首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lower Priabonian coral bioherms and biostromes, encased in prodelta marls/clays, occur in the Aínsa‐Jaca piggyback basin, in the South Central Pyrenean zone. Detailed mapping of lithofacies and bounding surfaces onto photomosaics reveals the architecture of coral buildups. Coral lithosomes occur either isolated or amalgamated in larger buildups. Isolated lithosomes are 1 to 8 m thick and a few hundred metres wide; clay content within coral colonies is significant. Stacked bioherms form low‐relief buildups, commonly 20 to 30 m thick, locally up to 50 m. These bioherms are progressively younger to the west, following progradation of the deltaic complex. The lowermost skeletal‐rich beds consist of bryozoan floatstone with wackestone to packstone matrix, in which planktonic foraminifera are abundant and light‐related organisms absent. Basal coral biostromes, and the base of many bioherms, consist of platy‐coral colonies ‘floating’ in a fine‐grained matrix rich in branches of red algae. Corals with domal or massive shape, locally mixed with branching corals and phaceloid coral colonies, dominate buildup cores. These corals are surrounded by matrix and lack organic framework. The matrix consists of wackestone to packstone, locally floatstone, with conspicuous red algal and coral fragments, along with bryozoans, planktonic and benthonic foraminifera and locally sponges. Coral rudstone and skeletal packstone, with wackestone to packstone matrix, also occur as wedges abutting the buildup margins. Integrative analysis of rock textures, skeletal components, buildup anatomy and facies architecture clearly reveal that these coral buildups developed in a prodelta setting where shifting of delta lobes or rainfall cycles episodically resulted in water transparency that allowed zooxanthellate coral growth. The bathymetric position of the buildups has been constrained from the light‐dependent communities and lithofacies distribution within the buildups. The process‐product analysis used here reinforces the hypothesis that zooxanthellate corals thrived in mesophotic conditions at least during the Late Eocene and until the Late Miocene. Comparative analysis with some selected Upper Eocene coral buildups of the north Mediterranean area show similarities in facies, components and textures, and suggest that they also grew in relatively low light (mesophotic) and low hydrodynamic conditions.  相似文献   

2.
Stacked stromatoporoid‐dominated biostromes of the Ludlow‐age Hemse Group (Silurian) in eastern Gotland, Sweden, are 0·5–5 m thick and a few tens of metres to >1 km in lateral extent. They form one of the world's richest Palaeozoic stromatoporoid deposits. This study compiles published and new data to provide an overall facies model for these biostromes, which is assessed in relation to possible modern analogues. Some biostromes have predominantly in‐place fossils and are regarded as reefs, but lack rigid frameworks because of abundant low‐profile non‐framebuilding stromatoporoids; other biostromes consist of stromatoporoid‐rich rudstones interpreted here as storm deposits. Variation between these two `end‐members' occurs both between interlayered biostromes and also vertically and laterally within individual biostromes. Such variation produces problems of applying established reef classification terms and demonstrates the need for the development of terminology that recognizes taphonomic destruction of reef fabrics. An approach to such terminology is found in all four categories of a recent biostrome classification scheme that are easily recognized in the Hemse biostrome facies: autobiostromes (>60% in place); autoparabiostromes (a mixture of in‐place and overturned reef‐building organisms, 20–60% in place); parabiostromes (builders are overturned and damaged, <20% in place); and allobiostromes (transported and detrital reef material, nothing in place). These categories provide a broad taphofacies scheme for the Hemse biostromes, which are mostly autoparabiostrome to allobiostrome. The biostromes developed on crinoidal grainstone sheets and expanded laterally across relatively flat substrates in a marine setting of low siliciclastic input. Planar erosion surfaces commonly terminate biostrome tops. Three broadly similar modern analogues are identified, each of which has elements in common with the Hemse biostromes, but none of which is an exact equivalent: (a) laterally expanded and coalesced back‐barrier patch reefs behind the Belize barrier, an area influenced by limited accommodation space; (b) a hurricane‐influenced shelf, interpreted for Grand Cayman, where reef cores consist of rubble and lack substantial framework; the wide distribution of rounded pebbles and cobbles of stromatoporoids in the Hemse biostromes most probably resulted from hurricanes; (c) coral carpets in 5–15 m water depth of the northern Red Sea, where lateral expansion of low‐diversity frames dominated by Porites coral has produced low‐profile biostromes up to 8 m thick and several km long. Such carpets accumulated large amounts of carbonate, with little export, as in the Hemse biostromes, although the latter did not build frameworks because of the nature of growth of the stromatoporoids. The notable lack of algae in the Hemse biostrome facies is also a feature of Red Sea coral carpets; nevertheless, coral carpets are ecologically different. Hemse biostromes lack evidence of a barrier reef system, although this may not be exposed; the facies assemblage is consistent with either a storm/hurricane‐influenced mid‐ to upper ramp or back‐barrier system.  相似文献   

3.
M. T. HARRIS 《Sedimentology》1993,40(3):383-401
The Latemar reef buildup of the central Dolomites (northern Italy) provides a rare opportunity to examine an in-place Middle Triassic (Upper Anisian to Lower Ladinian) platform margin that is not strongly deformed or dolomitized. The margin lies between the flat lying platform interior and steeply dipping foreslope clinoforms. Across this transition, the depositional profile relates directly to a consistent lateral facies pattern: (1) restricted-biota grainstone of the platform interior, (2) ‘Tubiphytes’-rich boundstone and (3) diverse-biota grainstone that grades into (4) foreslope breccia beds. The boundstone and diverse-biota grainstone facies comprise the platform margin. The boundstone facies consists of a framework of small (< 10 cm) skeletal remains (< 10% by volume) with associated biotic crusts, internal sediments and syndepositional cements. Crusts and cements constitute most of the rock volume and created the boundstone fabric. Biotic crusts exhibit gravity-defying geometries and range from a light grey, ‘structure grumeleuse’ rind to dark grey, micritic laminae. Both cements and biotic crusts occur as redeposited talus in the foreslope talus deposits, indicating a syndepositional origin. The diverse-biota grainstone facies primarily consists of skeletal-peloidal grainstone with a diverse open marine biotic assemblage, in contrast to the restricted biota grainstones of the platform interior that have a low diversity, restricted marine biota. Metre scale hexacoral boundstone and centimetre-scale sponge boundstone and microbial boundstone occur as isolated patches (tens to hundreds of metres apart) within the diverse-biota grainstone facies. The depositional profile, facies zonation and biotic constituents all indicate that the Latemar buildup had a shallow water reef margin, in contrast to previous interpretations that these were upper slope reefs. The syndepositional biotic crusts and inorganic cementation played key roles in stabilizing the boundstone fabric to form a wave-resistant reef fabric.  相似文献   

4.
Carbonate buildups in the Flinders Ranges of mid-Early Cambrian age grew during a period of high archaeocyath diversity and are of two types: (1) low-energy, archaeocyath-sponge-spicule mud mounds, and (2) high-energy, archaeocyath-calcimicrobe (calcified microbial microfossil) bioherms. Mud mounds are composed of red carbonate mudstone and sparse to abundant archaeocyath floatstone, have a fenestral fabric, display distinct stromatactis, contain abundant sponge spicules and form structures up to 150m wide and 80 m thick. Bioherms are either red or dark grey limestone and occur as isolated small structures 2–20 m in size surrounded by cross-bedded calcarenites and calcirudites or as complexes of mounds and carbonate sands several hundreds of metres across. Red bioherms comprise masses of white Epiphyton with scattered archaeocyaths and intervening areas of archaeocyath-rich lime mudstone. Grey bioherms are complex intergrowths of archaeocyaths, encrusting dark grey Renalcis and thick rinds of fibrous calcite cement. The bioherms were prone to synsedimentary fracturing and exhibit large irregular cavities, up to 1.5 m across, lined with fibrous calcite. The buildups are isolated or in contiguous vertical succession. Mud mounds occur alone in low-energy, frequently nodular, limestone facies. Individual bioherms and bioherm complexes occur in high-energy on-shelf and shelf-margin facies. The two types also form large-scale, shallowing-upward sequences composed of basal (deep water) mud mounds grading upward into archaeocyath-calcimicrobe bioherm complexes and bioherms in cross-bedded carbonate sands. The uppermost sequence is capped by ooid grainstone and/ or fenestral to stromatolitic mudstone. The calcimicrobe and metazoan associations form the two major biotic elements which were to dominate reefs throughout much of subsequent Phanerozoic time.  相似文献   

5.
Existing facies models for Devonian reef systems can be divided into high‐energy and low‐energy types. A number of assumptions have been made in the development of these models and, in some cases, criteria that distinguish important aspects of the models are poorly defined. The Upper Devonian Alexandra Reef System contains a variety of reef fabrics from different depositional environments and is ideal for studying the range of environments in which stromatoporoids thrived and the facies from these different environments. A wide variety of stromatoporoid growth forms including laminar, tabular, anastamosing laminar and tabular, domal, bulbous, dendroid, expanding conical, concave‐up whorled‐laminar, concave‐up massive tabular and platy‐multicolumnar are present in the Alexandra Reef System. The whorled‐laminar and massive tabular concave‐up growth forms are virtually undocumented from other Devonian reefs but were common in the reef front of the Alexandra, where they thrived in a low‐energy environment around and below fair‐weather wave base. In contrast, high‐energy parts of the reef margin were dominated by bioclastic rubble deposits with narrow ribbon‐like discontinuous bodies of laminar stromatoporoid framestone. In the lagoon, laminar stromatoporoids formed steep‐sided sediment‐dominated bioherms in response to sea‐level rise and flooding. Relying mostly on the different reef facies in the Alexandra system, a new classification scheme for Devonian reef fabrics has been developed. Devonian reef fabrics can be classified as being: (i) sediment‐laden metazoan dominated; (ii) metazoan–microbial dominated (boundstone); (iii) metazoan dominated (framestone); or (iv) metazoan–marine cement dominated. Distinction of these fabrics carries important sedimentary and palaeoecological implications for reconstructing the depositional environment. With examples from the Alexandra Formation, it is demonstrated that reef facies accumulated in a range of depositional environments and that the simple observation of massive stromatoporoids with or without microbial deposits does not automatically imply a high‐energy reef margin, as otherwise portrayed in a number of the existing facies models for these systems.  相似文献   

6.
Holocene reef development was investigated by coring on Britomart Reef, a mid-shelf reef, 23 km long and 8 km wide situated 120 km north of Townsville in the central Great Barrier Reef (GBR). Two holes were drilled, Britomart 1 on a lagoon patch reef, and Britomart 2 on the windward reef crest. The Holocene reef (25·5 m) is the thickest yet recorded in the GBR and overlies an uneven substrate of weathered Pleistocene limestone. Mineralogical and geochemical analyses show that magnesian calcite and aragonite were converted to low Mg-calcite below the Holocene-Pleistocene disconformity. Corals above the interface have 7500–8500 ppm Sr, but 1650–1500 ppm just below it, decreasing to 400–800 ppm downwards. The intermediate Sr values could be due to partial replacement of aragonite by calcite or higher original Sr content in the corals. Three units are recognized in the Holocene: (1) coral boundstone unit, (2) coral framestone unit, and (3) coral rudstone unit. The coral boundstone unit forms the top 5 m of both cores and is algal-bound coral rubble similar to the present reef top. The coral framestone unit is composed of massive head corals Diploastrea heliopora and Porites sp., and is currently forming in patch reefs situated in the lagoon and along the reef front. The coral rudstone unit comprises coral rudstone and floatstone with unabraded, and unbound, coral clasts in muddy matrix. This matrix may be up to 30% sponge chips. Radiocarbon dating indicates the reef grew more rapidly under the lagoon than under the reef front from 7000 to 5000 yr BP. The rate of reef growth matched existing estimates of sea-level rise, but lagged approximately 1000 years (5–10 m) behind it. Most of the reef mass accumulated between 8500 and 5000 yr BP as a mound of debris, perhaps stabilized by seagrasses or algae. Accretion of the reef top in a windward direction between 5000 and 3000 yr BP created the present, steep reef-front profile.  相似文献   

7.
Bioherms are common in the St George Group, a sequence of shallow-water carbonate rocks deposited on the western continental shelf of Iapetus Ocean. They range from small heads and metre-sized mounds to extensive banks and complexes many metres thick and hundreds of metres in lateral extent. The cores of these bioherms are principally composed of thrombolites (unlaminated, branching, columnar stromatolites), structures quite distinct from laminated stromatolites which are common in intertidal beds. Associated with thrombolites is a diverse fauna of burrowing invertebrates, trilobites, nautiloids, pelmatozoans, brachiopods, gastropods, rostroconchs and archaeoscyphiid sponges. On the basis of framework-building components, three main bioherm types are distinguished: (1) thrombolite mounds, (2) thrombolite-Lichenaria or -sponge mounds and (3) thrombolite-Lichenaria-Renalcis reef complexes. The framework of the last is the most complex, with abundant cavities and a demonstrably uneven growth surface of thrombolites, corals and free-standing Renalcis heads, walls and roofs. Some cavities were active sediment conduits while others were protected, their roofs draped with Renalcis and their walls coated by cryptalgal laminites. These bioherms possess the attributes of shallow-water ecologic reefs. They span a critical time gap in the development of reefs, the transition period from algal-dominated bioherms of the Precambrian and Cambrian to the metazoan-dominated bioherms of the Middle Ordovician and remaining Phanerozoic.  相似文献   

8.
Organic buildups (biostromes and bioherms) were established for the first time in the coal-bearing formation of the Lvov-Volynsk coal basin. Colonial rugose corals of the Siphonodendron genus represented the main bioherm-builders. Coral buildups were formed under shallow marine conditions and located within the active tectonic region at the southwestern margin of the East European Platform. The region represents a northwest-trending band (10–12 km wide) extending over more than 70 km. The studied late Visean coral bioherms and biostromes are similar to coeval ones from some European regions.  相似文献   

9.
Late Frasnian mounds of the Yunghsien Formation, Guilin, South China, developed as part of the Guilin platform, mostly in reef‐flat and platform margin settings. Microbial mounds in platform margin settings at Hantang, about 10 km west of Guilin, contain Frasnian biota, such as Stachyodes and Kuangxiastraea and, thus, occur below the Frasnian‐Famennian mass extinction boundary. Platform margin facies were dominated by microbes, algae and receptaculitids. Massive corals and stromatoporoids are not common and rarely show reef‐building functions as they did in Givetian time. The margin mounds are composed of brachiopod‐receptaculitid cementstone, and a variety of boundstones that contain Rothpletzella, Renalcis, thrombolite and stromatolite. Other microbial communities include Girvanella, Izhella, Ortonella and Wetheredella. Solenoporoid algae are abundant locally. Zebra structures and neptunian dykes are well‐developed at some intervals. Pervasive early cementation played an important role in lithification of the microbial boundstones and rudstones. Frasnian reefs of many regions of the world were constructed by stromatoporoids and corals, although a shift to calcimicrobe‐dominated frameworks occurred before the Famennian. However, the exact ages of many Frasnian margin outcrops are poorly constrained owing to difficulties dating shallow carbonate facies. The Hantang mounds represent a microbe‐dominated reef‐building community with rare skeletal reef builders, consistent with major Late Devonian changes in reef composition, diversity and guild structure occurring before the end of the Frasnian. A similar transition occurred in the Canning Basin of Western Australia, but coeval successions in North America, Western Europe and the northern Urals are either less well‐known or represent different bathymetric settings. The transition in reef‐building style below the Frasnian‐Famennian boundary is documented here in the two best exposed successions on two continents, which may have been global. Set in the larger context of Late Devonian and Mississippian microbial reef‐building, the Hantang mounds help to demonstrate that controls on microbial reef communities differed from those on larger skeletal reef biota. Calcimicrobes replaced stromatoporoids as major reef builders before the Frasnian‐Famennian extinction event, and increasing stromatoporoid diversity towards the end of the Famennian did not result in a resurgence of skeletal reef frameworks. Calcimicrobes dominated margin facies through the Famennian, but declined near the Devonian‐Carboniferous boundary. Stromatolite and thrombolite facies, which occurred behind the mound margin at Hantang, rose to dominate Mississippian shallow‐water reef frameworks with only a minor resurgence of the important Frasnian calcimicrobe Renalcis in the Visean when well‐skeletonized organisms (corals) also became volumetrically significant frame builders again.  相似文献   

10.
A Study of Devonian Reefs from Southern China   总被引:2,自引:0,他引:2  
Three Devonian reefs (bioherms) from Yunnan and Guangxi, southern China, are studied in detail. Six microfacies types are differentiated. Colonial rugose corals (Columnaria, Disphyllum and Hexagonaria) at Qujing, tabulate corals (Alveolites) with massive stromatoporoids (Actinostroma and Stromatoporella) and sponges at Panxi, and massive stromatoporoids (Actinostroma, Trupetostroma and Stromatoporella) at Yangshuo belong to the most important reef builders. All the three reefs studied clearly reveal a successive evolution history. They developed on the carbonate banks, shallow carbonate platforms and platform margins in the Late Givetian and terminated in the Frasnian due to sea-level falls related to local uplifts of platforms. This coincides with a eustatic fall of relative sea level at the Frasnian/Famennian transition.  相似文献   

11.
张俊明  彭克兴 《地质科学》1994,29(3):236-245
王家坪古杯礁丘是由不规则古杯和蓝绿藻Renalcis、Epiphyton、Cirvanella等组成的障积礁丘。可分为:孤立小型古杯泥丘和由丘状藻-古杯粘结岩叠置而成的点礁。以Renalcis为主的藻-古杯粘结岩与孤立小型古杯泥丘一样形成于风暴浪基面之下的低能陆架。以Epiphyton为主的藻-古杯粘结岩形成于较动荡的中-高能陆架浅滩。除造礁生物的沉积作用外,早期海底胶结作用和充填固化作用对古杯礁丘的形成亦起了十分重要的作用。  相似文献   

12.
梅冥相  郭荣涛  胡媛 《岩石学报》2011,27(8):2473-2486
北京西郊下苇甸剖面的崮山组,属于寒武系第三统顶部,自下而上从陆棚相泥灰岩向上变浅至鲕粒滩相灰岩,组成一个淹没不整合型三级沉积层序。在该组上部的一层块状鲕粒滩相颗粒灰岩中,发育串珠状分布的、可以归为叠层石生物丘的穹窿状构造。这些叠层石生物丘,典型的地势隆起和突变的边界代表了明显的早期石化作用特征。叠层石生物丘中的柱状叠层石,为典型的泥晶相叠层石,其内部除了黏结较多的三叶虫生物碎屑外,还不均匀地分布着放射-纤维状方解石(或文石?)组成的底栖鲕粒。这些底栖鲕粒,以其较小的粒径、多样的类型、平滑但不连续的鲕粒圈层以及外部边缘的泥晶套等特征,明显区别于宿主岩石中的颗粒滩相悬浮鲕粒,而且表现出较为明显的与微生物活动相关的微组构。鉴于叠层石是典型的微生物席建造物,该叠层石生物丘特别的宏观和微观沉积组构还可以进一步将其归为较为典型的"微生物礁",从而成为研究中奥陶生物大辐射事件之前贫乏骨骼的浅海环境的沉积作用样式、以及更加深入理解这一特殊时期的微生物造礁作用特征提供了一个较为典型的实例。  相似文献   

13.
Growth of rigid high-relief patch reefs, Mid-Silurian, Gotland, Sweden   总被引:2,自引:0,他引:2  
Patch reefs up to 35 m thick and generally 100–150 m wide, separated by bedded inter-reef sediment, dominate the Högklint Formation (Lower Wenlock) of north-west Gotland. The spacing between adjacent patch reefs is variable, but is commonly 150–350 m. The Högklint is a shallowing sequence, and the patch reefs exhibit a well-developed vertical succession: (1) Axelsro-type patch reefs developed in the underlying Visby Formation; (2) halysitid tabulates capped by laminar stromatoporoids; (3) domical and bulbous stromatoporoids and red algae; (4) cyanobacterial–algal reef crest. The patch reefs expand upwards from an initial bioherm phase with a small base to a laterally extensive biostrome phase. This gives them a thumb-tack appearance. In stage 2 of the bioherm phase, rigid framework development and high reef relief resulted in breakage of angular blocks up to 15 m long, which were incorporated into the reefs or fell into adjacent sediments. Poorly sorted talus haloes (Millingsklint Member) also developed adjacent to stage 2 of the bioherm phase. These include angular blocks and exhibit depositional slopes up to 40° away from the reefs. Stage 3 biostrome development was mainly non-rigid cluster reef, which shed skeletal debris (Domkyrka Member) but few lithified blocks. Stage 4 biostrome development was a reef crest with open to closed frame structure. Storm breakage and overturning produced large blocks with complex cavity fill sequences including double geopetals. Relief during the bioherm phase, indicated by fallen blocks and talus slopes, was up to at least 15 m; during the biostrome phase, it was up to 10 m.  相似文献   

14.
During Integrated Ocean Drilling Program Expedition 325, 34 holes were drilled along five transects in front of the Great Barrier Reef of Australia, penetrating some 700 m of late Pleistocene reef deposits (post‐glacial; largely 20 to 10 kyr bp ) in water depths of 42 to 127 m. In seven holes, drilled in water depths of 42 to 92 m on three transects, older Pleistocene (older than last glacial maximum, >20 kyr bp ) reef deposits were recovered from lower core sections. In this study, facies, diagenetic features, mineralogy and stable isotope geochemistry of 100 samples from six of the latter holes were investigated and quantified. Lithologies are dominated by grain‐supported textures, and were to a large part deposited in high‐energy, reef or reef slope environments. Quantitative analyses allow 11 microfacies to be defined, including mixed skeletal packstone and grainstone, mudstone‐wackestone, coral packstone, coral grainstone, coralline algal grainstone, coral‐algal packstone, coralline algal packstone, Halimeda grainstone, microbialite and caliche. Microbialites, that are common in cavities of younger, post‐glacial deposits, are rare in pre‐last glacial maximum core sections, possibly due to a lack of open framework suitable for colonization by microbes. In pre‐last glacial maximum deposits of holes M0032A and M0033A (>20 kyr bp ), marine diagenetic features are dominant; samples consist largely of aragonite and high‐magnesium calcite. Holes M0042A and M0057A, which contain the oldest rocks (>169 kyr bp ), are characterized by meteoric diagenesis and samples mostly consist of low‐magnesium calcite. Holes M0042A, M0055A and M0056A (>30 kyr bp ), and a horizon in the upper part of hole M0057A, contain both marine and meteoric diagenetic features. However, only one change from marine to meteoric pore water is recorded in contrast with the changes in diagenetic environment that might be inferred from the sea‐level history. Values of stable isotopes of oxygen and carbon are consistent with these findings. Samples from holes M0032A and M0033A reflect largely positive values (δ18O: ?1 to +1‰ and δ13C: +1 to +4‰), whereas those from holes M0042A and M0057A are negative (δ18O: ?4 to +2‰ and δ13C: ?8 to +2‰). Holes M0055A and M0056A provide intermediate values, with slightly positive δ13C, and negative δ18O values. The type and intensity of meteroric diagenesis appears to have been controlled both by age and depth, i.e. the time available for diagenetic alteration, and reflects the relation between reef deposition and sea‐level change.  相似文献   

15.
南海珠江口盆地东沙隆起流花油田新近系灰岩储层为典型的台地边缘生物礁储层。岩石类型包括皮壳状珊瑚藻黏结灰岩、缠绕状珊瑚藻-珊瑚骨架灰岩、泥晶有孔虫-珊瑚藻颗粒灰岩、亮晶有孔虫-珊瑚藻颗粒灰岩、含红藻石灰岩、泥晶珊瑚颗粒灰岩、生屑泥晶灰岩7类。孔缝类型丰富,包括泥晶基质溶孔、粒间溶孔、藻架溶孔、粒内溶孔、铸模孔、体腔孔、晶间微孔7类孔隙及溶蚀缝、珊瑚藻皮壳间隙缝、似缝合线溶蚀缝、构造缝4类裂缝。划分了孔洞-网状裂缝型、孔隙型、裂缝-孔洞型、致密裂缝型4种储集类型。皮壳状珊瑚藻灰岩属于孔洞-网状裂缝型储层,泥晶颗粒灰岩、含红藻石灰岩和红藻石灰岩属于孔隙型,珊瑚骨架灰岩属于裂缝-孔洞型,亮晶生屑灰岩和胶结作用较强的皮壳状藻灰岩属于致密裂缝型。沉积微相和成岩作用控制了不同储集类型的分布,生物礁形成过程中的多期暴露对沉积微相和储集空间有重要影响。沉积-成岩演化过程划分为早期成礁与早期暴露、晚期成礁与次级暴露、埋藏压实与泥岩再造水改造阶段、两期成藏与地下水溶蚀4个阶段。根据沉积-成岩演化分析,预测了研究区储集类型空间分布。  相似文献   

16.
The Al‐Jawf area of northern Saudi Arabia provides spectacular outcrops of Early Devonian carbonate bioherms in the Wadi Murayr and Dumat Al‐Jandal areas. These carbonate bioherms belong to the Qasr Member of the Late Pragian–Early Emsian Jauf Formation (~405 Ma) and are surrounded by a bioclastic carbonate succession. The Qasr Member is the first major carbonate unit of the Palaeozoic succession in Saudi Arabia that mainly consists of microbialite carbonates and metazoan reefs exhibiting distinct mound features. These bioherm complexes and their associated carbonate facies are pervasively dolomitized. Stratigraphic, petrographic and geochemical analyses were conducted to determine the facies distribution and interpret their depositional and diagenetic processes. A total of 11 facies are identified from a range of depositional environments within a carbonate platform system, ranging from tidal flats, lagoon, shoal, patch reefs to reef front. The main diagenetic processes are carbonate cementation and dolomitization. Dolomitization occurred as both fabric preserved (mostly in grain‐dominated facies) and fabric destructive (mud‐dominated facies). The microbialites and coralline sponges facies show poor reservoir with visual porosity less than 5%, but this succession may have a potential to serve as a good source for the underlying and overlying facies. Ooid and peloidal grainstone facies show fair to good visual porosity that locally exceeds 10% with intergranular porosity as the dominant type. However, in the most studied samples, vuggy and intraparticle porosities are observed as the dominant type. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The cyanobacterium Rivularia haematites has calcified to form unusually large (up to 10 m high) bioherms in the Pleistocene Gulf of Corinth. Today R. haematites calcifies only in freshwater environments but these Gulf of Corinth bioherms have a brackish affinity, limited areal extent, and occur within marine deposits. Field relations and preliminary U-series dating suggest a marine isotope stage (MIS) 5e age for the bioherms. This age is compatible with published MIS 5e ages for corals in the marine sediments above the bioherms and is consistent with their current elevation based on average uplift rates. Bioherm growth during MIS 5e constrains their formation during a time of near sea-level highstand when the Gulf of Corinth was marine. Growth cavities in the bioherms are encrusted by brackish tolerant coralline algae. Field mapping of the MIS 5e highstand palaeoshoreline shows the bioherms grew in water <16 m deep. Mg contents of the bioherm calcites, and associated coralline algal skeletons, are both much lower than expected for marine MIS 5e carbonates. They are best explained if the calcites precipitated from brackish fluids with Mg/Ca ratios below 2, implying at least 60% input of freshwater with low Mg/Ca ratio. Sr isotopes confirm a strong input of groundwater that had partially equilibrated with Mesozoic limestones. The limited areal extent of the bioherms and their close association with karstified fault scarps suggest that they formed in shallow sea water where freshwater submarine springs delivered CaCO3 saturated water that promoted rapid calcification of cyanobacteria. Rapid calcification and strong degassing of CO2 from the spring water resulted in disequilibrium stable isotope compositions for the calcites.  相似文献   

18.
Globally significant geoheritage features of the Cliefden Caves area, in the Belubula River Valley between Orange and Cowra in central western New South Wales, comprise a richly fossiliferous shallow-water limestone succession of Late Ordovician age (the Cliefden Caves Limestone Subgroup) overlain by deep-water laminites and allochthonous limestones of the Upper Ordovician Malongulli Formation. Key features of the Ordovician geology of the Cliefden Caves area that have been identified using the Geoheritage Toolkit as being of international significance are the abundance of unique and exceptionally diverse fossils in the Fossil Hill Limestone (forming the lower part of the Cliefden Caves Limestone Subgroup), which supplement detailed interpretation of carbonate-dominated deposition within an Ordovician volcanic island setting. The fossiliferous limestones preserve biostromes and local small bioherms of stromatoporoids and corals, and recurrent in situ and disarticulated/imbricated Eodinobolus shell beds formed in shallow, quiet-water, dominantly muddy carbonate sediments that passed up-sequence to clay-free carbonate environments. These mud-dominated carbonate sediments are interspersed with higher-energy conditions, represented by skeletal, lithoclastic and calcrete-ooid grainstones overlying disconformities, leading to the identification of subaerial disconformities and associated diagenesis in the Fossil Hill Limestone. The Fossil Hill Limestone is succeeded by massive limestones in the middle part of the Cliefden Caves Limestone Subgroup and then, in turn by the Vandon Limestone and the deeper-water graptolitic laminites of the Malongulli Formation—this completes a succession that is rarely preserved in the geological record, further enhancing the geoheritage significance of the Cliefden Caves area.  相似文献   

19.
The Upper Ludlow Douro Formation contains the first reported Silurian sponge reefs. These relatively small (5–35 m diameter), mound-shaped structures contain, on average, 35% lithistid demosponges. Reefs are surrounded by irregular haloes of crinoid debris; abundance and diversity of all fossil groups decreases away from the reefs. Each reef is underlain by a lens of crinoid wackestone to grainstone rich in crinoid holdfasts; trepostomate bryozoans, solenoporacean algae and rhynchonellid brachiopods are locally common. The bulk of each reef consists of lime mudstone with abundant lithistid sponges. This is capped by a thin layer of wackestone with abundant tabulate and rugose corals and fewer lithistid sponges, calcareous algae, trepostomate bryozoans and stromatoporoids. This zonation, in which a sponge colonization community was replaced by a coral diversification community, is similar to that reported from some Middle Ordovician, Upper Jurassic and Holocene sponge reefs. The Douro sponge reefs were relatively low structures, with about 3 m maximum topographic relief. They grew on a broad carbonate platform, probably in warm, tranquil, turbid waters of normal or near-normal marine salinity. Periodic influxes of terrigenous mud adversely affected reef size, and caused biotic changes. Some of the reef lime mud was derived from non-reef sources, but significant quantities were also produced on the reefs. Reefs underwent synsedimentary lithification, bioerosion and minor storm erosion. Fabrics and compositions of sparry calcite in cavities record three generations of meteoric cementation. Originally siliceous spicules of the lithistid sponges were dissolved and the moulds later filled with sparry calcite. Early dissolution of siliceous spicules is common in reef environments, and may have caused fossil sponges to be under-represented in ancient reefs.  相似文献   

20.
Quantitative analysis of sediment composition was performed on a kilometre wide section of Upper Tithonian low relief (up to 70 m), gently inclined (3° to 15°), sigmoidal carbonate clinoforms (eastern Sardinia) to identify changes in sediment composition along the slope and across the studied succession. These changes may reflect modifications of the carbonate factory and of processes responsible for sediment transport. Point‐count analysis of carbonate microfacies, Q‐mode/R‐mode cluster analysis and Spearman’s rank provided a composition‐based classification of microfacies and highlighted relationships among sediment components. The studied clinoforms are mainly composed of non‐skeletal grains (70%), such as peloids and lithoclasts, together with micrite and cements and only a limited contribution from coated grains (2%). Among skeletal grains (28%), the greatest contribution derives from a coral–stromatoporoid–encruster reef that provided 15% of the components. Crinoids, brachiopods and other along‐slope thriving biota provided nearly 5% of the allochems, whilst fragments of molluscs (gastropods, bivalves and diceratids) from the backreef sourced another 2%. The contribution of platform interior biota is negligible (1%). The association of composition‐based facies varies along the slope. The upper slope beds consist of coral‐stromatoporoid grainstone to rudstone; the middle slope deposits are dominated by encruster‐lithoclast grainstone and packstone. At the lower slope, peloidal lithoclastic packstone as well as brachiopod–crinoidal wackestone prevail. Also the association of skeletal grains changes along the slope. The encruster–frame builder association typifies the upper slope whilst encrusters characterize the middle slope sediments. In the lower slope encrusters are equally represented as the brachiopod–crinoid association. Along‐slope compositional changes evidence a scarce downslope transport of frame builders and a progressive enrichment in along‐slope thriving biota. Quantitative analysis of microfacies allowed the sigmoidal clinoforms to be grouped into six sets. Each set gathers sigmoids with a similar sediment composition. Coated grains are dominant in the first set whilst they are lacking in the overlying sets reflecting a change in the carbonate factory. Other major compositional changes among the sets concern the relative amounts of peloids, micrite, frame builders (corals and stromatoporoids) and encrusters. The contribution of peloids varies inversely to that of cements and micrite as evidenced in the third and fifth sets which, respectively, record the highest occurrence of peloids or cement and micrite. Variations in the amount of frame builders and encrusters are instead non‐linear. High percentages of both frame builders and encrusters, as recorded in the second and fifth sets, are related to low amounts of peloids and lithoclasts that probably reflect episodes of reduced background sedimentation. This study demonstrates that quantitative analysis of carbonate microfacies represents a powerful tool that can improve the reconstruction of the stacking pattern in carbonate slope successions both in outcrop and in subsurface settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号