首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Precision spacecraft navigation using a low-cost GPS receiver   总被引:1,自引:1,他引:0  
Within the PROBA-2 microsatellite mission, a miniaturized single-frequency GPS receiver based on commercial-off-the-shelf (COTS) technology is employed for onboard navigation and timing. A rapid electronic fuse protects against destructive single-event latch-ups (SEL) and enables a quasi-continuous receiver operation despite the inherent sensitivity to space radiation. While limited to single-frequency C/A-code tracking with a narrow-band frontend, the receiver is able to provide precision navigation services through processing of raw GPS measurements on ground as well as a built-in real-time navigation system. In both cases, ionospheric path delays are eliminated through a combination of L1 pseudorange and carrier phase measurements, which also offers a factor-of-two noise reduction relative to code-only processing. By comparison with satellite laser ranging (SLR) measurements, a 0.3-m (3D rms) accuracy is demonstrated for the PROBA-2 reduced dynamic orbit determinations using post-processed GPS orbit and clock products. Furthermore, the experimental onboard navigation system is shown to provide real-time position information with a 3D rms accuracy of about 1?m, which notably outperforms the specification of the Standard Positioning Service (SPS). In view of their lower hardware complexity, mass budget and power requirements as well as the reduced interference susceptibility, legacy C/A-code receivers can thus provide an attractive alternative to dual-frequency receivers even for demanding navigation applications in low Earth orbit.  相似文献   

2.
The first results of the short baseline single-epoch kinematic positioning based on dual-frequency real BeiDou/GPS data are presented. The performance of the BeiDou/GPS single-epoch positioning is demonstrated in both static and kinematic modes and compared with corresponding GPS-only performance. It is shown that the availability and reliability of the single-frequency BeiDou/GPS and dual-frequency BeiDou single-epoch kinematic positioning are comparable to those of the dual-frequency GPS. The fixed rate and reliability of ambiguity resolution for the single- and dual-frequency BeiDou/GPS are remarkably improved as compared to that of GPS-only, especially in case of high cutoff elevations. For positioning accuracy with fixed ambiguities, the BeiDou/GPS single-epoch solutions are improved by 23 and 4 % relative to the GPS-only case for two short baseline tests of 8 km, respectively. These results reveal that dual-frequency BeiDou real-time kinematic (RTK) is already applicable in Asia–Pacific areas and that single-frequency BeiDou/GPS RTK is also achievable but only with initialization of several seconds. More promisingly, the dual-frequency BeiDou/GPS RTK can overcome the difficulties with GPS-only RTK under the challenging conditions assuming, of course, that the additional BeiDou satellites are visible.  相似文献   

3.
Absolute Positioning with Single-Frequency GPS Receivers   总被引:11,自引:3,他引:11  
The use of precise post-processed satellite orbits and satellite clock corrections in absolute positioning, using one GPS receiver only, has proven to be an accurate alternative to the more commonly used differential techniques for many applications in georeferencing. The absolute approach is capable of centimeter accuracy when using state-of-the-art, dual-frequency GPS receivers. When using observations from single-frequency receivers, however, the accuracy, especially in height, decreases. The obvious reason for this degradation in accuracy is the effect of unmodeled ionospheric delay. This paper discusses the availability of some empirical ionospheric models that are publicly available and quantifies their usefulness for absolute positioning using single-frequency GPS receivers. The Global Ionospheric Model supplied by International GPS Service (IGS) is the most accurate one and is recommended for absolute positioning using single-frequency GPS receivers. Using high-quality single-frequency observations, a horizontal epoch-to-epoch accuracy of better than 1 m and a vertical accuracy of approximately 1 m is demonstrated. ? 2002 Wiley Periodicals, Inc.  相似文献   

4.
Continued advancements in remote sensing technology along with a trend towards highly autonomous spacecraft provide a strong motivation for accurate real-time navigation of satellites in low Earth orbit (LEO). Global Navigation Satellite System (GNSS) sensors nowadays enable a continuous tracking and provide low-noise radiometric measurements onboard a user spacecraft. Following the deactivation of Selective Availability a representative real-time positioning accuracy of 10 m is presently achieved by spaceborne global positioning system (GPS) receivers on LEO satellites. This accuracy can notably be improved by use of dynamic orbit determination techniques. Besides a filtering of measurement noise and other short-term errors, these techniques enable the processing of ambiguous measurements such as carrier phase or code-carrier combinations. In this paper a reference algorithm for real-time onboard orbit determination is described and tested with GPS measurements from various ongoing space missions covering an altitude range of 400–800 km. A trade-off between modeling effort and achievable accuracy is performed, which takes into account the limitations of available onboard processors and the restricted upload capabilities. Furthermore, the benefits of different measurements types and the available real-time ephemeris products are assessed. Using GPS broadcast ephemerides a real-time position accuracy of about 0.5 m (3D rms) is feasible with dual-frequency carrier phase measurements. Slightly inferior results (0.6–1 m) are achieved with single-frequency code-carrier combinations or dual-frequency code. For further performance improvements the use of more accurate real-time GPS ephemeris products is mandatory. By way of example, it is shown that the TDRSS Augmentation Service for Satellites (TASS) offers the potential for 0.1–0.2 m real-time navigation accuracies onboard LEO satellites.  相似文献   

5.
Due to their low cost and low power consumption, single-frequency GPS receivers are considered suitable for low-cost space applications such as small satellite missions. Recently, requirements have emerged for real-time accurate orbit determination at sub-meter level in order to carry out onboard geocoding of high-resolution imagery, open-loop operation of altimeters and radio occultation. This study proposes an improved real-time kinematic positioning method for LEO satellites using single-frequency receivers. The C/A code and L1 phase are combined to eliminate ionospheric effects. The epoch-differenced carrier phase measurements are utilized to acquire receiver position changes which are further used to smooth the absolute positions. A kinematic Kalman filter is developed to implement kinematic orbit determination. Actual flight data from China’s small satellite SJ-9A are used to test the navigation performance. Results show that the proposed method outperforms traditional kinematic positioning method in terms of accuracy. A 3D position accuracy of 0.72 and 0.79 m has been achieved using the predicted portion of IGS ultra-rapid products and broadcast ephemerides, respectively.  相似文献   

6.
(Near-)real-time orbit determination for GNSS radio occultation processing   总被引:2,自引:1,他引:1  
The processing of GPS radio occultation measurements for use in numerical weather predictions requires a precise orbit determination (POD) of the host satellite in near-real-time. Making use of data from the GRAS instrument on Metop-A, the performance of different GPS ephemeris products and processing concepts for near-real-time and real-time POD is compared. While previous analyses have focused on the achievable along-track velocity accuracy, this study contributes a systematic comparison of the resulting estimated bending angles. This enables a more rigorous trade-off of different orbit determination methodologies in relation to the end-user needs for atmospheric science products. It is demonstrated that near-real-time GPS orbit and clock products have reached a sufficient quality to determine the Metop-A along-track velocity with an accuracy of better than 0.05 mm/s that was formerly only accessible in post-processing. The resulting bending angles are shown to exhibit standard deviation and bias differences of less than 0.3 % compared with post-processed products up to altitudes of at least 40 km, which is notably better than 1 % accuracy typically assumed for numerical weather predictions in this height regime. Complementary to the analysis of ground-based processing schemes, the potential of autonomous on-board orbit determination is investigated for the first time. Using actual GRAS flight data, it is shown that a 0.5 m 3D rms position accuracy and a 0.2 mm/s along-track velocity accuracy can in fact be obtained in real-time with the currently available GPS broadcast ephemeris quality. Bending angles derived from the simulated real-time processing exhibit a minor performance degradation above tangent point heights of 40 km but negligible differences with respect to ground-based products below this altitude. Onboard orbit determination and, if desired, bending angle computation, can thus enable a further simplification of the ground segment in future radio occultation missions and contribute to reduced product latencies for radio occultation data assimilation in numerical weather predictions.  相似文献   

7.
At present, reliable ambiguity resolution in real-time GPS precise point positioning (PPP) can only be achieved after an initial observation period of a few tens of minutes. In this study, we propose a method where the incoming triple-frequency GPS signals are exploited to enable rapid convergences to ambiguity-fixed solutions in real-time PPP. Specifically, extra-wide-lane ambiguity resolution can be first achieved almost instantaneously with the Melbourne-Wübbena combination observable on L2 and L5. Then the resultant unambiguous extra-wide-lane carrier-phase is combined with the wide-lane carrier-phase on L1 and L2 to form an ionosphere-free observable with a wavelength of about 3.4 m. Although the noise of this observable is around 100 times the raw carrier-phase noise, its wide-lane ambiguity can still be resolved very efficiently, and the resultant ambiguity-fixed observable can assist much better than pseudorange in speeding up succeeding narrow-lane ambiguity resolution. To validate this method, we use an advanced hardware simulator to generate triple-frequency signals and a high-grade receiver to collect 1-Hz data. When the carrier-phase precisions on L1, L2 and L5 are as poor as 1.5, 6.3 and 1.5 mm, respectively, wide-lane ambiguity resolution can still reach a correctness rate of over 99 % within 20 s. As a result, the correctness rate of narrow-lane ambiguity resolution achieves 99 % within 65 s, in contrast to only 64 % within 150 s in dual-frequency PPP. In addition, we also simulate a multipath-contaminated data set and introduce new ambiguities for all satellites every 120 s. We find that when multipath effects are strong, ambiguity-fixed solutions are achieved at 78 % of all epochs in triple-frequency PPP whilst almost no ambiguities are resolved in dual-frequency PPP. Therefore, we demonstrate that triple-frequency PPP has the potential to achieve ambiguity-fixed solutions within a few minutes, or even shorter if raw carrier-phase precisions are around 1 mm. In either case, we conclude that the efficiency of ambiguity resolution in triple-frequency PPP is much higher than that in dual-frequency PPP.  相似文献   

8.
This study analyzes the quality of onboard data of tracking signals from GPS satellites on the far side of the earth and determines the orbit of the geostationary satellite using code and carrier phase observations with 30-h and 3-day orbit arc length. According to the analysis results, the onboard receiver can track 6–8 GPS satellites, and the minimum and maximum carrier to noise spectral densities were 24 and 45 dB-Hz, respectively. For a GPS receiver on a high-altitude platform above the navigation constellations, the blocking of the earth and a weak signal strength usually cause a piece-wise GPS signal tracking and an increase in the number of ambiguity parameters. Individual GPS satellites may be continuously tracked for as little as several minutes and as long as 3 h. Moreover, considering the negative sign of elevation angles reflects the fact that GPS satellites are tracked below the receiver in the study. GPS satellites appear mainly in the elevation angle range of ??53° to ??83°, and dilution of precision values could reach ten or one hundred and more. Also, it is observed that when a signal suffers from atmospheric refraction, other GPS signals tracked simultaneously by the receiver experience strong systematic errors in the code observations. Based on single-frequency code and carrier phase measurements, the mean 3D root mean square (RMS) value of the overlap comparisons between 30-h orbit determination arcs is 2.14 m. However, we found that there were also some biases in the carrier phase residuals, which contributed to poor orbit accuracy. To eliminate the effects of the biases, we established a correction sequence for each GPS satellite. After corrections, the mean 3D RMS was reduced to 0.99 m, representing a 53% improvement.  相似文献   

9.
A single-frequency single-site GPS/Galileo algorithm for retrieval of absolute total electron content is implemented. A single-layer approximation of the ionosphere is used for data modeling. In addition to a standard mapping function, the NeQuick model (version 2) of the ionosphere is now applied to derive improved mapping functions. This model is very attractive for this purpose, because it implements a ray tracer. We compare the new algorithm with the old one using an effective global height of the ionosphere of 450 km. Combined IGS IONEX gridded data sets serve as reference data. On global average, we find a small improvement of 1 % in precision (standard deviation) of the NeQuick2 mapping method versus the conventional approach on global average. A site-by-site comparison indicates an improvement in the precision for 34 % of the 44 sites under investigation. The level of improvement for these stations is 0.5 TECU on average. No improvement was observed for 41 % of the sites. Further comparisons of the single (code ranges and carrier phases) versus dual-frequency (carrier phases only) single site algorithm show that dual-frequency VTEC estimation is more accurate for the majority of the stations, but only in the range of 0.3 TECU (2.6 %) in average.  相似文献   

10.
Rapid initialization of real-time precise point positioning (PPP) has constantly been a difficult problem. Recent efforts through multi-GNSS and multi-frequency data, though beneficial indeed, have not proved sufficiently effective in reducing the initialization periods to far less than 10 min. Though this goal can be easily reached by introducing ionosphere corrections as accurate as a few centimeters, a dense reference network is required which is impractical for wi de-area applications. Leveraging the latest development of GLONASS PPP ambiguity resolution (PPP-AR) technique, we propose a composite strategy, where simultaneous GPS and GLONASS dual-frequency PPP-AR is carried out, and herein, the reliability of partial AR improves dramatically. We used 14 days of data from a German network and divided them into hourly data to test this strategy. We found that the initialization periods were shortened drastically from over 25 min when only GPS data were processed to about 6 min when GPS and GLONASS PPP-AR were accomplished simultaneously. More encouragingly, over 50% of real-time PPP solutions could be initialized successfully within 5 min through our strategy, in contrast to only 4% when only GPS data were used. We expect that our strategy can provide a promising route to overcoming the difficulty of achieving PPP initializations within a few minutes.  相似文献   

11.
The main challenge of dual-frequency precise point positioning (PPP) is that it requires about 30 min to obtain centimeter-level accuracy or to succeed in the first ambiguity-fixing. Currently, PPP is generally conducted with GPS only using the ionosphere-free combination. We adopt a single-differenced (SD) between-satellite PPP model to combine the GPS and GLONASS raw dual-frequency carrier phase measurements, in which the GPS satellite with the highest elevation is selected as the reference satellite to form the SD between-satellite measurements. We use a 7-day data set from 178 IGS stations to investigate the contribution of GLONASS observations to both ambiguity-float and ambiguity-fixed SD PPP solutions, in both kinematic and static modes. In ambiguity-fixed PPP, we only attempt to fix GPS integer ambiguities, leaving GLONASS ambiguities as float values. Numerous experimental results show that PPP with GLONASS and GPS requires much less convergence time than that of PPP with GPS alone. For ambiguity-float PPP, the average convergence time can be reduced by 45.9 % from 22.9 to 12.4 min in static mode and by 57.9 % from 40.6 to 17.7 min in kinematic mode, respectively. For ambiguity-fixed PPP, the average time to the first-fixed solution can be reduced by 27.4 % from 21.6 to 15.7 min in static mode and by 42.0 % from 34.4 to 20.0 min in kinematic mode, respectively. Experimental results also show that the less the GPS satellites are used in float PPP, the more significant is the reduction in convergence time when adding GLONASS observations. In addition, on average, more than 4 GLONASS satellites can be observed for most 2-h observation sessions. Nearly, the same improvement in convergence time reduction is achieved for those observations.  相似文献   

12.
利用单频接收机和双频接收机对顺溪滑坡的监测点分别进行监测,结合全站仪测得的基准点相对监测点的基线长度对观测数据进行处理和分析,总结出对基线较短的控制网采用单频接收机进行监测可以得到采用双频接收机进行监测的效果,不仅节约工程成本,而且在进行周期性复测时操作方便。  相似文献   

13.
Global Navigation Satellite Systems (GNSS) require mitigation of ionospheric propagation errors because the ionospheric range errors might be larger than tens of meters at the zenith direction. Taking advantage of the frequency-dispersive property of ionospheric refractivity, the ionospheric range errors can be mitigated in dual-frequency applications to a great extent by a linear combination of carrier phases or pseudoranges. However, single-frequency GNSS operations require additional ionospheric information to apply signal delay or range error corrections. To aid single-frequency operations, the global positioning system (GPS) broadcasts 8 coefficients as part of the navigation message to drive the ionospheric correction algorithm (ICA) also known as Klobuchar model. We presented here an ionospheric correction algorithm called Neustrelitz TEC model (NTCM) which can be used as complementary to the GPS ICA. Our investigation shows that the NTCM can be driven by Klobuchar model parameters to achieve a significantly better performance than obtained by the mother ICA algorithm. Our research, using post-processed reference total electron content (TEC) data from more than one solar cycle, shows that on average the RMS modeled TEC errors are up to 40% less for the proposed NTCM model compared to the Klobuchar model during high solar activity period, and about 10% less during low solar activity period. Such an approach does not require major technology changes for GPS users rather requires only introducing the NTCM approach a complement to the existing ICA algorithm while maintaining the simplicity of ionospheric range error mitigation with an improved model performance.  相似文献   

14.
The Global Positioning System (GPS) and Galileo will transmit signals on similar frequencies, that is, the L1–E1 and L5–E5a frequencies. This will be beneficial for mixed GPS and Galileo applications in which the integer carrier phase ambiguities need to be resolved, in order to estimate the positioning unknowns with centimeter accuracy or better. In this contribution, we derive the mixed GPS + Galileo model that is based on “inter-system” double differencing, that is, differencing the Galileo phase and code observations relative to those corresponding to the reference or pivot satellite of GPS. As a consequence of this, additional between-receiver inter-system bias (ISB) parameters need to be solved as well for both phase and code data. We investigate the size and variability of these between-receiver ISBs, estimated from L1 and L5 observations of GPS, as well as E1 and E5a observations of the two experimental Galileo In-Orbit Validation Element (GIOVE) satellites. The data were collected using high-grade multi-GNSS receivers of different manufacturers for several zero- and short-baseline setups in Australia and the USA. From this analysis, it follows that differential ISBs are only significant for receivers of different types and manufacturers; for baselines formed by identical receiver types, no differential ISBs have shown up; thus, implying that the GPS and GIOVE data are then fully interoperable. Fortunately, in case of different receiver types, our analysis also indicates that the phase and code ISBs may be calibrated, since their estimates, based on several datasets separated in time, are shown to be very stable. When the single-frequency (E1) GIOVE phase and code data of different receiver types are a priori corrected for the differential ISBs, the short-baseline instantaneous ambiguity success rate increases significantly and becomes comparable to the success rate of mixed GPS + GIOVE ambiguity resolution based on identical receiver types.  相似文献   

15.
Several processing strategies that use dual-frequency GPS-only solution, multi-frequency Galileo-only solution, and finally tightly combined dual-frequency GPS + Galileo solution were tested and analyzed for their applicability to single-epoch long-range precise positioning. In particular, a multi-system GPS + Galileo solution was compared to GPS double-frequency solution as well as to Galileo double-, triple-, and quadruple-frequency solutions. Also, the performance of the strategies was analyzed under clear-sky and obstructed satellite visibility in both single-baseline and multi-baseline modes. The results indicate that tightly combined GPS + Galileo instantaneous positioning has a clear advantage over single-system solutions and provides an accurate and reliable solution. It was also confirmed that application of multi-frequency observations in case of Galileo system has an advantage over a dual-frequency solution.  相似文献   

16.
Very high-rate global positioning system (GPS) data has the capacity to quickly resolve seismically related ground displacements, thereby providing great potential for rapidly determining the magnitude and the nature of an earthquake’s rupture process and for providing timely warnings for earthquakes and tsunamis. The GPS variometric approach can measure ground displacements with comparable precision to relative positioning and precise point positioning (PPP) within a short period of time. The variometric approach is based on single-differencing over time of carrier phase observations using only the broadcast ephemeris and a single receiver to estimate velocities, which are then integrated to derive displacements. We evaluate the performance of the variometric approach to measure displacements using 50 Hz GPS data, which were recorded during the 2013 MW 6.6 Lushan earthquake and the 2011 MW 9.0 Tohoku-Oki earthquake. The comparison between 50 and 1 Hz seismic displacements demonstrates that 1 Hz solutions often fail to faithfully manifest the seismic waves containing high-frequency seismic signals due to aliasing, which is common for near-field stations of a moderate-magnitude earthquake. Results indicate that 10–50 Hz sampling GPS sites deployed close to the source or the ruptured fault are needed for measuring dynamic seismic displacements of moderate-magnitude events. Comparisons with post-processed PPP results reveal that the variometric approach can determine seismic displacements with accuracies of 0.3–4.1, 0.5–2.3 and 0.8–6.8 cm in the east, north and up components, respectively. Moreover, the power spectral density analysis demonstrates that high-frequency noises of seismic displacements, derived using the variometric approach, are smaller than those of PPP-derived displacements in these three components.  相似文献   

17.
We present the new MAP3 algorithms to perform static precise point positioning (PPP) from multifrequency and multisystem GNSS observations. MAP3 represents a two-step strategy in which the least squares theory is applied twice to estimate smoothed pseudo-distances, initial phase ambiguities, and slant ionospheric delay first, and the absolute receiver position and its clock offset in a second adjustment. Unlike the classic PPP technique, in our new approach, the ionospheric-free linear combination is not used. The combination of signals from different satellite systems is accomplished by taking into account the receiver inter-system bias. MAP3 has been implemented in MATLAB and integrated within a complete PPP software developed on site and named PCube. We test the MAP3 performance numerically and contrast it with other external PPP programs. In general, MAP3 positioning accuracy with low-noise GPS dual-frequency observations is about 2.5 cm in 2-h observation periods, 1 cm in 10 h, and 7 mm after 1 day. This means an improvement in the accuracy in short observation periods of at least 7 mm with respect to the other PPP programs. The MAP3 convergence time is also analyzed and some results obtained from real triple-frequency GPS and GIOVE observations are presented.  相似文献   

18.
针对同时估计电离层延迟导致的单频精密单点定位解算秩亏问题,提出了一种附加历元间约束的多历元递推算法。该算法根据无周跳时前后历元模糊度不变的特性,在每一组多历元联合数据解算时,每颗卫星只设置一个模糊度参数,不需要外部先验信息约束即可解决秩亏问题。另外,本文算法同时考虑了参数及观测值之间的时间相关性,采用附加约束的平方根信息滤波对部分参数进行历元间约束,克服多历元算法的病态性,提高了算法的可靠性。试验采用全球分布的15个IGS跟踪站14 d的数据,静态定位精度优于3 cm,仿动态解约为1.5 dm。与同时估计电离层延迟的单频PPP方法相比,收敛速度提高了24%,与双频无电离层组合PPP的收敛速度基本一致,定位精度提高了30%,高程分量定位精度提高更为明显。  相似文献   

19.
For single-frequency users of the global satellite navigation system (GNSS), one of the main error contributors is the ionospheric delay, which impacts the received signals. As is well-known, GPS and Galileo transmit global models to correct the ionospheric delay, while the international GNSS service (IGS) computes precise post-process global ionospheric maps (GIM) that are considered reference ionospheres. Moreover, accurate ionospheric maps have been recently introduced, which allow for the fast convergence of the real-time precise point position (PPP) globally. Therefore, testing of the ionospheric models is a key issue for code-based single-frequency users, which constitute the main user segment. Therefore, the testing proposed in this paper is straightforward and uses the PPP modeling applied to single- and dual-frequency code observations worldwide for 2014. The usage of PPP modeling allows us to quantify—for dual-frequency users—the degradation of the navigation solutions caused by noise and multipath with respect to the different ionospheric modeling solutions, and allows us, in turn, to obtain an independent assessment of the ionospheric models. Compared to the dual-frequency solutions, the GPS and Galileo ionospheric models present worse global performance, with horizontal root mean square (RMS) differences of 1.04 and 0.49 m and vertical RMS differences of 0.83 and 0.40 m, respectively. While very precise global ionospheric models can improve the dual-frequency solution globally, resulting in a horizontal RMS difference of 0.60 m and a vertical RMS difference of 0.74 m, they exhibit a strong dependence on the geographical location and ionospheric activity.  相似文献   

20.
Recent studies have demonstrated the usefulness of global positioning system (GPS) receivers for relative positioning of formation-flying satellites using dual-frequency carrier-phase observations. The accurate determination of distances or baselines between satellites flying in formation can provide significant benefits to a wide area of geodetic studies. For spaceborne radar interferometry in particular, such measurements will improve the accuracy of interferometric products such as digital elevation models (DEM) or surface deformation maps. The aim of this study is to analyze the impact of relative position errors on the interferometric baseline performance of multistatic synthetic aperture radar (SAR) satellites flying in such a formation. Based on accuracy results obtained from differential GPS (DGPS) observations between the twin gravity recovery and climate experiment (GRACE) satellites, baseline uncertainties are derived for three interferometric scenarios of a dedicated SAR mission. For cross-track interferometry in a bistatic operational mode, a mean 2D baseline error (1σ) of 1.4 mm is derived, whereas baseline estimates necessary for a monostatic acquisition mode with a 50 km along-track separation reveal a 2D uncertainty of approximately 1.7 mm. Absolute orbit solutions based on reduced dynamic orbit determination techniques using GRACE GPS code and carrier-phase data allows a repeat-pass baseline estimation with an accuracy down to 4 cm (2D 1σ). To assess the accuracy with respect to quality requirements of high-resolution DEMs, topographic height errors are derived from the estimated baseline uncertainties. Taking the monostatic pursuit flight configuration as the worst case for baseline performance, the analysis reveals that the induced low-frequency modulation (height bias) fulfills the relative vertical accuracy requirement (σ<1 m linear point-to-point error) according to the digital terrain elevation data level 3 (DTED-3) specifications for most of the baseline constellations. The use of a GPS-based reduced dynamic orbit determination technique improves the baseline performance for repeat-pass interferometry. The problem of fulfilling the DTED-3 horizontal accuracy requirements is still an issue to be investigated. DGPS can be used as an operational navigation tool for high-precision baseline estimation if a geodetic-grade dual-frequency spaceborne GPS receiver is assumed to be the primary instrument onboard the SAR satellites. The possibility of using only single-frequency receivers, however, requires further research effort.Deutsche Forschungsgemeinschaft (DFG) research fellow until Sept. 2004 at the Microwaves and Radar Institute, Deutsche Zentrum für Luft- und Raumfahrt (DLR) e.V., 82234 Weßling, Germany  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号