首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
基于新耦合气溶胶气候模式FGOALS-f3-L模拟分析了2002-2011年青藏高原地区气溶胶时空分布特征.结果表明:青藏高原地区,沙尘,硫酸盐,碳质气溶胶(包括黑碳,有机碳和混合碳)地表质量浓度分别占比为53.6%,32.2%,14.2%;在拉萨站点,模拟的气溶胶地表质量浓度被低估,尤其是黑碳和有机碳气溶胶;模拟的气溶胶光学厚度(AOD)时空分布与卫星观测结果较为一致,均方根误差和偏差分别为0.081和0.036;由于模式中沙尘排放参数化的不确定性,模式对AOD的模拟效果在夏季和秋季优于春季.  相似文献   

2.
结合2006年最新的气溶胶排放源资料,以NCEP/NCAR再分析资料为气象场,驱动大气化学传输模式MATCH(Model of Atmospheric Transport and Chemistry),模拟了2006年中国地区硫酸盐、黑碳和沙尘气溶胶的质量浓度分布及其季节变化。模拟的气溶胶光学厚度(AOD)结果与CSHNET观测网数据比较分析后发现,基于21个观测站的61组月平均数据与相应模拟结果的相关系数为0.63。模拟结果表明:2006年中国地区硫酸盐气溶胶高值区主要分布在中国的四川盆地、华北及长江流域等工业较发达地区,而且具有明显的季节变化,四川盆地及长江以南地区,硫酸盐气溶胶1月份浓度高于7月份,长江以北的大部分地区,7月份浓度高于1月份;黑碳气溶胶主要分布在黄河、长江中下游地区及华南等地区,1月份浓度高于7月份;沙尘气溶胶主要分布在内蒙古中部沙漠地区,4月份浓度最高,7月份次之,其他月份较少。  相似文献   

3.
The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/aerosol model,which includes major anthropogenic aerosols(sulfate,black carbon,and organic carbon) and natural aerosols(soil dust and sea salt) .Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report(IPCC AR5) ,whereas natural aerosols are calculated online in the model.The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9--33 W m-2 over most areas of China,with maxima over the Gobi desert of West China,and-12 W m-2 to-24 W m-2 over the Sichuan Basin,the middle and lower reaches of the Yellow River and the Yangtze River.Aerosols caused surface cooling in most areas of East Asia,with maxima of-0.8-C to-1.6-C over the deserts of West China,the Sichuan Basin,portions of central China,and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China,with maxima of-90 mm/year to-150 mm/year over the Sichuan Basin,the middle reaches of the Yangtze River and the lower reaches of the Yellow River.Interdecadal variation of the climate response to the aerosol direct radiative effect is evident,indicating larger decrease in surface air temperature and stronger perturbation to precipitation in the 1990s than that in the 1980s,which could be due to the interdecadal variation of anthropogenic emissions.  相似文献   

4.
To assess individual direct radiative effects of diverse aerosol species on a regional scale,the air quality modeling system RAMS-CMAQ(Regional Atmospheric Modeling System and Community Multiscale Air Quality) coupled with an aerosol optical properties/radiative transfer module was used to simulate the temporal and spatial distributions of their optical and radiative properties over East Asia throughout 2005.Annual and seasonal averaged aerosol direct radiative forcing(ADRF) of all important aerosols and individual components,such as sulfate,nitrate,ammonium,black carbon(BC),organic carbon(OC),and dust at top-of-atmosphere(TOA) in clear sky are analyzed.Analysis of the model results shows that the annual average ADRF of all important aerosols was in the range of 0 to-18 W m?2,with the maximum values mainly distributed over the Sichuan Basin.The direct radiative effects of sulfate,nitrate,and ammonium make up most of the total ADRF in East Asia,being concentrated mainly over North and Southeast China.The model domain is also divided into seven regions based on different administrative regions or countries to investigate detailed information about regional ADRF variations over East Asia.The model results show that the ADRFs of sulfate,ammonium,BC,and OC were stronger in summer and weaker in winter over most regions of East Asia,except over Southeast Asia.The seasonal variation in the ADRF of nitrate exhibited the opposite trend.A strong ADRF of dust mainly appeared in spring over Northwest China and Mongolia.  相似文献   

5.
基于2007—2021年CALIPSO和MODIS主、被动卫星遥感探测数据,对塔克拉玛干沙漠和撒哈拉沙漠的气溶胶光学特性时空分布特征进行探究及对比分析。结果表明:(1)两大沙漠的沙尘气溶胶对总气溶胶的贡献率最大,气溶胶类型季节变化的相对单一性反映了塔克拉玛干沙漠和撒哈拉沙漠地区存在沙漠沙尘排放对总气溶胶成分的显著影响;(2)塔克拉玛干沙漠气溶胶光学厚度AOD的峰值出现在春季(春季>夏季>秋季>冬季),而撒哈拉沙漠AOD的峰值出现在夏季(夏季>春季>秋季>冬季);(3)撒哈拉沙漠总气溶胶抬升高度与塔克拉玛干沙漠相近,但近地面层消光系数明显小于塔克拉玛干沙漠;塔克拉玛干沙漠的消光系数平均值在所有季节中均大于撒哈拉沙漠,故塔克拉玛干沙漠的沙尘气溶胶AOD比撒哈拉沙漠的大;相比沙漠沙尘气溶胶,塔克拉玛干沙漠和撒哈拉沙漠都无明显的污染沙尘和抬升烟活动。上述研究结果揭示了两大沙漠源区沙尘气溶胶光学特性的观测事实与利用大气气溶胶时空变化特征反映区域气候变化的可能性。  相似文献   

6.
The air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) is developed to simulate the aerosol optical depth (AOD) and aerosol direct forcing (DF). The aerosol-specific extinction, single scattering albedo, and asymmetry factor are parameterized based on Mie theory taking into account the aerosol size distribution, composition, refractive index, and water uptake of solution particles. A two-stream solar radiative model considers all gaseous molecular absorption, Rayleigh scattering, and aerosols and clouds. RAMSCMAQ is applied to simulate all major aerosol concentrations (e.g., sulfate, nitrate, ammonium, organic carbon, black carbon, fine soil, and sea salt) and AOD and DF over East Asia in 2005. To evaluate its performance, the simulated AOD values were compared with ground-based in situ measurements. The comparison shows that RAMSCMAQ performed well in most of the model domain and generally captured the observed variations. High AOD values (0.2-1.0) mainly appear in the Sichuan Basin as well as in central and southeastern China. The geographic distribution of DF generally follows the AOD distribution patterns, and the DF at the top-of-the-atmosphere is less than -25 and -20 W m^-2 in clear-sky and all-sky over the Sichuan Basin. Both AOD and DF exhibit seasonal variations with lower values in July and higher ones in January. The DF could obviously be impacted by high cloud fractions.  相似文献   

7.
This study presents the simulated aerosol spatiotemporal characteristics over the Tibetan Plateau (TP) with a newly developed coupled aerosol–climate model (FGOALS-f3-L). The aerosol properties are simulated over the TP for the period 2002–11. The results indicate that soil dust, sulfate, and carbonaceous aerosols (black carbon (BC), organic carbon (OC) and BC/OC) account for 53.6%, 32.2%, and 14.2% of the total aerosol mass over the TP, respectively. The simulated aerosol surface mass concentrations and aerosol optical depths (AODs) are evaluated with ground-based and satellite observations, respectively. Underestimations of the aerosol surface mass concentration are found at the Lhasa site, especially for BC and OC. The spatial distribution and interannual variation of AOD are consistent with MODIS observations, with the RMSE of 0.081 and bias of 0.036. Due to the uncertainty of the parameterization of dust emissions, the model's performance in summer and autumn is much better than that in spring.摘要基于新耦合气溶胶气候模式FGOALS-f3-L模拟分析了2002–2011年青藏高原地区气溶胶时空分布特征.结果表明:青藏高原地区, 沙尘,硫酸盐,碳质气溶胶 (包括黑碳,有机碳和混合碳) 地表质量浓度分别占比为53.6%, 32.2%, 14.2%;在拉萨站点, 模拟的气溶胶地表质量浓度被低估, 尤其是黑碳和有机碳气溶胶;模拟的气溶胶光学厚度 (AOD) 时空分布与卫星观测结果较为一致, 均方根误差和偏差分别为0.081和0.036;由于模式中沙尘排放参数化的不确定性, 模式对AOD的模拟效果在夏季和秋季优于春季  相似文献   

8.
The spatial distributions and interannual variations of aerosol concentrations,aerosol optical depth(AOD) ,aerosol direct radiative forcings,and their responses to heterogeneous reactions on dust surfaces over East Asia in March 2006-10 were investigated by utilizing a regional coupled climate-chemistry/aerosol model. Anthropogenic aerosol concentrations(inorganic+carbonaceous) were higher in March 2006 and 2008,whereas soil dust reached its highest levels in March 2006 and 2010,resulting in stronger aerosol radiative forcings in these periods.The domain and five-year(2006-10) monthly mean concentrations of anthropogenic and dust aerosols,AOD,and radiative forcings at the surface(SURF) and at the top of the atmosphere(TOA) in March were 2.4μg m-3,13.1μg m-3,0.18,-19.0 W m-2,and-7.4 W m-2,respectively.Heterogeneous reactions led to an increase of total inorganic aerosol concentration;however,the ambient inorganic aerosol concentration decreased,resulting in a smaller AOD and weaker aerosol radiative forcings.In March 2006 and 2010,the changes in ambient inorganic aerosols,AOD,and aerosol radiative forcings were more evident.In terms of the domain and five-year averages,the total inorganic aerosol concentrations increased by 13.7%(0.17μg m-3) due to heterogeneous reactions,but the ambient inorganic aerosol concentrations were reduced by 10.5%(0.13μg m-3) .As a result,the changes in AOD,SURF and TOA radiative forcings were estimated to be-3.9%(-0.007) ,-1.7%(0.34 W m-2) ,and-4.3%(0.34 W m-2) ,respectively,in March over East Asia.  相似文献   

9.
西北地区MODIS气溶胶产品的对比应用分析   总被引:3,自引:0,他引:3  
胡蝶  张镭  沙莎  王宏斌 《干旱气象》2013,(4):677-683
利用气溶胶自动监测网(AERONET)的太阳光度计(CE-318)资料,对2003-2010年西北干旱半干旱区MODIS暗像元算法和深蓝算法2种气溶胶光学厚度(AOD)产品进行对比验证,在此基础上进一步研究了该区域AOD的空间分布特征及变化趋势。结果表明,MODIS暗像元算法AOD产品在半干旱区原生植被覆盖地表精度优于深蓝算法,而西北干旱区荒漠地表深蓝算法产品精度较高。Aqua—MODIS深蓝算法AOD产品能够较好地给出我国西北荒漠亮地表地区AOD的分布及季节变化情况,AOD高值区多分布在沙尘源区,且春季AOD最大。2003~2010年,塔里木盆地、准噶尔盆地和柴达木盆地年均AOD分别在0.5、0.4和0.3附近波动;沙尘区各区域年均AOD大多呈现增加趋势。其中,塔里木盆地AOD增加趋势较大,而内蒙古西部和准噶尔盆地呈现微弱减少趋势。  相似文献   

10.
The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach 5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.  相似文献   

11.
高玮  屈文军 《山东气象》2018,38(4):81-92
研究了非洲地区大气气溶胶光学厚度(AOD)的时空变化及沙尘气溶胶越大西洋海区的传输。结果表明:1)源于撒哈拉沙漠的沙尘及其随赤道东风向西输送使得沙尘气溶胶成为非洲沙漠地区和紧邻的大西洋海区的主要气溶胶组分;AOD高值区和沙尘气溶胶光学厚度高值区在1—7月随赤道辐合带北移同步向北移动,而在8—12月则向南回撤。2)刚果盆地大气气溶胶主要为热带雨林和稀树草原排放的有机碳(OC)和黑碳(BC)气溶胶;其中与生物质燃烧源排放有关的OC、BC高值主要集中在干季(6—9月)的后半段(8—9月);而生物源OC排放全年连续,其排放峰值出现于雨季开始时;生物质燃烧排放高值期与生物源排放高值期前后相继,形成干季(尤其是后半段)时期的OC、BC光学厚度高值。3)亚马逊河入海口地区主要气溶胶组分为海盐气溶胶,9—11月该区风力输送增强,风向由东南风转变为东风,海盐进入亚马逊河入海口处,形成AOD和海盐气溶胶光学厚度高值区。4)撒哈拉沙漠沙尘气溶胶向大西洋传输的偏北月份为7—9月、偏南月份为1—3月;2000—2016年海区沙尘气溶胶的传输路径存在向南移动的变化趋势,与同期亚速尔高压的增强和沙尘传输路径以北北风分量的增强以及赤道辐合带的移动一致。上述研究结果揭示了利用大气气溶胶时空变化特征反映区域大气环流和气候变化的可能性。  相似文献   

12.
Data on aerosol optical thickness(AOT) and single scattering albedo(SSA) derived from Moderate Resolution Imaging Spectrometer(MODIS) and Ozone Monitoring Instrument(OMI) measurements,respectively,are used jointly to examine the seasonal variations of aerosols over East Asia.The seasonal signals of the total AOT are well defined and nearly similar over the land and over the ocean.These findings indicate a natural cycle of aerosols that originate primarily from natural emissions. In contrast,the small-sized aerosols represented by the fine-mode AOT,which are primarily generated over the land by human activities,do not have evident seasonalscale fluctuations.A persistent maximum of aerosol loadings centered over the Sichuan basin is associated with considerable amounts of fine-mode aerosols throughout the year.Most regions exhibit a general spring maximum. During the summer,however,the aerosol loadings are the most marked over north central China.This occurrence may result from anthropogenic fine particles,such as sulfate and nitrate.Four typical regions were selected to perform a covariation analysis of the monthly gridded AOT and SSA.Over southwestern and southeastern China,if the aerosol loadings are small to moderate they are composed primarily of the highly absorptive aerosols. However,more substantial aerosol loadings probably represent less-absorptive aerosols.The opposite covariation pattern occurring over the coastal-adjacent oceans suggests that the polluted oceanic atmosphere is closely correlated with the windward terrestrial aerosols.North central China is strongly affected by dust aerosols that show moderate absorption.This finding may explain the lower variability in the SSA that accompanies increasing aerosol loadings in this region.  相似文献   

13.
利用Terra和Aqua卫星上的MODIS探测反演气溶胶产品,比较分析了中国中东部和印度次大陆地区的气溶胶物理特性的异同。研究结果表明:中国中东部气溶胶类型以烟尘为主,印度次大陆地区东、西部分别以烟尘和沙尘为主。两地气溶胶光学厚度均有明显的年际变化,冬季低,夏季高。在夏季,两地烟尘所占比例都很大,且光学厚度也大,故两地污染状况都比较严重。总体来说,中国中东部地区污染程度要高于印度次大陆地区。  相似文献   

14.
The direct effects of sulfate aerosol, dust aerosol, carbonaceous aerosol, and total combined aerosols on the tropopause height are simulated with the Community Atmospheric Model version 3.1 (CAM3.1). A decrease of global mean tropopause height induced by sulfate, carbonaceous aerosol, and total combined aerosols is found, and a tropopause height increase is induced by dust aerosol. Sulfate aerosol decreases the tropospheric temperature and increases the stratospheric temperature. These effects cause a decrease in the height of the tropopause. In contrast, carbonaceous and total combined aerosols increase both the tropospheric and the stratospheric temperatures, and they also cause a decrease in the height of the tropopause. The changes in the tropopause height show highly statistically significant correlations with the changes in the tropospheric and stratospheric temperatures. The changes in the tropospheric and stratospheric temperatures are related to the changes in the radiative heat rate, cloud cover, and latent heat, but none of these factors absolutely dominate the temperature change.  相似文献   

15.
利用2004~2009年秋季臭氧监测仪的3级观测资料,分析了华北及周边地区的气溶胶光学性质。结果表明:大部分区域气溶胶光学厚度(Aerosol Optical Depth,AOD)和气溶胶紫外吸收指数(Ultra Violet Aerosol Index,UVAI)平均值分别高于0.8和0.75;高气溶胶事件发生频次统计表明,AOD高值(>0.4)频发于北京及其周边地区,UVAI高值(>1.0)频发于河北中部及南部地区;华北及其周边地区绝大多数城市平均AOD和UVAI分别高于0.7和0.60,而张家口、承德和阳泉3个城市的平均AOD和UVAI值分别低于0.6和0.65。作者进一步研究了2006年10月30日的一次霾事件中气溶胶的光学性质以及其时空分布特征。结果表明,霾由华北地区输送至渤海海域,并向东北方向输送;香河地基EZlidar激光雷达的垂直观测结果进一步表明,工业和城市型气溶胶主要集中在1500m以下,其中高浓度部分集中于650m以下,平均峰值位于285m,平均消光系数达2.15km-1;CALIOP卫星观测资料结合后向轨迹分析表明,大气低层气溶胶类型以工业和城市型气溶胶为主,而高层则由于上游大气输送沙尘粒子的混入使气溶胶类型转变为污染—沙尘型。霾事件期间,香河站CE-318太阳光度计观测的AOD平均值(标准差)从背景值0.08(0.04)升高至1.17(0.14);ngstrm指数平均值(标准差)从背景值0.90(0.10)升至1.12(0.09);核模态、积聚模态和粗模态的气溶胶粒子数柱总量均增加,其中细粒子所占比例明显升高。  相似文献   

16.
气溶胶已是东亚地区最主要的大气污染物之一,其时空分布会受到东亚季风气候的影响。利用2000~2014年MODIS/AOD(Moderate-resolution Imaging Spectroradiometer/Aerosol Optical Depth)和NCEP月平均气象场再分析资料,本研究分析了东亚冬季风长期变化趋势、气溶胶年际变化规律,探讨了东亚冬季风强度变化对气溶胶分布的影响。基于MODIS/AOD,发现近10年东亚地区冬季AOD呈现上升趋势,最大值为2007年的0.44,高值区覆盖四川盆地、华北平原及长江中下游大部分地区。风场特征类冬季风指数分析表明,东亚冬季风存在明显的年际和年代际差异,近年出现逐渐减弱的趋势。强冬季风年,海陆气压差增大、东亚大槽加深增强,东亚地区偏北风异常,风场的增强将引导更多冷空气南下,从而给东亚大部分地区带来明显的降温天气;弱年相反。气象场差异引起气溶胶分布变化,强年较强的偏北风将气溶胶向南方输送,东亚地区AOD出现“北低南高”的空间分布;弱年偏北风较弱,导致气溶胶集中在华北平原一带,AOD出现“北高南低”的空间分布。  相似文献   

17.
春季中国东部气溶胶化学组成及其分布的模拟研究   总被引:2,自引:0,他引:2  
本文利用区域空气质量模式RAQMS(Regional Air Quality Model System),对2009年春季中国东部气溶胶主要化学成分及其分布进行了模拟研究。与泰山站观测资料的对比结果显示,模式能比较合理地反映气溶胶浓度的逐日变化特征。整体上,模式对无机盐气溶胶的模拟好,分别高估和低估黑碳和有机碳气溶胶浓度,其原因与排放源、二次有机气溶胶化学机制和模式分辨率的不确定性有关。模拟结果显示,春季气溶胶浓度高值主要集中于华北、四川东部、长江中下游等地区。受东南亚生物质燃烧和大气输送的影响,中国的云南和广西等地区有机碳浓度高于中国其他地区。中国西北部沙尘浓度较高,而且向东输送并影响到中国东部和南方部分地区。中国东部的华北、四川东部、长江中下游等地PM2.5(空气动力学直径在2.5微米以下的颗粒物)污染严重,4月平均PM2.5浓度超过了我国日平均PM2.5浓度限值。中国东部泰山站的观测和模拟结果都显示近地面硝酸盐浓度超过硫酸盐,中国北部对流层中硝酸盐的柱含量也大于硫酸盐,而在中国南部则相反,这一方面与春季中国云量 南多北少的分布特征以及云内液相化学反应有关,另一方面也与南北温差对气溶胶形成的影响有关。就整个中国东部而言,虽然硫酸盐的柱含量(46 Gg)仍大于硝酸盐(42 Gg),但比较接近,反映出我国氮氧化物排放迅速增加的趋势。春季中国地区对流层中PM10(空气动力学直径在10微米以下的颗粒物)及其化学成分柱含量分别为:990.8 Gg(PM10),52.6 Gg(硫酸盐),48.2 Gg(硝酸盐),32.1 Gg(铵盐),22.9 Gg(黑碳)和74.1 Gg(有机碳),有机碳(OC)中一次有机碳(POC)和二次有机碳(SOC)分别占60%和40%,中国东部PM10中人为气溶胶和沙尘分别占30%和70%,反映了春季沙尘对我国大气气溶胶的重要贡献。  相似文献   

18.
This paper reports on the analysis of 24-h aerosol data measured during 2006, at 14 monitoring sites in China. Measurements included seven-wavelength Aethalometers, thermal/optical reflectance analyses of filter samples and determination of dust aerosols. Black (elemental) carbon (BC, EC) is found to be the principal light-absorbing aerosol over many parts of China; however, the fraction of apparent light absorption attributed to dust varied from 14% in winter, to 11% in spring, to 5% in summer to 9% in autumn. Aerosol light absorption in urban areas was larger than in rural areas by factors of 2.4 in winter, 3.1 in spring and 2.5 in both summer and autumn. These differences may lead to contrasts in radiative, thermal and cloud modification effects between urban and rural areas. Absorption 'hotspots' were located in the Sichuan Basin, the provinces south of Beijing, the Pearl Delta River regions and the Guanzhong Plain. The mass absorption coefficient for aerosol BC (σBC) based on Aethalometer data is estimated to be 11.7 m2 g−1 at 880 nm wavelength (λ) with inverse (λ−1) wavelength scaling, whereas the mass absorption coefficient for dust (σdust) is 1.3 m2 g−1 on average without significant wavelength dependence.  相似文献   

19.
Current global climate models cannot resolve the complex topography over the Tibetan Plateau (TP) due to their coarse resolution. This study investigates the impacts of horizontal resolution on simulating aerosol and its direct radiative effect (DRE) over the TP by applying two horizontal resolutions of about 100 km and 25 km to the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere Land System (CAS FGOALS-f3) over a 10-year period. Compared to the AErosol RObotic NETwork observations, a high-resolution model (HRM) can better reproduce the spatial distribution and seasonal cycles of aerosol optical depth (AOD) compared to a low-resolution model (LRM). The HRM bias and RMSE of AOD decreased by 0.08 and 0.12, and the correlation coefficient increased by 0.22 compared to the LRM. An LRM is not sufficient to reproduce the aerosol variations associated with fine-scale topographic forcing, such as in the eastern marginal region of the TP. The difference between hydrophilic aerosols in an HRM and LRM is caused by the divergence of the simulated relative humidity (RH). More reasonable distributions and variations of RH are conducive to simulating hydrophilic aerosols. An increase of the 10-m wind speed in winter by an HRM leads to increased dust emissions. The simulated aerosol DREs at the top of the atmosphere (TOA) and at the surface by the HRM are –0.76 W m–2 and –8.72 W m–2 over the TP, respectively. Both resolution models can capture the key feature that dust TOA DRE transitions from positive in spring to negative in the other seasons.  相似文献   

20.
A comparative study on the vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai was conducted based on the data obtained from a micro pulse lidar.There was a distinct difference in layer thickness and extinction coefficient under the two types of weather conditions.Aerosols were concentrated below 1 km and the aerosol extinction coefficients ranged from 0.25 to 1.50km-1 on haze days.In contrast,aerosols with smaller extinction coefficients(0.20 0.35 km-1) accumulated mainly from the surface to 2 km on floating dust days.The seasonal variations of extinction and aerosol optical depth(AOD) for both haze and floating dust cases were similar greatest in winter,smaller in spring,and smallest in autumn.More than 85%of the aerosols appeared in the atmosphere below 1 km during severe haze and floating dust weather.The diurnal variation of the extinction coefficient of haze exhibited a bimodal shape with two peaks in the morning or at noon,and at nightfall,respectively.The aerosol extinction coefficient gradually increased throughout the day during floating dust weather.Case studies showed that haze aerosols were generated from the surface and then lifted up,but floating dust aerosols were transported vertically from higher altitude to the surface.The AOD during floating dust weather was higher than that during haze.The boundary layer was more stable during haze than during floating dust weather.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号