首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Southern Brittany Migmatite Belt (SBMB), which evolved through the metamorphic peak between c. 400 Ma and c. . 370 Ma ago, consists of a heterogeneous suite of high-grade gneisses and anatectic migmatites, both metatexites and diatexites. Rare garnet-cordierite gneiss layers record evidence of an early prograde P-T path. In these rocks, growth-zoned garnet cores and a sequence of included mineral assemblages in garnet, from core to rim, of Qtz + Ilm + Ky, Pl + Ky + St + Rt + Bt and Pl + Sil + St + Rt + Bt constrain a prograde evolution during which the reactions Ilm + Ky + Qtz→ Aim + Rt, Ms + Chl→ St + Bt + Qtz + V and St + Qtz→ Grt + Sil + V were crossed. Parts of this prograde evolution are preserved as inclusion assemblages in garnet in all other rock types. In all rock types, garnet has reverse zoned rims, and garnet replacement by cordierite and/or biotite and plagioclase suggests the following reactions have occurred: Grt + Sil + Qtz→ Crd → Hc ± Ilm, Bt + Sil + Qtz → Crd ± Hc → Ilm → Kfs + V and (Na + Ca + K + Ti) + Grt → Bt + Pl + Qtz. Microstructural analysis of reaction textures in conjunction with a petrogenetic grid has enabled the construction of a tightly constrained 'clockwise' P–T path for the SBMB. The high-temperature part of the path has a steep dT/dP slope characteristic of near isothermal decompression. It is proposed that the P-T path followed by the SBMB is the result of the inversion, by overthrusting, of a back-arc basin and that such a tectonic setting may be applicable to other high-temperature migmatite terranes. The near isothermal decompression is at least partly driven by the upward (diapiric) movement of the diatexite/anatectic granite core of the SBMB.  相似文献   

2.
Metapelites containing muscovite, cordierite, staurolite and biotite (Ms+Crd+St+Bt) are relatively rare but have been reported from a number of low-pressure (andalusite–sillimanite) regional metamorphic terranes. Paradoxically, they do not occur in contact aureoles formed at the same low pressures, raising the question as to whether they represent a stable association. A stable Ms+Crd+St+Bt assemblage implies a stable Ms+Bt+Qtz+Crd+St+Al2SiO5+Chl+H2O invariant point (IP1), the latter which has precluded construction of a petrogenetic grid for metapelites that reconciles natural phase relations at high and low pressure. Petrogenetic grids calculated from internally consistent thermodynamic databases do not provide a reliable means to evaluate the problem because the grid topology is sensitive to small changes in the thermodynamic data. Topological analysis of invariant point IP1 places strict limits on possible phase equilibria and mineral compositions for metamorphic field gradients at higher and lower pressure than the invariant point. These constraints are then compared with natural data from contact aureoles and reported Ms+Crd+St+Bt occurrences. We find that there are numerous topological, textural and compositional incongruities in reported natural assemblages that lead us to argue that Ms+Crd+St+Bt is either not a stable association or is restricted to such low pressures and Fe-rich compositions that it is rarely if ever developed in natural rocks. Instead, we argue that reported Ms+Crd+St+Bt assemblages are products of polymetamorphism, and, from their textures, are useful indicators of P–T  paths and tectonothermal processes at low pressure. A number of well-known Ms+Crd+St+Bt occurrences are discussed within this framework, including south-central Maine, the Pyrenees and especially SW Nova Scotia.  相似文献   

3.
Local fluid migration through a serpentine melange caused successive carbonation of a metabasite block (about 80 meter in diameter) during the uplift stage of the glaucophanitic metamorphic rocks, the Nishisonogi metamorphics, southwest Japan. The block shows a zonal sequence as follows. Zone 1: original greenschist (Am+Ep+ Chl+Ab+Sph+Qtz). Zone 2: epidote disappears by the reaction Ep+Am+CO2+H2O=Chl+Cc+Qtz. Zone 3: balc appears by the reaction Am+CO2+H2O=Ta+Cc+ Qtz. Zone 4:sphene breakdowns by the reaction Sph+ CO2=Rt+Cc+Qtz. Zone 5: amphibole disappears by the two simultaneous reactions, Am+CO2=Do+Ta+Qtz and Ta+Cc+CO2=Do+Qtz+H2O. Zone 7: albite is replaced by chlorite, calcite, dolomite and quartz, and the assemblage of Do+Cc+Chl+Rt+Qtz is stable. Analyses of phase relations indicate an introduction of CO2-rich fluid into the greenschist body during regional metamorphism. The CO2-rich fluid may have formed by devolatilization reactions between serpentinite and graphite-bearing metasediments. The fluid migrated within the melange through a channelized pathway and into the greenschist body from a deeper part of the melange.  相似文献   

4.
自X射线在矿物学中广泛应用以来,很多造岩矿物的成份能够用X射线鉴定了。目前普遍使用的是衍射仪、大半径德拜相机或基尼叶相机,使用小半径相机的还很少。  相似文献   

5.
Petrographic and microprobe investigations of calc-alkaline (CA) rocks from the High Cascade Range (i.e., Mt. St. Helens, Mt. Jefferson, Crater Lake and Mt. Shasta) of western North America show that crystal clots represent primary igneous phase assemblages and are not products of amphibole reactions with melt. For each eruptive complex, crystal clots display diverse modal proportions even within a single eruptive unit. Nevertheless, in all cases the crystal-clot minerals are also represented in the rock as phenocrysts or microphenocrysts. Basalts contain clots of ol+plag+mgt, ol+mgt, cpx+ plag+mgt, cpx+mgt and plag+mgt; andesites, clots of cpx+mgt, opx+mgt, cpx+opx+plag+mgt, cpx+plag+mgt, opx+plag+mgt and plag±mgt; and dacites, clots of opx+mgt, cpx+opx+plag+ mgt, opx+plag+mgt, amph+plag+mgt±ilm, amph+mgt±ilm and plag±mgt. The bulk compositions of most of these clot assemblages could not have been derived from amphibole percursors. Although some amphiboles in dacitic rocks display a breakdown reaction of amph=plag+cpx+opx +mag, these mineral clusters, unlike those of clots, typically have a relict amphibole crystal outline and a fine-grained metamorphic texture. Plagioclase grains in the mineral clusters lack oscillatory zoning which is typical of crystal clot plagioclase grains. The euhedral to subhedral shapes of most clot minerals and the oscillatory zoning present in most clot plagioclase grains are not likely to have formed from the breakdown of amphibole. Crystal clots are also observed in Hawaiian and ocean floor basalts, although amphibole fractionation has not been proposed for those lavas. Magnetite fractionation may be the controlling process limiting iron enrichment in CA magmas rather than amphibole fractionation. Textural evidence indicates that magnetite is an early-forming phase in CA magmas. V, which is concentrated in magnetite, shows a strong decrease with increasing silica in many CA rocks, supporting a magnetite fractionation model.Hawaii Institute of Geophysics Contrib. No. 969  相似文献   

6.
Phase relations of pumpellyite, epidote, lawsonite, CaCO3, paragonite, actinolite, crossite and iron oxide are analysed on an Al-Ca-Fe3+ diagram in which all minerals are projected from quartz, albite or Jadeite, chlorite and fluid. Fe2+ and Mg are treated as a single component because variation in Fe2+/Mg has little effect on the stability of phases on the diagram. Comparison of assemblages in the Franciscan, Shuksan, Sanbagawa, New Caledonia, Southern Italian, and Otago metamorphic terranes reveals several reactions, useful for construction of a petrogenetic grid:
  1. lawsonite+crossite + paragonite = epidote+chlorite + albite + quartz + H2O
  2. lawsonite + crossite = pumpellyite + epidote + chlorite + albite+ quartz + H2O
  3. crossite + pumpellyite + quartz = epidote + actinolite + albite + chlorite + H2O
  4. crossite + epidote + quartz = actinolite + hematite + albite + chlorite + H2O
  5. calcite + epidote + chlorite + quartz = pumpellyite + actinolite + H2O + CO2
  6. pumpellyite + chlorite + quartz = epidote + actinolite + H2O
  相似文献   

7.
Chemical relationships among four metapelites have been studied by investigation of mineral and bulk chemistry data and by singular value decomposition analysis of single and composite assemblage matrices. Bulk rock compositions cluster close together in an AFM diagram, all within the intersection space defined by the four sample assemblages. The similarity of bulk compositions normalized on a silica-free, anhydrous basis indicates that sample chemistries differ mainly as a result of inhomogeneous distribution of quartz layers. The existence of mass balance relationships among samples indicates that assemblages also overlap in the Si–Ti–Al–Fe–Mg–Mn–Ca–Na–K multisystem. Analysis of single and composite matrices helps in defining possible mass balances linking sample mineral facies to one another during progressive contact metamorphism. The assemblage in sample A can form as the result of the model reaction 5.000  Ky+0.269 Grt+0.965 Bt+0.314 Pl=0.049 Ilm+1.115 Ms+0.849 Chl+0.306 St and react to assemblage B via reaction 0.97 Chl+0.52 Grt+0.66 Ms+0.14 Ilm+1.26  Ky=0.42 St+0.63 Bt+0.22 Pl coupled with the Ky→And transition. Assemblage B can transform into C by initial progress of Ky+Ilm+Chl+Grt+Ms=And+St+Bt+Pl followed by 0.142 Ilm+0.175 St+1.089 Chl+1.533 Ms+0.003 Grt=5.000 And+1.266 Bt+0.551 Pl Matrix analysis cannot satisfactorily model the C–D transition, because it predicts a net production of staurolite, which is in disagreement with petrographic evidence. All mass balances in the C–D composite matrix indicate net consumption of muscovite; this is integrated with the contrasting evidence of prograde pseudomorphs of muscovite after staurolite, observed in the nodules of sample D, within a model involving the progress of ionic reaction cycles.  相似文献   

8.
L. Gaggero  L. Cortesogno 《Lithos》1997,40(2-4):105-131
The 117.38 m of gabbroic core drilled during the Ocean Drilling Program (ODP) Leg 153 at Sites 921 to 924 in the Mid-Atlantic Ridge (MAR) between 23 °N and the Kane Fracture Zone, exhibits a remarkable primary compositional heterogeneity, such as magmatic layering, intrusive contacts and late magmatic veining, which express a succession of magmatic events. Textural indicators suggest that the cooling of the crystal mush occurred in a dynamic environment, with infiltration of progressively evolved liquids. Magmatic features include random shape fabric and magmatic lamination; the subsequent deformational overprint occurred in subsolidus conditions. The ductile deformation, generally concentrated in discrete domains of the gabbro, is associated with continuous re-equilibration of the metamorphic assemblages of (1) olivine + clinopyroxene + orthopyroxene + plagioclase + ilmenite + Ti-magnetite, (2) olivine + clinopyroxene + plagioclase + ilmenite + Ti-magnetite + red hornblende. At lower temperatures brittle deformation prevails and subsequent fractures control the development of metamorphic assemblages: (3) clinopyroxene + plagioclase + red brown hornblende + Ti-magnetite + magnetite (?) + ilmenite, (4) plagioclase + brown hornblende + Ti-magnetite + magnetite + hematite + titanite ± Ti-oxide, (5) plagioclase + green hornblende + magnetite + titanite, (6) plagioclase + actinolite + chlorite + titanite + magnetite, (7) albite + actinolite + chlorite + prehnite ± epidote ± titanite and (8) albite + prehnite + chlorite ± smectite. Assemblages 1 to 8 express increasing water/rock ratios and decreasing degrees of recrystallization.

During the ductile phase, red hornblende is stable and its abundance increases with deformation intensity, possibly as an effect of the introduction of hydrous fluids. During the brittle phase, water diffusion controls the development of the fracture-filling mineral assemblages and re-equilibration of the adjacent rock; temperatures decrease further, as demonstrated by mineral zoning and incompletely re-equilibrated assemblages. The lowest temperatures correspond to the development of hydrothermal assemblages.

Compared with oceanic gabbros from fast-spreading transform environments, high-temperature ductile phases (granulite and amphibolite) are well developed, whereas brittle phases are widespread, as microcracks, prevalent on fracturing associated with discrete veins.  相似文献   


9.
Mineral paragenescs in the prehnite-pumpellyite to greenschistfades transition of the Karmutsen metabasites are markedly differentbetween amygdule and matrix, indicating that the size of equilibriumdomain is very small. Characteristic amygdule assemblages (+chlorite + quartz) vary from: (1) prehnite + pumpeUyite + epidote,prehnite + pumpellyite + calcite, and pumpellyite + epidote+ calcite for the prehnite-pumpellyite facies; through (2) calcite+ epidote + prehnite or pumpellyite for the transition zone;to (3) actinolite + epidote + calrite for the greenschist facies.Actinolite first appears in the matrix of the transition zone.Na-rich wairakites containing rare analcime inclusions coexistwith epidote or Al-rich pumpellyite in one prehnite-pumpellyitefacies sample. Phase relations and compositions of these wairakite-bearingassemblages further suggest that pumpellyite may have a compositionalgap between 0.10 and 0.15 XFe?. Although the facies boundaries are gradational due to the multi-varianceof the assemblages, several transition equilibria are establishedin the amygdule assemblages. At low Xco2, pumpellyite disappearsprior to prehnite by a discontinuous-type reaction, pumpellyite+ quartz + CO2 = prehnite + epidote + calcite + chlorite + H2O,whereas prehnite disappears by a continuous-type reaction, prehnite+ CO2 = calcite + epidote + quartz-l-H2O. On the other hand,at higher XCO2 a prehnite-out reaction, prehnite + chlorite+ H2O + CO2 = calcite + pumpellyite + quartz, precedes a pumpellyiteoutreaction, pumpellyite + CO2 = calcite + epidote + chlorite +quartz + H2O. The first appearance of the greenschist faciesassemblages is defined at both low and high XCOj by a reaction,calcite + chlorite + quartz = epidote + actinolite+ H2O + CO2.Thus, these transition equilibria are highly dependent on bothXFe3+ + of Ca-Al silicates and XH20 of the fluid phase. Phaseequilibria together with the compositional data of Ca-Al silicatesindicate that the prehnite-pumpellyite to greenschist faciestransition for the Karmutsen metabasites occurred at approximately1.7 kb and 300?C, and at very low Xco2, probably far less than0.1.  相似文献   

10.
Mineral assemblages, rock and mineral chemistry, and mineral reactions, in calc-silicate rocks from Koduru area, Andhra Pradesh, India are discussed. Mineralogical and bulk chemical differences indicate 3 calc-silicate rock types — type I with K feldspar+calcite+wollastonite+quartz+scapolite+diopsidess +andraditess+sphene, has relatively high rock oxidation ratios. Type II is a highly calcic variety with high rock MgFe ratios, and has K feldspar+calcite+wollastonite+quartz+scapolite + diopsidess±grossularitess+sphene+zoisite. Type III has K feldspar +calcite+wollastonite+quartz+scapolite+diopsidess +sphene+hornblende+magnetite, and has relatively low oxidation ratio and low MgFe ratio. The 3 calc-silicate rock types have originated as mixtures of limestone/dolomite/marl.Diopside was produced by a reaction involving Ca-amphibole +calcite+quartz, and reversed during retrogression. Andraditess in type I rocks was produced at the expense of hedenbergitic component of pyroxene in a continuous reaction as a consequence of increase in the oxygen content of the original sediment relative to type III. Calcite+quartz reacted to give wollastonite. During cooling an influx of water caused scapolite to alter to zoisite.  相似文献   

11.
High-grade exotic blocks in the Franciscan Complex at Jenner, California, show evidence for polydeformation/metamorphism, with eight distinct stages. Two parallel sets of mineral assemblages [(E) eclogite, and (BS) laminated blueschist] representing different bulk chemistry were identified. Stage 1, recorded by parallel aligned inclusions (S1) of crossite + omphacite + epidote + ilmenite + titanite + quartz (E), and glaucophane + actinolite + epidote + titanite (BS) in the central parts of zoned garnets, represents the epidote blueschist facies. The onset of a second stage (stage 2) is represented by a weak crenulation of S1 and growth of garnet. This stage develops a well-defined S2 foliation of orientated barroisite + epidote + titanite (E), or subcalcic actinolite + epidote + titanite (BS) at c. 90d? to S1, with syntectonic growth of garnet, defining the (albite-)epidote-amphibolite facies. A third stage, with aligned inclusions of glaucophane + (subcalcic) actinolite + phengite parallel to S2 in the outermost rims of large garnet grains, is assigned to the transitional (albite-)epidote-amphibolite/(garnet-bearing) epidote blueschist facies. The fourth stage represents the peak metamorphism, and was identified by unorientated matrix minerals in the least retrograded samples. In this stage the mineral assemblages garnet + omphacite + glaucophane + phengite (E) and garnet + winchite + phengite + epidote (BS) both represent the eclogite facies. Stage 5 is represented by the retrogression of eclogite facies assemblages to the epidote blueschist facies assemblages crossite/glaucophane + garnet + omphacite + epidote + phengite (E), and glaucophane + actinolite + epidote + phengite (BS), with the development of an S5 foliation subparallel to S2. Stage 6 represents a crenulation of S5, with the development of a well-defined S6 crenulation cleavage wrapping around relics of the eclogite facies assemblages. This crenulation cleavage is further weakly crenulated during a D7 event. Post-D7 (stage 8) is recorded by the growth of lawsonite + chlorite ± actinolite replacing garnet, and by veins of lawsonite + pumpellyite + aragonite and phengite + apatite. The different, yet coeval, mineral parageneses observed in rock types (E) and (BS) are probably due to differences in bulk chemistry. The metamorphic evolution from stage 1 to stage 8 seems to have been broadly continuous, following an anticlockwise P-Tpath: (1) epidote blueschist (garnet-free) to (2) (albite-)epidote-amphibolite to (3) transitional epidote blueschist (garnet-bearing)/(albite-)epidote-amphibolite to (4) eclogite to (5) epidote blueschist (garnet-bearing) to (6-7) epidote blueschist (garnet-free) facies to (8) lawsonite + pumpellyite + aragonite-bearing assemblages. This anticlockwise P-T path may have resulted from a decreasing geothermal gradient with time in the Mesozoic subduction zone of California at early or pre-Franciscan metamorphism.  相似文献   

12.
ABSTRACT Paragonite-bearing amphibolites occur interbedded with a garbenschist-micaschist sequence in the Austroalpine Schneeberg Complex, southern Tyrol. The mineral assemblage mainly comprises paragonite + Mg-hornblende/tschermakite + quartz + plagioclase + biotite + ankerite + Ti-phase + garnet ± muscovite. Equilibrium P–T conditions for this assemblage are 550–600°C and 8–10 kbar estimated from garnet–amphibole–plagioclase–ilmenite–rutile and Si contents of phengitic muscovites. In the vicinity of amphibole, paragonite is replaced by symplectitic chlorite + plagioclase + margarite +± biotite assemblages. Muscovite in the vicinity of amphibole reacts to form plagioclase + biotite + margarite symplectites. The reaction of white mica + hornblende is the result of decompression during uplift of the Schneeberg Complex. The breakdown of paragonite + hornblende is a water-consuming reaction and therefore it is controlled by the availability of fluid on the retrogressive P–T path. Paragonite + hornblende is a high-temperature equivalent of the common blueschist-assemblage paragonite + glaucophane in Ca-bearing systems and represents restricted P–T conditions just below omphacite stability in a mafic bulk system. While paragonite + glaucophane breakdown to chlorite + albite marks the blueschist/greenschist transition, the paragonite + hornblende breakdown observed in Schneeberg Complex rocks is indicative of a transition from epidote-amphibolite facies to greenschist facies conditions at a flatter P–T gradient of the metamorphic path compared to subduction-zone environments. Ar/Ar dating of paragonite yields an age of 84.5 ± 1 Ma, corroborating an Eoalpine high-pressure metamorphic event within the Austroalpine unit west of the Tauern Window. Eclogites that occur in the Ötztal Crystalline Basement south of the Schneeberg Complex are thought to be associated with this Eoalpine metamorphic event.  相似文献   

13.
Metasediments in the southern Grossvenediger area (Tauern Window, Austria) were studied along a cross-section through rocks of increasing metamorphic grade from the margin of the Tauern Window in the south to the base of the Upper Schieferhülle, including the Eclogite Zone, in the north. In the southern part of the cross-section there is no evidence for a pre-late Alpine metamorphic history in the form of high-pressure relics or pseudomorphs. Mineral assemblages are characterized by the stability of tremolite + calcite, biotite + calcite and biotite + chlorite + calcite. In the northern part a more complete Alpine metamorphic evolution is preserved. Primary high-pressure assemblages are dolomite + quartz, tremolite + zoisite, zoisite + dolomite + quartz + phengite I and probably tremolite + dolomite + phengite I. Secondary, post-kinematic assemblages [tremolite + calcite, talc + calcite, phengite II + chlorite + calcite (+ quartz), biotite + chlorite + calcite, biotite + zoisite + calcite] formed as a result of the dominant late Alpine metamorphic overprint. The occurrence of biotite + zoisite + calcite is confined to the northernmost area and defines a biotite–zoisite–calcite isograd. P–T estimates based on standard thermobarometric techniques and on stability relationships of tremolite + calcite + dolomite + quartz and zoisite give consistent results. P–T conditions of the main Tertiary metamorphic overprint were 525° C, P= 7.5 ± 1 kbar in the northern part of the cross-section. The southern part was metamorphosed at lower temperatures of 430–470° C. The Si-content of phengites from this area is almost as high as that of phengites from the Eclogite Zone (Simax= 3.4 pfu). Pressures > 10 kbar at 420° C are suggested by phengite barometry according to Massone & Schreyer (1987). In the absence of high-pressure relics or pseudomorphs, these phengites, which lack late Alpine re-equilibration, are the only record that rocks of the southern part probably also experienced an early non-eclogitic high-pressure metamorphism.  相似文献   

14.
Quartz Al–Mg granulites exposed at In Hihaou, In Ouzzal (NW Hoggar), preserve an unusual high-grade mineral association stable at temperatures up to 1050°C, involving the parageneses orthopyroxene–sillimanite–garnet–quartz, sapphirine–quartz and spinel–quartz. The phase relationships within the FMAS system show that a continuum exists between the earlier prograde reaction textures and those of the later decompressive event. The following mineral reactions involving sillimanite are deduced: (1) Grt+Qtz→Opx+Sil, (2) Opx+Sil→Grt+Spr+Qtz, (3) Grt+Sil+Qtz→Crd, (4) Grt+Sil→Crd+Spr, (5) Grt+Sil+Spr→Crd+Spl, (6) Grt+Sil→Crd+Spl, (7) Grt+Crd+Sil→Spl+Qtz and (8) Grt+Sil→Spl+Qtz. Minerals in quartz Al–Mg granulites display compositional variations consistent with the observed reactions. The Mg/(Mg+Fe2+) range of the main minerals is as follows: cordierite (0.81–0.97), sapphirine (0.77–0.88), orthopyroxene (0.65–0.81), garnet (0.33–0.64) and spinel (0.23–0.56). The reaction textures and the evolution of the mineral assemblages in the quartz Al–Mg granulites indicate a clockwise P–T trajectory characterized by peak conditions of at least 10 kbar and 1050°C, followed by decompression from 10 to 6 kbar at a temperature of at least 900°C.  相似文献   

15.
Sapphirine occurs in a 3-5 m wide zone between amphibole-lherzolite and garnetiferous metagabbro at Finero in the Ivrea Zone, NW Italian Alps. Layers consisting of plag + hb + sa + cpx + opx + sp + gt are interbanded with spinel pyroxenites, which may contain sapphirine replacing spinel. All minerals are very magnesian, with XMg between 0.78 and 0.92. Bulk rock analyses suggest that precursors to the sapphirine-bearing rocks were igneous cumulates of plagioclase + olivine + hornblende + spinel. Up to 16wt% CaO does not inhibit sapphirine formation and it is the unusually Mg-rich nature of the host rocks which allows sapphirine development. The early igneous assemblage was replaced by one of cpx + sa + hb +± plag at a pressure of 9 ± 1 kbar and temperatures of 900 ± 50°C. Subsequent rapid uplift caused the instability of gt, gt + hb, hb and sa + cpx to form opx + plag ± sp ± sa symplectites.  相似文献   

16.
The basement of the North China craton (NCC) can be divided into eastern and western blocks separating the Trans-North China orogen on the basis of petrologic associations, structures, metamorphic processes, and isotopic ages. Aluminous gneiss khondalites occur in the western block, and record a clockwise metamorphic P–T history characterized by nearly isothermal decompression following peak metamorphism at ca. 1.3 GPa and 825°C. Four metamorphic stages are recognized based on mineral assemblages. The early prograde metamorphic assemblage contains Ky+Bt+Ms+Grt+Pl+Qtz. The peak metamorphic mineral assemblage is characterized by Grt+Sil+Bt+Kfs+Pl+Qtz and the formation of cordierite after garnet, leading to a retrograde assemblage of Grt+Sil+Crd+Pl+Kfs+Qtz. Garnet retrogrades to biotite and the formation of pervasive matrix muscovite define a final metamorphic stage, inferred at ca. < 0.6 GPa and 700°C. Quantified metamorphic stages and a related clockwise P–T path derived from pseudosection analysis in the KMASH system suggest collision of the north Yinshan block with the South Ordos block at 1.92 Ga, before final suturing of the entire NCC basement.  相似文献   

17.
New experiments have been performed in the system CaO+MgO+Al2O3+SiO2 (CMAS)+FeO at atmospheric pressure. Most of the experiments were conducted on Fe-rich compositions, in the low-temperature field of the assemblage liq(liquid)+an(anorthite) +aug(augite)+ol(olivine), and mostly along five isotherms. Others were located on, or nearby the assemblage boundaries. These experiments, together with the previously reported high temperature experiments (Shi and Libourel 1991; Libourel et al. 1989), permit contouring the complete liq+an+aug+ol divariant field, and tracing out some of its boundaries. The boundary of the assemplage liq+an+aug+ol consists of six segments, with the appearance of one of the following phases, orthopyroxene, pigeonite, tridymite, bustamite, kirschsteinite, and spinel, as an additional phase. Within the stability field of the assemblage liq+an+aug+ol, the compositions of all the coexisting phases have been described as functions of temperature and silica content in the melt by applying a multiple linear regression method. This allows a quantitative characterization of the divariant assemblage liq+an+aug+ol in the system CMAS+FeO, from 1273°C to 1055°C, with olivine compositions ranging from Mg*[Mg/(Mg+Fe)]=1 to 0.08. Knowing the composition-temperature relationships, the basic T-X configuration of the assemblage liq+an +aug+ol has been analysed, and mass-balance calculations have been performed to examine the FeO effect on different crystallization processes. Addition of FeO to the system CMAS transforms the thermal divide in the assemblage liq+an+di(diopside)+fo(forsterite) into a thermal ridge. With decreasing temperature, the spine of the thermal ridge moves towards Si-poor compositions at Mg-rich end but towards Si-rich compositions at the Fe-rich end. This indicates that late-stage tholeiitic liquids can follow a trend of silica enrichment without the crystallization of an oxide phase. Crystallization paths of the assemblage liq+an+aug+ol are determined by the detailed T-X relations of the thermal ridge with the melt evolving away from the spine. The boundary reactions with decreasing temperature have also been characterized numerically.  相似文献   

18.
In mafic granulites, garnet can form by reactions such as Opx + Pl = Cpx + Grt + Qtz; Opx + Pl = Grt + Qtz. As a result of isothermal decompression (ITD), garnet can then break down to a characteristic orthopyroxene-plagioclase symplectite. Mafic, iron-rich garnet-pyroxene granulite from the Guaxupé Massif has symplectite that formed by near-isothermal decompression, as a consequence of uplift of the granulite facies terrane. This symplectite was found to consist of vermicular clinopyroxene-orthopyroxene-plagioclase, with clinopyroxene clearly growing from the garnet that is breaking down, modal amounts of clinopyroxene being less than orthopyroxene. Electron probe analyses show clear differences between core (Cpx1), rim, and symplectite clinopyroxene (Cpx2). Considering also the presence of magnetite in the symplectite texture, garnet breakdown is thought to be better represented by a reaction such as Cpx1 + Grt + O2 = Cpx2 + Opx + Pl +Mt + Qtz.  相似文献   

19.
魏明秀 《地质科学》1980,15(4):356-367
铬尖晶石成分与晶胞、比重的关系1955年米赫耶夫提出尖晶石类总的晶胞公式为: (单位kx) 两价平均离子半径 三价平均离子半径。  相似文献   

20.
Felsic alkalic rocks are a minor component of many ocean island volcanic suites, and include trachyte and phonolite as well as various types of alkaline and peralkaline rhyolite. However, there is considerable debate on the nature of their formation; for example, are they formed by partial melting of anomalous mantle or the final products of fractional crystallization of mafic magmas. The phonolites and foidal phonolites on Rarotonga were formed by low pressure crystal fractionation of two chemically distinct parental magmas. Low silica and high silica mafic magmas produced a basanite-foidal phonolite series and an alkali basalt-phonolite series, respectively. The foidal phonolite composition evolved from the low silica mafic magmas by approximately 60% fractionation of titanaugite + leucite + nepheline + magnetite + apatite. Fractionation continued with the crystallization of aegirine-augite + nepheline + kaersutite + magnetite + apatite. The phonolites formed from the alkali basalts by approximately 40% fractionation of kaersutite + titanaugite + Fe-Ti oxide + plagioclase + apatite and continued to evolve further by fractionation of anorthoclase + nepheline + aegerine-augite + Fe-Ti oxides. As the magmas fractionated in both suites, their overall viscosities (solid + liquid) increased until a point was reached whereby viscosity inhibited the eruption of magmas with compositions intermediate between the mafic rocks and the felsic rocks. However, the magmas continued to fractionate under static conditions with the residual fluid becoming foidal phonolitic in the low silica suite or phonolitic in the high silica suite. These phonolitic liquids, as a result of an increase in volatiles and enrichment of alkalis over aluminum, would actually have a lower viscosity than the intermediate liquids. This decrease in viscosity and the switch from a magma chamber being predominantly a liquid with suspended solids to a solid crystalline network with an interstitial liquid enabled phonolitic liquids to migrate, pool, and eventually erupt on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号