compositional range withinthe rhyolite ejecta. The 1875 explosive eruption was causedby the ascent of tholeiitic basalt magma from depth during crustalrifting. Influx of new basalt magma in 1874–75 triggeredconvective mixing and hybridization in the compositionally zonedmagma chamber.  相似文献   

16.
Palaeocene (c. 55–58 Ma) adakitic andesites from the Yanjiarea, NE China, are typically clinopyroxene-bearing sodic andesitescontaining 60· 9–62· 2% SiO2 and 4·02–4· 36% MgO, with high Mg-number [100 Mg/(Mg+ Fe) atomic ratio] from 65· 5 to 70· 1. Whole-rockgeochemical features include high Cr (128–161 ppm) andNi (86–117 ppm) concentrations, extremely high Sr (2013–2282ppm), low Y (10–11 ppm) and heavy rare earth elements(HREE; e.g. Yb = 0· 79–1· 01 ppm), and mid-oceanridge basalt (MORB)-like Sr–Nd–Pb isotopic compositions[e.g. 87Sr/ 86Sr(i) = 0· 70298–0· 70316,Nd(t) = +3· 8 to +6· 3 and 206Pb/ 204Pb = 17·98 – 18· 06], analogous to high-Mg adakites occurringin modern subduction zones. However, mineralogical evidencefrom clinopyroxene phenocrysts and microcrystalline plagioclaseclearly points to magma mixing during magma evolution. Iron-richclinopyroxene (augite) cores with low Sr, high Y and heavy REEcontents, slightly fractionated REE patterns and large negativeEu anomalies probably crystallized along with low-Ca plagioclasefrom a lower crustal felsic magma. In contrast, high Mg-numberclinopyroxene (diopside and endiopside) mantles and rims havehigher Sr and lower HREE and Y concentrations, highly fractionatedREE patterns (high La/Yb) and negligible Eu anomalies, similarto those found in adakites from subduction zones. The Yanjiadakitic andesites can be interpreted as a mixture between acrust-derived magma having low Mg-number and Sr, and high Yand HREE, and a mantle-derived high Mg-number adakite havinghigh Sr and low Y and HREE concentrations. During storage and/orascent, the mixed magma experienced further crustal contaminationto capture zircons, of a range of ages, from the wall rocks.The absence of coeval arc magmatism and an extensional tectonicregime in the Yanji area and surrounding regions suggest thatthese Palaeocene adakitic andesites were formed during post-subductionextension that followed the late Cretaceous Izanagi–Farallonridge subduction. Generation of these adakitic andesites doesnot require contemporaneous subduction of a young, hot oceanicridge or delamination of eclogitic lower crust as suggestedby previous models. KEY WORDS: magma mixing; adakitic andesites; Palaeocene; NE China  相似文献   

17.
The Kap Edvard Holm Layered Gabbro Complex is a large layeredgabbro intrusion (>300 km2) situated on the opposite sideof the Kangerdlugssuaq fjord from the Skaergaard Intrusion.It was emplaced in a continental margin ophiolite setting duringearly Tertiary rifting of the North Atlantic. Gabbroic cumulates, covering a total stratigraphic thicknessof >5 km, have a typical four-phase tholeiitic cumulus mineralogy:plagioclase, clinopyroxene, olivine, and Fe–Ti oxides.The cryptic variation is restricted (plagioclase An81–51,olivine Fo85–66, clinopyroxene Wo43–41 En46–37Fs20–11) and there are several reversals in mineral chemistry.Crystallization took place in a low-pressure, continuously fractionatingmagma chamber system which was periodically replenished andtapped. Fine-grained (0•2–0•4 mm) equigranular, thin(0•5–3 m), laterally continuous basaltic zones occurwithin an {small tilde}1000 m thick layered sequence in theTaco Point area. Twelve such zones define the bases of individualmacrorhythmic units with an average thickness of {small tilde}80m. The fine-grained basaltic zones grade upwards, over a fewmetres, into medium-grained (>1 mm) poikilitic, olivine gabbrowith smallscale modal layering. Each fine-grained basaltic zoneis interpreted as an intraplutonic quench zone in which magmachilled against the underlying layered gabbros during influxalong the chamber floor. Supercooling by {small tilde}50C isbelieved to have caused nucleation of plagioclase, olivine,and clinopyroxene in the quench zone. The nucleation rate isbelieved to have been enhanced as the result of in situ crystallizationin a continuously flowing magma. The transition to the overlyingpoikilitic olivine gabbro reflects a decreasing degree of supercooling. Compositional variation in the Taco Point sequence is typicalfor an open magma chamber system: olivine (Fo77–68 5)and plagioclase cores (An80–72) show a zig-zag crypticvariation pattern with no overall systematic trend. Olivinehas the most primitive compositions in the quench zones andmore evolved compositions in the olivine gabbro; plagioclasecores show the opposite trend. Although plagioclase cores arebelieved to retain their original compositions, olivines re-equilibratedby reaction with trapped liquid. Some plagioclase cores containrelatively sodic patches which retain quench compositions. Whole-rock compositions of nine different quench zones varyover a range from 10 to 18% MgO although the mg-number remainsconstant at {small tilde}0•78. The average composition(47•7% SiO2, 13•3%MgO, 1•57% Na2O+K2O) is takenas a best estimate of the parental magma composition, and isequivalent to a high-magnesian olivine tholeiite. The compositionalvariation of the quench zones is believed to reflect burstsof nucleation and growth of olivine and plagioclase during quenching. Magma emplacement is believed to have taken place by separatetranquil influxes which flowed along the interface between alargely consolidated cumulus pile and the residual magma. Theresident magma was elevated with little or no mixing. At certainlevels in the layered sequence the magma drained back into thefeeder system; such a mechanism is referred to as a surge-typemagma chamber system.  相似文献   

18.
Picritic lava flows near Lijiang in the late Permian Emeishanflood basalt province are associated with augite-phyric basalt,aphyric basalt, and basaltic pyroclastic units. The dominantphenocryst in the picritic flows is Mg-rich olivine (up to 91·6%forsterite component) with high CaO contents (to 0·42wt %) and glass inclusions, indicating that the olivine crystallizedfrom a melt. Associated chromite has a high Cr-number (73–75).The estimated MgO content of the primitive picritic liquidsis about 22 wt %, and initial melt temperature may have beenas high as 1630–1690°C. The basaltic lavas appearto be related to the picritic ones principally by olivine andclinopyroxene fractionation. Age-corrected Nd–Sr–Pbisotope ratios of the picritic and basaltic lavas are indistinguishableand cover a relatively small range [e.g. Nd(t) = –1·3to +4·0]. The higher Nd(t) lavas are isotopically similarto those of several modern oceanic hotspots, and have ocean-island-likepatterns of alteration-resistant incompatible elements. Heavyrare earth element characteristics indicate an important rolefor garnet during melting and that the lavas were formed byfairly small degrees of partial melting. Rough correlationsof isotope ratios with ratios of alteration-resistant highlyincompatible elements (e.g. Nb/La) suggest modest amounts ofcontamination involving continental material or a relativelylow-Nd component in the source. Overall, our results are consistentwith other evidence suggesting some type of plume-head originfor the Emeishan province. KEY WORDS: Emeishan; flood basalts; picrites; mantle plumes; late Permian  相似文献   

19.
High-temperature–pressure experiments were carried outto determine the chlorine–hydroxyl exchange partitioncoefficient between hornblende and melt in the 1992 Unzen dacite.Cl in hornblende and melt was analyzed by electron microprobe,whereas OH in hornblende and melt was calculated assuming anionstoichiometry of hornblende and utilizing the dissociation reactionconstant for H2O + O = 2(OH) in water-saturated melt, respectively.The partition coefficient strongly depends on the Mg/(Mg + Fe)ratio of hornblende, and is expressed as ln K1 = (Cl/OH)hb/(Cl/OH)melt= 2·37 – 4·6[Mg/(Mg + Fe)]hb at 2–3kbar and 800–850°C. The twofold variation in Cl contentin the oscillatory zoned cores of hornblende phenocrysts inthe 1991–1995 dacite cannot be explained by the dependenceof the Cl/OH partition coefficient on the Mg/(Mg + Fe)hb ratio,and requires c. 80% variation of the Cl/OH ratio of the coexistingmelt. Available experimental data at 200 MPa on Cl/OH fractionationbetween fluid and melt suggest that c. 1·2–1·8wt % degassing of water from the magma can explain the required80% variation in the Cl/OH ratio of the melt. The negative correlationbetween Al content and Mg/(Mg + Fe) ratio in the oscillatoryzoned cores of the hornblende phenocrysts is consistent withrepeated influx and convective degassing of the fluid phasein the magma chamber. KEY WORDS: chlorine; element partitioning; hornblende; oscillatory zoning; Unzen volcano  相似文献   

20.
White Island is an active composite stratovolcano in the Bayof Plenty, New Zealand, that comprises many small volume (<0·1km3) andesite–dacite lava flows and pyroclastic depositswith phenocryst contents of  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号