首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have detected the optical counterpart of the proposed double degenerate polar RX J1914+24. The I -band light curve is modulated on the 9.5-min period seen in X-rays. There is no evidence for any other periods. No significant modulation is seen in J . The infrared colours of RX J1914+24 are not consistent with a main-sequence dwarf secondary star. Our ASCA spectrum of RX J1914+24 is typical of a heavily absorbed polar and our ASCA light curve also shows only the 9.5-min period. We find that the folded I band and X-ray light curves are out of phase. We attribute the I -band flux to the irradiated face of the donor star. The long-term X-ray light curve shows a variation in the observed flux of up to an order of magnitude. These observations strengthen the view that RX J1914+24 is indeed the first double degenerate polar to be detected. In this light, we discuss the synchronizing mechanisms in such a close binary and other system parameters.  相似文献   

2.
It has been proposed that RX J1914.4+2456 is a stellar binary system with an orbital period of 9.5 min. As such it shares many similar properties with RX J0806.3+1527 (5.4 min). However, while the X-ray spectrum of RX J0806.3+1527 can be modelled using a simple absorbed blackbody, the X-ray spectrum of RX J1914.4+2456 has proved difficult to fit using a physically plausible model. In this paper, we re-examine the available X-ray spectra of RX J1914.4+2456 taken using XMM–Newton . We find that the X-ray spectra can be fitted using a simple blackbody and an absorption component which has a significant enhancement of neon compared to the solar value. We propose that the material in the interbinary system is significantly enhanced with neon. This makes its intrinsic X-ray spectrum virtually identical to RX J0806.3+1527. We re-access the X-ray luminosity of RX J1914.4+2456 and the implications of these results.  相似文献   

3.
We propose a model for stellar binary systems consisting of a magnetic and a non-magnetic white dwarf pair which is powered principally by electrical energy. In our model the luminosity is caused by resistive heating of the stellar atmospheres arising from induced currents driven within the binary. This process is reminiscent of the Jupiter–Io system, but greatly increased in power because of the larger companion and stronger magnetic field of the primary. Electrical power is an alternative stellar luminosity source, following on from nuclear fusion and accretion. We find that this source of heating is sufficient to account for the observed X-ray luminosity of the 9.5-min binary RX J1914+24, and provides an explanation for its puzzling characteristics.  相似文献   

4.
Some unidentified EGRET sources have been reported to have probable X-ray counterparts. Periodicities in the X-ray data of those sources, if found, may help to strengthen the identification and to reveal their nature. We performed a detailed search of periodicities with a photon-counting method, the H-test, in the XMM and ASCA data of RX J0007.0+7302, which is the most probable X-ray counterpart to the EGRET source 3EG J0010+7309. Although no periods with enough significance were found, a possible one, at 0.1275433± 0.0000001 s (MJD 52327.03399), is quite intriguing based on results of cross-checking the two data sets. We suggest future analysis with other data to search the vicinity of this period.  相似文献   

5.
Recent Chandra and XMM–Newton observations of a number of X-ray 'dim' pulsating neutron stars have revealed quite unexpected features in the emission from these sources. Their soft thermal spectrum, believed to originate directly from the star surface, shows evidence for a phase-varying absorption line at some hundred eVs. The pulse modulation is relatively large (pulsed fractions in the range ∼12–35 per cent), the pulse shape is often non-sinusoidal, and the hard X-ray colour appears to be anticorrelated in phase with the total emission. Moreover, the prototype of this class, RX J0720.4−3125, has been found to undergo rather sensible changes in both its spectral and timing properties over a time-scale of a few years. All these new findings seem difficult to reconcile with the standard picture of a cooling neutron star endowed with a purely dipolar magnetic field, at least if surface emission is produced in an atmosphere on top of the crust. In this paper we explore how a dipolar+quadrupolar star-centred field influences the properties of the observed light curves. The phase-resolved spectrum has been evaluated accounting for both radiative transfer in a magnetized atmosphere and general relativistic ray-bending. We computed over 78 000 light curves, varying the quadrupolar components and the viewing geometry. A comparison of the data with our model indicates that higher-order multipoles are required to reproduce the observations.  相似文献   

6.
RX J1856.5−3754 is one of the brightest, nearby isolated neutron stars (NSs), and considerable observational resources have been devoted to its study. In previous work, we found that our latest models of a magnetic, hydrogen atmosphere match well the entire spectrum, from X-rays to optical (with best-fitting NS radius   R ≈ 14  km, gravitational redshift   z g∼ 0.2  , and magnetic field   B ≈ 4 × 1012  G). A remaining puzzle is the non-detection of rotational modulation of the X-ray emission, despite extensive searches. The situation changed recently with XMM–Newton observations that uncovered 7-s pulsations at the     level. By comparing the predictions of our model (which includes simple dipolar-like surface distributions of magnetic field and temperature) with the observed brightness variations, we are able to constrain the geometry of RX J1856.5−3754, with one angle <6° and the other angle     , though the solutions are not definitive, given the observational and model uncertainties. These angles indicate a close alignment between the rotation and the magnetic axes or between the rotation axis and the observer. We discuss our results in the context of RX J1856.5−3754 being a normal radio pulsar and a candidate for observation by future X-ray polarization missions such as Constellation-X or XEUS .  相似文献   

7.
We present observations of the X-ray transient XTE J1118+480 during its low/hard X-ray state outburst in 2000, at radio and submillimetre wavelengths with the VLA, Ryle Telescope, MERLIN and JCMT. The high-resolution MERLIN observations reveal all the radio emission (at 5 GHz) to come from a compact core with physical dimensions smaller than 65 d (kpc) au. The combined radio data reveal a persistent and inverted radio spectrum, with spectral index ∼ +0.5. The source is also detected at 350 GHz, on an extrapolation of the radio spectrum. Flat or inverted radio spectra are now known to be typical of the low/hard X-ray state, and are believed to arise in synchrotron emission from a partially self-absorbed jet. Comparison of the radio and submillimetre data with reported near-infrared observations suggest that the synchrotron emission from the jet extends to the near-infrared, or possibly even optical regimes. In this case the ratio of jet power to total X-ray luminosity is likely to be P J L X≫0.01, depending on the radiative efficiency and relativistic Doppler factor of the jet. Based on these arguments we conclude that during the period of our observations XTE J1118+480 was producing a powerful outflow which extracted a large fraction of the total accretion power.  相似文献   

8.
The fast rotating star CU Virginis is a magnetic chemically peculiar star with an oblique dipolar magnetic field. The continuum radio emission has been interpreted as gyrosynchrotron emission arising from a thin magnetospheric layer. Previous radio observations at 1.4 GHz showed that a 100 per cent circular polarized and highly directive emission component overlaps to the continuum emission two times per rotation, when the magnetic axis lies in the plane of the sky. This sort of radio lighthouse has been proposed to be due to cyclotron maser emission generated above the magnetic pole and propagating perpendicularly to the magnetic axis. Observations carried out with the Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this discovery show that this radio emission is still present, meaning that the phenomenon responsible for this process is steady on a time-scale of years. The emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On the light of recent results on the physics of the magnetosphere of this star, the possibility of plasma radiation is ruled out. The characteristics of this radio lighthouse provide us a good marker of the rotation period, since the peaks are visible at particular rotational phases. After one year, they show a delay of about 15 min. This is interpreted as a new abrupt spinning down of the star. Among several possibilities, a quick emptying of the equatorial magnetic belt after reaching the maximum density can account for the magnitude of the breaking. The study of the coherent emission in stars like CU Vir, as well as in pre-main-sequence stars, can give important insight into the angular momentum evolution in young stars. This is a promising field of investigation that high-sensitivity radio interferometers such as Square Kilometre Array can exploit.  相似文献   

9.
We present low-frequency observations with the Giant Metrewave Radio Telescope of three giant radio sources (GRSs: J0139+3957, J0200+4049 and J0807+7400) with relaxed diffuse lobes which show no hotspots and no evidence of jets. The largest of these three, J0200+4049, exhibits a depression in the centre of the western lobe, while J0139+3957 and J0807+7400 have been suggested earlier by Klein et al. and Lara et al., respectively, to be relic radio sources. We estimate the ages of the lobes. We also present Very Large Array observations of the core of J0807+7400, and determine the core radio spectra for all three sources. Although the radio cores suggest that the sources are currently active, we explore the possibility that the lobes in these sources are due to an earlier cycle of activity.  相似文献   

10.
Sharp dips observed in the pulse profiles of three X-ray pulsars (GX 1+4, RX J0812.4−3114 and A 0535+26) have previously been suggested to arise from partial eclipses of the emission region by the accretion column occurring once each rotation period. We present pulse-phase spectroscopy from Rossi X-ray Timing Explorer satellite observations of GX 1+4 and RX J0812.4−3114, which for the first time confirms this interpretation. The dip phase corresponds to the closest approach of the column axis to the line of sight, and the additional optical depth of photons escaping from the column in this direction gives rise to both the decrease in flux and increase in the fitted optical depth measured at this phase. Analysis of the arrival time of individual dips in GX 1+4 provides the first measurement of azimuthal wandering of a neutron star accretion column. The column longitude varies stochastically with a standard deviation ranging between 2° and 6° depending on the source luminosity. Measurements of the phase width of the dip both from mean pulse profiles and from the individual eclipses demonstrate that the dip width is proportional to the flux. The variation is consistent with that expected if the azimuthal extent of the accretion column depends only upon the Keplerian velocity at the inner disc radius, which varies as a consequence of the accretion rate M˙ .  相似文献   

11.
We report the discovery of a new AM Herculis binary (polar) as the optical counterpart of the soft X-ray source RX J1724.0+4114 detected during the ROSAT all-sky survey. The magnetic nature of this V  ∼ 17 mag object is confirmed by low-resolution spectroscopy showing strong Balmer and He  II emission lines superimposed on a blue continuum, which is deeply modulated by cyclotron humps. The inferred magnetic field strength is 50 ± 4 MG (or possibly even ≈ 70 MG). Photometric observations spanning ∼ 3 yr reveal a period of 119.9 min, directly below the period gap. The morphology of the optical and X-ray light curves, which do not show eclipses by the secondary star, suggests a self-eclipsing geometry. We derive a lower limit on the distance of d  ≳ 250 pc.  相似文献   

12.
Resonant cyclotron scattering(RCS)in pulsar magnetospheres is considered.The photon diffusion equation(Kompaneets equation)for RCS is derived.The photon system is modeled three dimensionally.Numerical calculations show that there exist not only up scattering but also down scattering of RCS,depending on the parameter space.RCS's possible applications to spectral energy distributions of magnetar candidates and radio quiet isolated neutron stars(INSs)are pointed out.The optical/UV excess of INSs may be caused by the down scattering of RCS.The calculations for RX J1856.5-3754 and RX J0720.4-3125 are presented and compared with their observational data.In our model,the INSs are proposed to be normal neutron stars,although the quark star hypothesis is still possible.The low pulsation amplitude of INSs is a natural consequence in the RCS model.  相似文献   

13.
We report polarimetric, spectropolarimetric and photometric observations of the eclipsing ROSAT cataclysmic variable RX J0929.1−2404, which confirm that the system is a new polar (AM Herculis system). This brings the number of eclipsing polars to nine, with RX J0929.1−2404 being only the third such system above the period gap. Circular polarization variations from ∼−20 to 10 per cent are seen over the 3.39-h orbital period, with a minimum around the time of eclipse. The photopolarimetric data were modelled using arc-shaped cyclotron emission regions in a centred dipole geometry. Results imply that RX J0929.1−2404 is a 'two-pole' system, with one emission region partially visible at all orbital phases. Spectropolarimetry observations show some evidence for the presence of cyclotron humps in the continuum, with spacings consistent with a magnetic field strength of ∼20 MG. Photometry of the eclipses provides information on the size of the emission region, which is consistent with a hotspot on the surface of the white dwarf. The eclipse duration implies an inclination in the range 70°≲ i ≲78°.  相似文献   

14.
The International Gamma-Ray Astrophysics Laboratory observatory has been (re-)discovering new X-ray sources since the beginning of nominal operations in early 2003. These sources include X-ray binaries, active galactic nuclei, cataclysmic variables, etc. Amongst the X-ray binaries, the true nature of many of these sources has remained largely elusive, though they seem to make up a population of highly absorbed high-mass X-ray binaries. One of these new sources, IGR J19140+0951, was serendipitously discovered on 2003 March 6 during an observation of the galactic microquasar GRS 1915+105. We observed IGR J19140+0951 with the United Kingdom Infrared Telescope in order to identify the infrared counterpart. Here we present the H - and K -band spectra. We determined that the companion is a B0.5-type bright supergiant in a wind-fed system, at a distance ≲5 kpc.  相似文献   

15.
We have studied the 1999 soft X-ray transient outburst of XTE J1859+226 at radio and X-ray wavelengths. The event was characterized by strong variability in the disc, corona and jet – in particular, a number of radio flares (ejections) took place and seemed well-correlated with hard X-ray events. Apparently unusual for the canonical 'soft' X-ray transient, there was an initial period of low/hard state behaviour during the rise from quiescence but prior to the peak of the main outburst – we show that not only could this initial low/hard state be a ubiquitous feature of soft X-ray transient outbursts, but also it could be extremely important in our study of outburst mechanisms.  相似文献   

16.
The fields of eight X-ray sources in the Magellanic Clouds believed to be Be/X-ray binaries have been searched for possible Be-star counterparts. BVR c and H α CCD imaging was employed to identify early-type emission stars through colour indices and H α fluxes. Spectroscopy of five sources confirms the presence of H α emission in each case. Based on the positional coincidence of emission-line objects with the X-ray sources, we identify Be-star counterparts to the ROSAT sources RX J0032.9-7348, RX J0049.1-7250, RX J0054.9-7226 and RX J0101.0-7206, and to the recently discovered ASCA source AX J0051-722. We confirm the Be star nature of the counterpart to the HEAO1 source H0544-66. In the field of the ROSAT source RX J0051.8-7231 we find that there are three possible counterparts, each showing evidence for H α emission. We find a close double in the error circle of the EXOSAT source EXO 0531.1-6609, each component of which could be a Be star associated with the X-ray source.  相似文献   

17.
RX J1856.5−3754 is one of the brightest nearby isolated neutron stars (INSs), and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5−3754, within the uncertainties. In our simplest model, the best-fitting parameters are an interstellar column density   N H≈ 1 × 1020 cm−2  and an emitting area with   R ≈ 17 km  (assuming a distance to RX J1856.5−3754 of 140 pc), temperature   T ≈ 4.3 × 105 K  , gravitational redshift   z g ∼ 0.22  , atmospheric hydrogen column   y H≈ 1 g cm−2  , and magnetic field   B ≈ (3–4) × 1012 G  ; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the NS surface as well as general relativistic effects, to determine pulsations; we find that there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5−3754.  相似文献   

18.
A plasma emission model is presented interpreting the observational properties of RX J1856.5-3754. In particular, on the basis of the Vlasov’s kinetic equation we study the process of the quasi-linear diffusion (QLD) developed by means of the cyclotron instability. This mechanism provides simultaneous generation of optical and X-ray emission on the light cylinder scales, in one location of the pulsar magnetosphere. It is assumed that the observed X-ray spectrum of this source is generated via the synchrotron mechanism. A different approach of the synchrotron theory is considered, giving a spectral energy distribution that is in a good agreement with the observational data.  相似文献   

19.
We revisit the discovery outburst of the X-ray transient XTE J1550−564 during which relativistic jets were observed in 1998 September, and review the radio images obtained with the Australian Long Baseline Array, and light curves obtained with the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array. Based on H i spectra, we constrain the source distance to between 3.3 and 4.9 kpc. The radio images, taken some 2 d apart, show the evolution of an ejection event. The apparent separation velocity of the two outermost ejecta is at least  1.3 c   and may be as large as  1.9 c   ; when relativistic effects are taken into account, the inferred true velocity is  ≥ 0.8 c   . The flux densities appear to peak simultaneously during the outburst, with a rather flat (although still optically thin) spectral index of −0.2.  相似文献   

20.
We report on the long-term variability of the Be/X-ray binary LS I +61° 235/RX J0146.9+6121. New optical spectroscopic and infrared photometric observations confirm the presence of global one-armed oscillations in the circumstellar disc of the Be star, and allow us to derive a V R band quasi-period of 1240±30 d. Pronounced shell events, reminiscent of the spectacular variations in Be stars, are also seen. We have found that the J , H and K infrared photometric bands vary in correlation with the spectroscopic V R variations, implying that the one-armed disc oscillations are prograde. The effect of the oscillations is not only seen in the H α line but is also seen in the He  i λ 6678 and Paschen lines. As these lines are formed at different radii in the equatorial disc of the Be star, such effects confirm the global nature of the perturbation. The Keplerian disc has been found to be denser than the average for a sample of isolated Be stars, which may be indicative of some kind of interaction with the compact companion. Finally, from a Rossi X-ray Timing Explorer observation we derive a spin period of the neutron star of 1404.5±0.5 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号