首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Self-potential (SP) and electrical resistivity measurements are used to investigate seepage at a remote moraine dam in the Sierra Nevada of California. The site is a small terminal moraine impounding roughly 300,000 m3 of water at ~ 3400 m a.s.l. Suspicious fine sediment in a small lake at the dam's downstream toe prompted initial concerns that anomalous seepage may be eroding matrix material from the moraine. 235 individual SP measurements covering the surface of the dam were collected in order to investigate electrokinetic current sources resulting from seepage, while resistivity soundings probed moraine stratigraphy and suggest that the till contains interstitial ice. Contoured SP data reveal a non-uniform voltage distribution over the moraine dam and two distinct negative SP anomalies. The first, located in the central area of the moraine, shows a broad negative SP zone around the crest and increasingly positive SP moving downhill towards both the upstream and downstream toes. This anomaly can be explained by shallow gravitational groundwater flow in the near subsurface combined with upward groundwater flux through evapotranspiration; numerical simulation of the combined effect matches field data well. The second SP anomaly has a tightly localized distribution and can be explained by vertically descending flow into a bedrock fault conduit. Our conceptual seepage model suggests that flow travels from Dana Lake first at the boundary of ice-filled moraine and bedrock before converging on a concentrated channel in the subvertical fault zone. Positive SP near the dam abutments results from groundwater inflow from adjacent hillslopes. Combined analyses suggest that seepage erosion is not currently affecting the moraine dam, and that the sediment observed on the bed of the downstream toe lake is likely a remnant of past outflow events.  相似文献   

2.
Integrated electrical resistance tomography (ERT) and short-offset transient electromagnetic (TEM) measurements were carried out to investigate a geothermal area in the Main Central Thrust (MCT) zone of Garhwal Himalayan region, India. The study area is located around Helang on either side of Alaknanda River and it is dotted with hot water springs with water temperature of 45°–55 °C emerging at the surface.To assess the geothermal potential and its lateral and vertical extension in and around the hot water springs in the study area, 7 ERT profiles and 21 TEM stations on 7 profiles were established around the hot water spring and at far distant locations. The 2D inversion of ERT data indicates a low resistivity (< 50 Ωm) zone in the vicinity of hot springs, which appears to be associated with an underground water channel through the fractured rock. The bedrock resistivity is very high (> 1000 Ωm) whereas the resistivity of the weathered near surface soil at a far distant location from the hot spring is low (< 100 Ωm) again. A common feature of all TEM data is the sign reversal observed at roughly 10 μs. The consistent sign reversal in all TEM data indicates the existence of the multi-dimensionality of the geoelectrical structure. Therefore, the TEM data were treated by using the SLDM (Spectral Lanczos Decomposition Method) 2D/3D forward modeling code based on the finite difference algorithm. The resistivity structure obtained from ERT data was used as an input for the modeling of TEM data. Based on the joint analysis of the ERT and TEM data it can be inferred that geothermal anomalies associated with the hot spring in the MCT zone are a local feature appearing as a low resistivity zone (< 50 Ωm) at shallow depth (< 100 m) in the vicinity of the hot spring region.  相似文献   

3.
A combination of geophysical methods including continuous electrical resistivity and high-resolution Chirp sub-bottom profiling were utilized to characterize geologic controls on pore fluid salinity in the nearshore of Long Bay, SC. Resistivity values ranged from less than 1 Ω m to greater than 40 Ω m throughout the bay. Areas of elevated electrical resistivity suggest the influence of relatively fresher water on pore water composition. Geophysical evidence alone does not eliminate all ambiguity associated with lithological and porosity variations that may also contribute to electrical structure of shallow marine sediments. The anomalous field is of sufficient magnitude that lithological variation alone does not control the spatial distribution of elevated electrical resistivity zones. Geographical distribution of electrical anomalies and structures interpreted from nearby sub-bottom profiles indicates abrupt changes in shallow geologic units control preferential pathways for discharge of fresh water into the marine environment. Shore parallel resistivity profiles show dramatic decreases in magnitude with increasing distance from shore, suggesting a significant portion of the terrestrially driven fresh SGD in Long Bay is occurring via the surficial aquifer within a few hundred meters of shore.  相似文献   

4.
The aim of this study is to define and characterize water bearing geological formation and to test the possibility of using geophysical techniques to determine the hydrogeological parameters in three areas in the Vientiane basin, Laos. The investigated areas are part of the Khorat Plateau where halite is naturally occurring at depths as shallow as 50 m in the Thangon Formation. Magnetic Resonance Sounding (MRS) has been used in combination with Vertical Electrical Sounding (VES) in different geological environments. In total, 46 sites have been investigated and the MRS and VES recognized the stratigraphic unit N2Q1–3, consisting of alluvial unconsolidated sediments, as the main water bearing unit. The aquifer thickness varies usually between 10 and 40 m and the depth to the main aquifer range from 5 to 15 m. The free water content is here up to 30%, and the decay times vary between 100 and 400 ms, suggesting a mean pore size equivalent to fine sand to gravel. The resistivity is highly variable, but usually around 10–1500 Ω-m, except for some sites in areas 1 and 2, where the aquifer is of low resistivity, probably related to salt water. Hydraulic and storage-related parameters such as transmissivity, hydraulic column, have been estimated from the MRS. The MRS together with VES has been shown to be a useful and important tool for identifying and distinguishing freshwater from possible salt-affected water as well as the salt-related clay layer of the Thangon Formation. This clay layer is characterized by very low free water content and a resistivity lower than 5 Ω-m and can be found in all 3 areas at depths from 15 to 50 m.  相似文献   

5.
72 inloop transient electromagnetic soundings were carried out on two 2 km long profiles perpendicular and two 1 km and two 500 m long profiles parallel to the strike direction of the Araba fault in Jordan which is the southern part of the Dead Sea transform fault indicating the boundary between the African and Arabian continental plates. The distance between the stations was on average 50 m.The late time apparent resistivities derived from the induced voltages show clear differences between the stations located at the eastern and at the western part of the Araba fault. The fault appears as a boundary between the resistive western (ca. 100 Ωm) and the conductive eastern part (ca. 10 Ωm) of the survey area. On profiles parallel to the strike late time apparent resistivities were almost constant as well in the time dependence as in lateral extension at different stations, indicating a 2D resistivity structure of the investigated area.After having been processed, the data were interpreted by conventional 1D Occam and Marquardt inversion. The study using 2D synthetic model data showed, however, that 1D inversions of stations close to the fault resulted in fictitious layers in the subsurface thus producing large interpretation errors. Therefore, the data were interpreted by a 2D forward resistivity modeling which was then extended to a 3D resistivity model. This 3D model explains satisfactorily the time dependences of the observed transients at nearly all stations.  相似文献   

6.
In this work we present the hydrogeophysical imaging of a key sector of the Quaternary Po foreland basin (northern Italy), focussing on the reconstruction of clastic aquifers and aquitards in a complex tectono-sedimentary subsurface architecture. The study area includes the relic reliefs of Casalpusterlengo and Zorlesco, two smooth morphological features involving uplifted and gently folded Pleistocene marine to alluvial sediments, plausibly linked to the buried Northern Apennines thrust and fold belt. The geophysical data include 35 Direct Current Vertical Electrical Soundings collected over a 37 km2 wide area, acquired with Schlumberger array and maximum half-spacing of 500 m. 1-D resistivity-depth profiles were computed for each VES. An integrated hydrostratigraphic approach was applied, to constrain the interpretation of the geophysical data along several cross-sections, including the comparison of resistivity soundings to stratigraphic logs, borehole electric logs and the pore-water properties.The resistivity interfaces, traceable with the same laterally continuous vertical polarity, were used to develop an electrostratigraphic model in order to portray the stacking of electrostratigraphic units down to 200 m below ground surface. Their vertical associations show a general upward increase of electrical resistivity. This assemblage mimics the regional coarsening upwards depositional trend, from the conductive units of the Plio-Pleistocene marine-to-transitional depositional systems to the resistive units of the Middle–Late Pleistocene fluvial and alluvial plain depositional systems. Middle Pleistocene depositional systems host an alternation of North-dipping, high-to-intermediate permeability aquifer systems (70–180 Ωm, thickness of 5–70 m) separated by low permeability aquitards (20–50 Ωm, thickness up to 40 m). These units pinch out against the Casalpusterlengo and Zorlesco relic reliefs, where they cover the uplifted and folded regional aquitard (20–50 Ωm) formed by Pliocene-Lower Pleistocene clays to sandy silts with gravel lenses in agreement with borehole data. In the deepest part of the local stratigraphy, a broad low-resistivity anomaly (< 10 Ωm) was clearly mapped through the study area. By comparison with electrical borehole logs in deep oil-wells, it could be interpreted as the fresh–saltwater interface due to the presence of connate waters and brines hosted by the marine-to-transitional shales.  相似文献   

7.
This paper highlights the efficiency and complementarity of a light package of geophysical techniques to study the structure of karst Unsaturated Zone (UZ) in typical Mediterranean environment where soil cover is thin or absent. Both selected techniques, 2D Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT), are widely used in environmental studies and their application is accessible for a lot of scientists/engineers. However, GPR or ERT alone is not able to provide an enhanced characterization of geological features in karst media. In the present study, GPR results supply a near surface high resolution imaging and thus can provide relevant geological information such as stratifications and fractures. Despite the quality of the results GPR's investigation depth remains limited to around 12 m. Apparent and inverted resistivity provided by ERT surveys shows strong lateral and vertical variations. These variations can inform about general geological structuring and feature orientation. ERT is able to prospect down to 40 m but it's a low resolution integrative technique. In the study area the investigated limestone is a commonly electrical resistive formation (more than 2000 Ω.m). However deeper than 5–7 m, the ERT profiles reveal several zones of moderate resistivity (around 900 Ω.m). In these zones a stratification change corresponding to slanted bedding is clearly identified by GPR results. The combination of both GPR and ERT results can allow a well-established geological interpretation. These moderate resistivity zones with slanted beddings can explain the presence of a perennial water flow point 35 m below the surface of the studied site within the underground gallery of the Low-Noise Underground Laboratory (LSBB).  相似文献   

8.
A new IRSL dataset is presented for the age and setting of a critical Late Glacial Maximum tephra isochron marker. The rhyolitic tephra, known as the Kawakawa Tephra, occurs as a 14 cm thick layer within a 5.9 m thick loess section overlying alluvial gravels in the Rangitikei River valley, SW North Island of New Zealand. Ages range from 21 at the base to 5 ka near the top of the loess and bracket an age of 17.0 ± 2.2 for the tephra. The new IRSL ages are in agreement with published and unpublished luminescence ages from other localities of loess, sand and ash above and below the tephra and of the tephra itself, that indicate an age of ca. 19 ka for the Kawakawa Tephra. This age is considerably younger than the generally accepted 14C 27.1 ka cal yrs BP age of the Kawakawa Tephra and highlights an unresolved discrepancy between the two dating systems.  相似文献   

9.
A 5.6-m-long lake sediment core from Bear Lake, Alaska, located 22 km southeast of Redoubt Volcano, contains 67 tephra layers deposited over the last 8750 cal yr, comprising 15% of the total thickness of recovered sediment. Using 12 AMS 14C ages, along with the 137Cs and 210Pb activities of recent sediment, we evaluated different models to determine the age–depth relation of the core, and to determine the age of each tephra deposit. The selected age model is based on a mixed-effect regression that was passed through the adjusted tephra-free depth of each dated layer. The estimated age uncertainty of the 67 tephras averages ±105 yr (95% confidence intervals). Tephra-fall frequency at Bear Lake was among the highest during the past 500 yr, with eight tephras deposited compared to an average of 3.7/500 yr over the last 8500 yr. Other periods of increased tephra fall occurred 2500–3500, 4500–5000, and 7000–7500 cal yr. Our record suggests that Bear Lake experienced extended periods (1000–2000 yr) of increased tephra fall separated by shorter periods (500–1000 yr) of apparent quiescence. The Bear Lake sediment core affords the most comprehensive tephrochronology from the base of the Redoubt Volcano to date, with an average tephra-fall frequency of one every 130 yr.  相似文献   

10.
Unlike other lakes in the McMurdo Dry Valleys, Antarctica, Lake Vida has a thick (~ 19 m) ice cover sealing a liquid brine body of unusually high salinity (~ 245 g/L) from the atmosphere. To constrain the conditions under which the atypical Lake Vida ice cover formed and evolved, 19 ice samples were collected down to a depth of ~ 14 m, together with three brine samples trapped in the ice at ~ 16 m for analysis of helium, neon, argon, krypton, and xenon concentrations. The broad pattern of noble gas concentrations for Lake Vida samples is fundamentally different from that of air saturated water (ASW) at 0 °C and an elevation of 340 m for salinities of 0 (ice) and 245 g/L (brine). Overall, ice samples are enriched in He and depleted in Ne with saturation relative to ASW averages of 1.38 and 0.82, respectively, and strongly depleted in Ar, Kr, and Xe with relative saturations of 0.10, 0.06, and 0.05, respectively. By contrast, brine samples are generally depleted in He and Ne (relative saturation averages of 0.33 and 0.27, respectively) but enriched in Ar, Kr, and Xe, with relative saturation averages of 1.45, 3.15, and 8.86, respectively. A three-phase freezing partitioning model generating brine, ice and bubble concentrations for all stable noble gases was tested and compared with our data. Measured brine values are best reproduced for a salinity value of 175 g/L, a pressure of 1.1 atm, and a bubble volume of 20 cm3 kg?1. Sensitivity tests for ice + bubble samples show an ideal fit for bubble volumes of ~ 1–2 cm3 kg?1. Our results show that the conditions under which ice and brine formed and evolved at Lake Vida are significantly different from other ice-covered lakes in the area. Our brine data suggest that Lake Vida may be transitioning from a wet to a dry-based lake, while the ice + bubble data suggest at least partial re-equilibration of residual liquid with the atmosphere as ice forms at the top of Lake Vida ice cover.  相似文献   

11.
Two mineralogically and chemically distinct rhyolite magmas (T1 and T3) were syn-erupted from the same conduit system during the 21.9 ka basalt intrusion-triggered Okareka eruption from Tarawera volcano, New Zealand. High spatial resolution U–Th disequilibrium dating of zircon crystals at the ~ 3–5 μm scale reveals a protracted yet discontinuous zircon crystallization history within the magmatic system. Both magma types contain zircon whose interiors predate the eruption by up to 200 ka. The dominant age peak in the T1 magma is ~ 30 ka with subordinate peaks at ~ 45, ~ 75, and ~ 100 ka, whereas the T3 magma has a dominant zircon interior age peak at ~ 90 ka with smaller modes at ~ 35 and ~ 150 ka. These patterns are consistent with isolated pockets of crystallization throughout the evolution of the system. Crystal rim analyses yield ages ranging from within error of the eruption age to at least ~ 90 ka prior to eruption, highlighting that zircon crystallization frequently stalled long before the eruption. Continuous depth profiling from crystal rims inward demonstrates protracted growth histories for individual crystals (up to ~ 100 ka) that were punctuated by asynchronous hiatuses of up to 30 ka in duration. Disparate zircon growth histories can result from localized thermal perturbations caused by mafic intrusions into a silicic reservoir. The crystal age heterogeneity at hand-sample scale requires considerable crystal transport and mixing. We propose that crystal mixing was achieved through buoyancy instabilities caused by mafic magma flow through crystal mush. A terminal pre-eruptive rejuvenation event was capable of mobilizing voluminous melts that erupted, but was too short (< 102–103 years) to result in extensive zircon growth. The contrasting, punctuated zircon histories argue against closed-system fractional crystallization models for silicic magmatism that require protracted cooling times following a mostly liquid starting condition.  相似文献   

12.
An integrated approach involving volcanology, geochemistry and numerical modelling has enabled the reconstruction of the volcanic history of the Fox kimberlite pipe. The observed deposits within the vent include a basal massive, poorly sorted, matrix supported, lithic fragment rich, eruption column collapse lapilli tuff. Extensive vent widening during the climactic magmatic phase of the eruption led to overloading of the eruption column with cold dense country rock lithic fragments, dense juvenile pyroclasts and olivine crystals, triggering column collapse. > 40% dilution of the kimberlite by granodiorite country rock lithic fragments is observed both in the physical componentry of the rocks and in the geochemical signature, where enrichment in Al2O3 and Na2O compared to average values for coherent kimberlite is seen. The wide, deep, open vent provided a trap for a significant proportion of the collapsing column material, preventing large scale run-away in the form of pyroclastic flow onto the ground surface, although minor flows probably also occurred. A massive to diffusely bedded, poorly sorted, matrix supported, accretionary-lapilli bearing, lithic fragment rich, lapilli tuff overlies the column collapse deposit providing evidence for a late phreatomagmatic eruption stage, caused by the explosive interaction of external water with residual magma. Correlation of pipe morphology and internal stratigraphy indicate that widening of the pipe occurred during this latter stage and a thick granodiorite cobble-boulder breccia was deposited. Ash- and accretionary lapilli-rich tephra, deposited on the crater rim during the late phreatomagmatic stage, was subsequently resedimented into the vent. Incompatible elements such as Nb are used as indicators of the proportion of the melt fraction, or kimberlite ash, retained or removed by eruptive processes. When compared to average coherent kimberlite the ash-rich deposits exhibit ~ 30% loss of fines whereas the column collapse deposit exhibits ~ 50% loss. This shows that despite the poorly sorted nature of the column collapse deposit significant elutriation has occurred during the eruption, indicating the existence of a high sustained eruption column. The deposits within Fox record a complex eruption sequence showing a transition from a probable violent sub-plinian style eruption, driven by instantaneous exsolution of magmatic volatiles, to a late phreatomagmatic eruption phase. Mass eruption rate and duration of the sub-plinian phase of the eruption have been determined based on the dimensions of milled country-rock boulders found within the intra-vent deposits. Calculations show a short lived eruption of one to eleven days for the sub-plinian magmatic phase, which is similar in duration to small volume basaltic eruptions. This is in general agreement with durations of kimberlite eruptions calculated using entirely different approaches and parameters, such as predictions of magma ascent rates in kimberlite dykes.  相似文献   

13.
We have combined tensor radio magnetotelluric- (RMT, 15–250 kHz) and controlled source tensor magnetotelluric (CSTMT, 1–12 kHz) data for the mapping of aquifers in gravel formations lying in between crystalline bedrock and clay rich sediments in the Heby area some 40 km west of Uppsala in Sweden. The estimated transfer functions, the impedance tensor and the tipper vector generally satisfy 1D or 2D necessary conditions except for the lowest CSTMT frequencies where near field effects become more dominant.The data measured from 8 profiles were inverted with the Rebocc code of Siripunvaraporn and Egbert (2000) assuming plane wave conditions. This meant that only 12 frequencies in the range of 4–180 kHz could be used. The four lowest frequencies of CSTMT in the range of 1–2.8 kHz were excluded because of source effects. Data from all profiles were inverted with a starting model of 100 Ω-m and a relative error floor of 0.02 on apparent resistivity, corresponding to less than 1° on phase. Tipper vectors are generally small except when source effects become dominant in the lowest frequencies of CSTMT and were therefore not used for inversion. Comparing with models derived from vertical electrical soundings, refraction and reflection seismic data as well as ground truth from exploration wells assessed the reliability of the deep part of the models. Furthermore we carried out a non-linear resolution analysis to better quantify the depth extent of the aquifers.The inverted models from the Heby area show well the thickness variations of glacial deposits overlying crystalline bedrock. Generally, the upper 20 m of the models have resistivities below 40 Ω-m, taken to represent clay rich formations. Below the clay layer resistivities increase to about 40–400 Ω-m, interpreted to represent sand/gravel formations with a maximum thickness of about 40 m and a width of several hundred metres. This is a potential aquifer that extends in approximately N–S direction for some kilometres.  相似文献   

14.
The study analyses the long-term biophysical and demographic changes in Dal lake, located in the heart of Srinagar city, Kashmir India, using a repository of historical, remote sensing, socio-economic and water quality data supported by the extensive field observations. The lake faces multiple pressures from the unplanned urbanization, high population growth, nutrient load from intensive agriculture and tourism. The data showed that the lake has shrunk from 31 km2 in 1859–24 km2 in 2013. Significant changes were observed in the land use and land cover (LULC) within the lake (1859–2013) and in the vicinity of the lake (1962–2013). Analysis of the demographic data indicates that the human population within the lake has shown more than double the national growth rate. Additionally, 7 important water quality parameters from 82 well distributed sites across the lake were analyzed and compared with the past data to determine the historical changes in the water quality from 1971 to 2014. The changes in the LULC and demography have adversely affected the pollution status of this pristine lake. Ortho-phosphate phosphorous concentration has increased from 16.75 μg L−1 in 1977–45.78 μg L−1 in 2014 and that of the nitrate-nitrogen from 365 μg L−1 to 557 μg L−1, indicating nutrient enrichment of the lake over the years. Built-up area within the lake has increased 40 times since 1859, which, together with the changes in the population and settlements, have led to the high discharge of untreated nutrient-rich sewage into the lake. Similarly the expansion of floating gardens within the lake and agriculture lands in the catchment has contributed to the increased nutrient load into the lake due to the increasing use of fertilizers. The information about the existing land cover, demography and water quality was integrated and analyzed in GIS environment to identify the trophic status of the lake. The analysis indicated that 32% of the lake falls under sever degradation, 48% under medium degradation while as 20% of the lake waters are relatively clean. It is believed that the results provide improved knowledge and insights about the lake health and causal factors of its degradation necessary for effectively restoring its ecological and hydrological functionality.  相似文献   

15.
The 1.0 Ma Kidnappers supereruption (~ 1200 km3 DRE) from Mangakino volcanic centre, Taupo Volcanic Zone, New Zealand, produced a large phreatomagmatic fall deposit followed by an exceptionally widespread ignimbrite. Detailed sampling and analysis of glass shards and mineral phases have been undertaken through a proximal 4.0 m section of the fall deposit, representing the first two-thirds of erupted extra-caldera material. Major and trace element chemistries of glass shards define three distinct populations (types A, B and C), which systematically change in proportion through the fall deposit and are inferred to represent three magma types. Type B glass and biotite first appear at the same level (~ 0.95 m above base) in the fall deposit suggesting later tapping of a biotite-bearing magma. Plagioclase and Fe–Ti oxide compositions show bimodal distributions, which are linked to types A and B glass compositions. Temperature and pressure (T–P) estimates from hornblende and Fe–Ti oxide equilibria from each magma type are similar and therefore the three magma bodies were adjacent, not vertically stacked, in the crust. Most hornblende model T–P estimates range from 770 to 840 °C and 90 to 170 MPa corresponding to storage depths of ~ 4.0–6.5 km. Hornblende model T–P estimates coupled with in situ trace element fingerprinting imply that the magma bodies were individually well mixed, and not stratified. Compositional gaps between the three glass compositional types imply that no mixing between these magmas occurred. We interpret these data, coupled with the systematic changes in shard compositional proportions through the fall deposit, to reflect that three independent melt-dominant bodies of magma contributed large (A, ~ 270 km3), medium (B, ~ 90 km3) and small (C, ~ 40 km3) volumes (as reflected in the fall deposits) and were systematically tapped during the eruption. We propose that the systematic evacuation of the three independent magma bodies implies that there was tectonic triggering and linkage of eruptions. Our results show that supereruptions can be generated by near simultaneous multiple eruptions from independent magma chambers rather than the evacuation of a large single unitary magma chamber.  相似文献   

16.
Lynch's Crater on the Atherton Tablelands in NE-Australia formed about 230,000 years ago during an explosive eruption, creating a maar more than 80 m deep. Since the eruption, the maar has been filled with lake sediments that are topped by peat material. A 64 m long core was recovered and an OSL dating project was undertaken to extend the chronology beyond 16 m depth, which according to 14C age control represents ~60 ka. The predominantly organic lake sediments contained abundant fine quartz of aeolian origin, and the Single Aliquot Regenerative Method (SAR) provided satisfactory equivalent dose (DE) estimates. However, the determination of the dose rate proved both critical and difficult. Extremely low radionuclide contents led to cosmic radiation being the dominant dose rate contribution for most samples. The OSL chronology presented in this paper thus relies on modelling the changing cover by sediments and lake water over the burial time.  相似文献   

17.
The Qaidam Basin in the northeastern Qinghai–Tibetan Plateau (QTP) is one of the largest hyper-arid intermontane basins in the northern hemisphere, and has abundant records for the study on palaeo-lake level fluctuations and palaeoclimatic changes. Significant efforts have been invested to define the timing of shoreline deposits using radiocarbon dating. However, due to the dating limit, the absence of organic materials and carbon reservoir effects for radiocarbon dating in arid areas, it is difficult to establish a reliable chronology for shoreline deposits. Therefore, controversy exists regarding the chronology for the high lake level in the Qaidam Basin, as well in the QTP. Some proposed that high lake levels occurred during late Marine Isotope Stage (MIS) 3, while others recently argued that the highest lake level in the QTP and adjacent regions existed in MIS 5. In Gahai Lake (now a salt lake), we investigated a section comprising lacustrine and shoreline deposits, which was about 25 m above the present lake level. Seven samples were collected for quartz optically stimulated luminescence (OSL) dating. A sample collected from a fine sand layer (the bottom of the section, and 12 m above the present lake level), which was assumed to have been deposited underwater, gave an OSL age of 82 ± 8 ka. It suggested that the lake level was at least 12 m higher than present in late MIS 5. The high lake level could maintain till about 73 ± 6 ka, and then decreased. This lake level decrease resulted in a gravel layer deposit between 73 ± 6 and 63 ± 6 ka (roughly during MIS 4). The lake level rose again (about 24 m above the present lake level) between 63 ± 6 and 55 ± 5 ka (roughly in early MIS 3). No lacustrine or shoreline deposits higher than the top of the current section were found around Gahai Lake. Thus, higher than present lake levels in Gahai Lake occurred in both late MIS 5 and early MIS 3.  相似文献   

18.
An IRSL age of 17.0 ± 2.2 ka (and a “mean age” of ca. 19 ka) reported by Grapes et al. [Grapes, R., Rieser, U., Wang, N. Optical luminescence dating of a loess section containing a critical tephra marker horizon, SW North Island of New Zealand. Quaternary Geochronology 5(2-3), 164–169.] for the Kawakawa/Oruanui tephra, and other ages associated with a loess section in New Zealand are untenable: age data presented are inconsistent, no formal statistical treatments or error determinations were undertaken in age analysis, and the ages proposed are seriously at odds with multiple radiocarbon age determinations on tephra sequences bracketing the Kawakawa/Oruanui tephra and with palaeoenvironmental evidence elsewhere for the time period concerned. We suggest that the bulk polymineral IRSL ages on the tephra and encapsulating loess deposits were underestimated in part because of contamination of the loess by the integration of younger materials during slow deposition and continuous modification by upbuilding pedogenesis. Single-grain luminescence assays may reveal such contamination. A 14C-based age of ca. 27 ± 1 ka cal BP (2σ), reported in 2008, currently remains the best estimate for the age of eruption of the Kawakawa/Oruanui tephra.  相似文献   

19.
The isotopic compositions of terrestrial hydrogen and nitrogen are clearly different from those of the nebular gas from which the solar system formed, and also differ from most of cometary values. Terrestrial N and H isotopic compositions are in the range of values characterizing primitive meteorites, which suggests that water, nitrogen, and other volatile elements on Earth originated from a cosmochemical reservoir that also sourced the parent bodies of primitive meteorites. Remnants of the proto-solar nebula (PSN) are still present in the mantle, presumably signing the sequestration of PSN gas at an early stage of planetary growth. The contribution of cometary volatiles appears limited to a few percents at most of the total volatile inventory of the Earth. The isotope signatures of H, N, Ne and Ar can be explained by mixing between two end-members of solar and chondritic compositions, respectively, and do not require isotopic fractionation during hydrodynamic escape of an early atmosphere.The terrestrial inventory of 40Ar (produced by the decay of 40K throughout the Earth's history) suggests that a significant fraction of radiogenic argon may be still trapped in the silicate Earth. By normalizing other volatile element abundances to this isotope, it is proposed that the Earth is not as volatile-poor as previously thought. Our planet may indeed contain up to ~ 3000 ppm water (preferred range: 1000–3000 ppm), and up to ~ 500 ppm C, both largely sequestrated in the solid Earth. This volatile content is equivalent to an ~ 2 (± 1) % contribution of carbonaceous chondrite (CI-CM) material to a dry proto-Earth, which is higher than the contribution of chondritic material advocated to account for the platinum group element budget of the mantle. Such a (relatively) high contribution of volatile-rich matter is consistent with the accretion of a few wet planetesimals during Earth accretion, as proposed by recent dynamical models.The abundance pattern of major volatile elements and of noble gases is also chondritic, with two notable exceptions. Nitrogen is depleted by one order of magnitude relative to water, carbon and most noble gases, which is consistent with either N retention in a mantle phase during magma generation, or trapping of N in the core. Xenon is also depleted by one order of magnitude, and enriched in heavy isotopes relative to chondritic or solar Xe (the so-called “xenon paradox”). This depletion and isotope fractionation might have taken place due to preferential ionization of xenon by UV light from the early Sun, either before Earth's formation on parent material, or during irradiation of the ancient atmosphere. The second possibility is consistent with a recent report of chondritic-like Xe in Archean sedimentary rocks that suggests that this process was still ongoing during the Archean eon (Pujol et al., 2011). If the depletion of Xe in the atmosphere was a long-term process that took place after the Earth-building events, then the amounts of atmospheric 129Xe and 131–136Xe, produced by the short-lived radioactivities of 129I (T1/2 = 16 Ma) and 244Pu (T1/2 = 82 Ma), respectively, need to be corrected for subsequent loss. Doing so, the I–Pu–Xe age of the Earth becomes ≤ 50 Ma after start of solar system formation, instead of ~ 120 Ma as computed with the present-day atmospheric Xe inventory.  相似文献   

20.
In this paper we analyze the onsite characterization of a geosynthetic clay liner (GCL) that serves to ensure the impermeability of a landfill cap by DC electrical methods. The imaging of the GCL geoelectrical properties is a challenging problem because it is a very thin (between 4 and 7 mm thick) and resistive layer (from 100,000 to 2,000,000 Ω·m) depending on meteorological conditions and aging. We compare results obtained using electrical resistivity tomography (ERT) using two different kinds of arrays (dipole–dipole DD and Wenner–Schlumberger) on an experimental site with engineered defects. To confirm these results and to find the real onsite GCL resistivity we have performed sampling of the posterior distribution of this parameter using vertical electrical sounding (VES) inversions. Different VES methods were extracted from ERT with DD array and converted into a Schlumberger array.As a main conclusion the dipole–dipole array provides a better resistivity resolution of the defects than the Wenner–Schlumberger array. On ERT images, the defect detection seems to be impossible if the GCL has very high resistivity, as it happened when it was put in place. Taking into account the equivalence rules, the inversions are in both cases (ERT and VES) compatible. The GCL resistivity estimated from PSO (particle swarm optimization) varies from 3.0 105 to 1.106 Ω·m depending on saturation conditions during the twenty first months of its placing. Then, the resistivity dropped to 4.104–9.104 Ω·m, indicating a probable chemical damage of the GCL due to aging. Finally the fact that the VES inversions are solved via PSO sampling allows for the detection of a very thin and resistive layer and opens the possibility of performing micro VES surveys along the landfill to detect possible GCL defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号