首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
基于混合差分进化算法的地球物理线性反演   总被引:4,自引:0,他引:4       下载免费PDF全文
地球物理反问题线性化处理之后, 各种反演算法归结为对病态线性方程组的求解. 为了快速准确地计算出地球物理参数, 本文提出了一种全新的基于LSQR算法的混合差分进化算法(Hybrid Differential Evolution Algorithm, HDE). 该算法利用LSQR算法给出DE算法的初始种群, 提高DE算法的计算速度和稳定性. 在不同噪声水平下, 对四种正则化方法Tikhonov、TSVD、LSQR和HDE的反演结果进行详细比较. 理论模型和实际数据反演的结果都表明: 改进的HDE算法应用于地球物理反问题的求解是成功的: 反演结果与原设定模型具有较高的相关性, 在稳定性和准确性上较常规的反演算法都具有一定的优势; 而且不需要给定正则化参数, 具有更强的实用性.  相似文献   

2.
Geophysical monitoring is used principally to interpret the locations and amounts of ground condition changes. To achieve these objectives, differences are computed and examined using time-lapse images calculated under the time-invariant static assumption, that any material property changes during the data measurement can be practically ignored. These monitored data, however, can be contaminated with noise and frequently generate false anomalies of ground condition changes. Furthermore, the assumption of the static model can be invalid if the material property changes significantly during data acquisition. To alleviate these problems, we developed a new least-squares inversion algorithm that allows for the subsurface properties to continuously change in time. We define the subsurface structure and the entire monitoring data in the space–time domain, allowing us to obtain a four-dimensional space–time model using just one inversion process. We introduce the regularizations not only in the space domain but also in time, resulting in reduced inversion artifacts and improved stability of the inverse problem. We demonstrated the performance of the proposed algorithm through numerical experiments that assumed several scenarios of ground condition changes and data acquisition sequences. Finally, the applicability to field data was proven by applying the developed algorithm to the monitoring data of crosshole resistivity tomography jointly performed with a dye tracer flooding experiment. This experiment had a small enough scale that we could not ignore the change of material properties during the data measurement.  相似文献   

3.
Time-lapse monitoring is a powerful tool for observing dynamic changes in the subsurface. In particular it offers the potential for achieving inversion results with increased fidelity through the inclusion of complementary information from multiple time-steps. This inclusion of complementary information can reduce the need for spatial smoothing, without adding inversion artifacts to the resulting images. Commonly used time-lapse inversion methods include the ratio method, cascaded time-lapse inversion, difference inversion and differencing independent inversions. We introduce two additional methods in which both time-lapse data sets are inverted simultaneously. In the first, called temporally constrained time-lapse inversion, inversion of both datasets is done under a single optimization procedure and constraints are added to the regularization to ensure that the changes from one time to another are smooth. In the second method, called simultaneous time-lapse inversion, the inversions at time 1 and time 2 are performed simultaneously and constraints of smoothness and closeness to a reference model are applied to the difference image produced at each iteration, and subsequently, the constraints are updated at each iteration. Through both a numerical and a field example we compare the results of common time-lapse inversion methods as well as the introduced approaches. We found that of the commonly used time-lapse inversion methods the difference inversion method produced the best resolution of time-lapse changes and was the most robust in the presence of noise. However, we found that the alternative approach of simultaneous time-lapse inversion produced the best reconstruction of modeled EC changes in the numerical example and easily interpretable high resolution difference images in the field example. Moreover, there was less tailoring of regularization parameters with our simultaneous time-lapse approach, suggesting that it will lend itself well to an automated inversion code.  相似文献   

4.
地球物理勘探方法在岩土工程的应用已有很长一段时间,但其成效与工程师的期待往往有不小的落差,以致于在一般的工程应用上仍不普遍.近年来浅地表地球物理技术有显着的进展,特别是在走时速度层析成像(Traveltime Tomography)、电阻率层析成像法(Electrical Resistivity Tomography)及多道瞬态面波法(Multichannel Analysis of Surface Wave).本文首先介绍这些方法在台湾岩土工程的应用,主要包括地层土壤液化潜能评估、坝体的安全检测、土壤与地下水污染调查及地基改良的质量管控等,应用案例以台湾常使用的地球物理勘探方法逐一介绍.虽然许多成功案例与新的应用方向对于浅地表地球物理技术在岩土工程应用的推广起了鼓舞作用,本文从工程师的角度提出地球物理勘探工程大量应用的挑战与瓶颈,包括如何提升探测数据的客观性、数据反演非唯一性问题、探测深度与分辨率的限制、实际条件违背反演基本假设的情况、以及地物性质与工程性质链接的不确定性问题,并进一步针对这些问题说明相关研究的进展与实务对策.希冀透过上述探讨,降低物探师与工程师认知上的差距,提升地球物理勘探在工程的应用的合理性与普及性.  相似文献   

5.
Hyporheic exchange influences water quality and controls numerous physical, chemical, and biological processes. Despite its importance, hyporheic exchange and the associated dynamics of solute mixing are often difficult to characterize due to spatial (e.g., sedimentary heterogeneity) and temporal (e.g., river stage fluctuation) variabilities. This study coupled geophysical techniques with physical and chemical sediment analyses to map sedimentary architecture and quantify its influence on hyporheic exchange dynamics within a compound bar deposit in a gravel-dominated river system in southwestern Ohio. Electromagnetic induction (EMI) was used to quantify variability in electrical conductivity within the compound bar. EMI informed locations of electrode placement for time-lapse electrical resistivity imaging (ERI) surveys, which were used to examine changes in electrical resistivity driven by hyporheic exchange. Both geophysical methods revealed a zone of high electrical conductivity in the center of the bar, identified as a fine-grained cross-bar channel fill. The zone acts as a baffle to flow, evidenced by stable electrical conditions measured by time-lapse ERI over the study period. Large changes in electrical resistivity throughout the survey period indicate preferential flowpaths through higher permeability sands and gravels. Grain size analyses confirmed sedimentological interpretations of geophysical data. Loss on ignition and x-ray fluorescence identified zones with higher organic matter content that are locations for potentially enhanced geochemical activity within the cross-bar channel fill. Differences in the physical and geochemical characteristics of cross-bar channel fills play an important role in hyporheic flow dynamics and nutrient processing within riverbed sediments. These findings enhance our understanding of the applications of geophysical methods in mapping riverbed heterogeneity and highlight the importance of accurately representing geomorphologic features and heterogeneity when studying hyporheic exchange processes.  相似文献   

6.
高级  张海江 《地球物理学报》2016,59(11):4310-4322
在利用不同的地球物理勘探方法对地下复杂介质成像时,因观测系统的非完备性及数据本身对某些岩石物性的不敏感性,单独成像的结果存在较大的不确定性和不一致性.对于地震体波走时成像与直流电阻率成像,均面临着成像阴影区问题.对于地震走时成像,地震射线对低速区域覆盖较差形成阴影区,造成低速区域分辨率降低.对于电阻率成像,电场线在高阻区域分布较少,造成高阻区域分辨率较低.为了提高地下介质成像的精度,Gallado和Meju(2003)提出了基于交叉梯度结构约束的联合地球物理成像方法.在要求不同的物性模型拟合各自对应的数据同时,模型之间的结构要求一致,即交叉梯度趋于零.为了更有效地实现基于交叉梯度的结构约束,我们提出了一种新的交替结构约束的联合反演流程,即交替反演不同的数据而且在反演一种数据时要求对应的模型与另一个模型结构一致.新的算法能够更容易地把单独的反演系统耦合在一起,而且也更容易建立结构约束和数据拟合之间的平衡.基于新的联合反演流程,我们测试了基于交叉梯度结构约束的二维跨孔地震走时和直流电阻率联合成像.合成数据测试表明,我们提出的交替结构约束流程能够很好地实现基于交叉梯度结构约束的联合成像.与单独成像结果相比,地震走时和全通道电阻率联合成像更可靠地确定了速度和电阻率异常.  相似文献   

7.
Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site‐specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity ~500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time‐domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.  相似文献   

8.
Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, timeconsuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.  相似文献   

9.
多尺度全变分法及其在时移地震中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
陈勇  韩波  肖龙  陈小宏 《地球物理学报》2010,53(8):1883-1892
本文针对时间推移地震本身包含不同时期的两次或者两次以上的勘探反问题,构造了一种快速有效的反演方法--多尺度全变分法.通过引入全变分正则化来代替传统的Tikhonov正则化,针对待反演参数不连续的情况,提高了算法精度.为了提高计算效率,引入了多尺度方法,从而构造了多尺度全变分方法.在数值模拟中,针对一个时间推移地震反演问题对多尺度-Tikhonov正则化法、单一尺度全变分法、以及本文所构造的多尺度全变分法进行了比较.结果表明,本文所提出的多尺度全变分法是一种稳定、快速和精确的反演方法.  相似文献   

10.
自然电场法常用于环境与工程等领域的监测作业,但各时刻观测数据往往单独反演解释.为了充分利用时序数据间的关联信息,提高监测数据的反演解释可靠性,提出基于卡尔曼滤波的自然电场监测数据时序反演方法.根据达西定律和阿尔奇公式建立污染物在孔隙介质中的运动扩散的动态地电模型,作为用于构建卡尔曼滤波的状态模型.而卡尔曼滤波的观测模型则通过常规的自然电场法正演获得.在建立状态模型和观测模型的基础上,构建起卡尔曼滤波递归,将地电模型演化信息与自然电场观测数据进行信息融合,实现自然电场监测数据的时序反演.加入噪声的自然电场模拟数据测试表明时序反演算法具有较好的鲁棒性,对噪声不敏感.沙槽物理实验监测数据的计算测试也同样证明时序反演能有效处理监测数据,实现对动态模型的准确重构.  相似文献   

11.
Radio-magnetotelluric(RMT)是以无线电发射机为信号源的一种地球物理勘探方法,近年来被广泛应用于数米至数十米内的近地表工程和环境地球物理勘探.目前,各类电磁资料的反演均是以寻求满足目标拟合差的地下介质电阻率分布为目的.然而,对于勘探频率为10~300kHz的RMT数据,由介电常数所引起的波动场在总场中的比例可达20%以上,在这种情况下,忽略介电常数,仅通过电阻率参数的反演来进行数据拟合势必降低反演资料解释的准确性.为解决这一问题,本文研究了基于电阻率-介电常数的双参数同步反演算法.构建了一个全新的双参数目标函数,并推导了双参数反演迭代方程组;通过灵敏度分析,研究了电阻率和介电常数对正演响应的影响,并据此提出相对电导率的概念,统一了反演参数的灵敏度;通过理论模型分析了参考频率、双参数正则化因子对反演结果的影响,并给出了一般性的参数优选方案.此外,为了能够灵活处理复杂地形,本文采用非结构的正反演双网格进行模型离散,并通过局部加密技术保证反演的速度和精度.最后,对一带地形的理论模型分别进行了单参数和双参数反演,结果表明单参数反演无法正确反映出地电信息,而双参数反演能够准确得到异常的分布,验证了本文所开发的双参数反演程序的有效性.  相似文献   

12.
地球物理反演是获取地球信息的重要手段,其求解具有严重的不适定性.为获得稳定的反问题结果,通常需要在目标泛函中加入正则化约束项.正确地估计正则化参数一直是地球物理反问题中的难点.目前存在的选取方法需要根据大量的试验来确定正则化参数,工作量十分巨大,并且存在很大的经验性,很难得到最优的正则化参数.针对这个问题,本文提出了一种基于广义Stein无偏风险估计的正则化参数求取方法.该方法的具体思路是通过求解模型参数均方误差的广义Stein无偏风险估计函数,在反问题求解过程中自动求取正则化参数.本文模型测试结果表明,相比于目前常用的方法,通过该方法得到的正则化参数是最优的.  相似文献   

13.
We discuss a strategy capable of a quantitative long-term monitoring of water saturation and volume variation of light non-aqueous phase liquids in the soil. The goal was reached monitoring a controlled sand cell contaminated with classical gasoline over 124 days, using geophysical methods such as electrical resistivity tomography, induced polarization and ground penetrating radar. We show that empirical relations, linking the water saturation to the physical parameters measured as resistivity from electrical resistivity tomography and travel time from georadar with advanced processing, are good tools for this purpose. The consistence of the proposed process is validated by both good overlap of results carried out from electrical resistivity tomography and georadar and theoretical models simulating the actual experiment.  相似文献   

14.
Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground‐based electromagnetic surveys, electrical resistivity models can be obtained to provide high‐resolution three‐dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use of the inverted electrical resistivity models without considering the measured geophysical data directly. This induces a number of errors related to inconsistent scales between the geophysical and hydrologic models and the applied regularization constraints in the geophysical inversion. To overcome these errors, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion‐State (CHI‐S), in which simulated salt concentrations are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time‐domain electromagnetic (TDEM) dataset was collected. For this location, a simple two‐dimensional cross‐sectional salt water intrusion model was developed, for which we estimated five uniform aquifer properties, incorporating the porosity that was also part of the employed petrophysical relationship. In addition, one geophysical parameter was estimated. The six parameters could be resolved well by fitting more than 300 apparent resistivities that were comprised by the TDEM dataset. Except for three sounding locations, all the TDEM data could be fitted close to a root‐mean‐square error of 1. Possible explanations for the poor fit of these soundings are the assumption of spatial uniformity, fixed boundary conditions and the neglecting of 3D effects in the groundwater model and the TDEM forward responses.  相似文献   

15.
We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is successful not only in enhancing the subsurface information but also as a survey design tool to identify the appropriate combination of the geophysical tools and show whether application of an individual method for further investigation of a specific site is beneficial.  相似文献   

16.
左博新  胡祥云  韩波 《地球物理学报》2012,55(12):4058-4068
地球物理数据在采集和处理过程中,由于存在噪声、模型误差、以及数据离散化误差等系统误差,导致了异常体边界模糊和模型分辨率降低等一些不可避免的不良系统退化效应的产生.本文提出了一种新的地球物理反演模型增强方法,通过消除反演估计模型中的系统误差,压制模型中的不良系统退化效应,增强反演模型的分辨率.文章从理论上分析了数据中存在的系统误差对模型求解的影响,提出了一个新的系统误差褶积退化模型,并根据该模型提出了一种基于混合范数总变分正则化的盲反褶积模型增强算法.最后,文章通过1D线性反演增强试验和2D大地电磁反演增强试验,验证了所提出的地球物理系统退化模型的正确性,以及盲反褶积增强算法的有效性.试验结果表明,方法可以有效地提高反演参数模型的分辨率.  相似文献   

17.
We compare two geophysical survey measurements of the same type made at different times in order to characterize the change in the geological medium during the elapsed time. The aim of this study is to develop a strategy using a full non-linear inversion algorithm as the interpretation tool. In this way, not only the location and the form of the changes are recovered, but also the changes in the material parameters of the geological medium can be estimated. In order to solve this fully non-linear problem, the so-called ‘multiplicative regularized contrast source inversion’ (MR-CSI) method is employed. The unique property of this iterative method is that it does not solve the forward problem at each iterative step. This makes it possible to use the non-linear inversion algorithm for large-scale computation problems. The numerical results show that by taking into account the non-linear nature of the problem, interpretation of the time-lapse data can be significantly improved, compared with that obtained using linear inversion.  相似文献   

18.
The inversion of resistivity profiling data involves estimation of the spatial distribution of resistivities and thicknesses of rock layers from the apparent resistivity data values measured in the field as a function of electrode separation. The drawbacks of using traditional curve-matching techniques to solve this inverse problem have been overcome by iterative linear techniques but these require good starting models even if the shape of the causative body is asssumed known. In spite of the recent developments in inversion techniques, no robust method exists for the inversion of resistivity profiling data for the simple model of dikes and spheres which are the classical models of geophysical prospecting. We apply three different non-linear inversion schemes to invert synthetic resistivity profiling data for the classical models embedded in a uniform matrix of contrasting resistivity. The three non-linear algorithms used are called the Metropolis simulated annealing (SA), very fast simulated annealing (VFSA) and a genetic algorithm (GA). We compare the performance of the three algorithms using synthetic data for an outcropping vertical dike model. Although all three methods were successful in obtaining optimal solutions for arbitrary starting models, VFSA proved to be computationally the most efficient.  相似文献   

19.
基于青藏高原多年冻土区三个钻孔的地球物理测井数据和钻孔编录资料,我们对多年冻土厚度和多年冻土层内地下冰与地球物理测井数据之间的关系进行了相关的分析研究.研究表明,当地层为土壤类型时,可以使用井径和侧向测井曲线来判断多年冻土层厚度;而当地层为致密的基岩时,不能使用上述两种测井曲线来判断多年冻土层厚度.此外,还可以使用长源距伽马-伽马曲线和侧向测井曲线来识别多年冻土层内部分地下冰层的位置,其前提条件是地下冰层具有一定的厚度,或即使厚度较薄,但连续出现.这一研究结果对于利用地球物理测井曲线来调查多年冻土情况具有一定的应用价值.  相似文献   

20.
时间推移地震反演的连续模型与算法   总被引:7,自引:2,他引:5       下载免费PDF全文
陈勇  韩波 《地球物理学报》2006,49(4):1164-1168
针对时间推移地震反演问题建立了依赖勘探时间的数学模型,并在此基础上设计了全局收敛的连续型及逐次递归算法.将同伦方法与Tikhonov正则化方法相结合,设计了初次勘探反演的同伦-正则化方法.以三维时间推移地震为例,在连续型及逐次递归算法的基础上构造了快速的局域化反演算法.数值模拟结果说明了上述方法都是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号