首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
简述了太子矶长江航道整治工程水下控制爆破施工情况和该地区爆破震动监测情况。振动监测表明,工程所设计的爆破方案,采用微差起爆系统对邻近的长江两岸防洪堤是安全的,为控制爆破参数和评价长江堤防的安全提供了科学依据。  相似文献   

2.
导流隧洞开挖施工的爆破振动监测与分析   总被引:1,自引:0,他引:1  
详细分析了导流隧洞地质条件,结合隧洞的布置特点和现场的施工情况,采用固定测点的方案,对隧洞开挖施工进行了现场监测。分析测试数据发现,质点振动速度具有明显的方向效应,质点朝临空面的振动速度明显大于其他方向。测点和爆点不在同一高程时,当两点的高差与爆心距的比值较大时,“高差效应”引起的质点在不同方向的峰值振动速度差别十分明显,当两点的高差与爆心距的比值较小时,“高差效应”明显减弱。对于高差与爆破振动传播和衰减规律之间的关系,以往的研究提出了一些修正公式,但这些公式均把高差作为一个独立的变量进行考虑,物理意义不甚明确。根据前面的数据分析,考虑高差影响的实际意义并结合无量纲分析,取高差与爆心距的比值作为“高差效应”影响因子,对传统爆破振动波衰减经验公式进行了修正,经过对比分析,修正后的爆破振动波衰减规律公式具有更高的精度。同时,对实际监测中出现的振动速度超过安全控制速度的情况进行了分析,及时调整爆破参数,从而有效地控制了爆破振动破坏效应。其研究成果对指导隧道工程开挖爆破施工和保证坝体及大坝帷幕安全起到了重要作用,保证了该工程爆破施工的顺利完成。  相似文献   

3.
浅埋大跨隧道掘进中爆破振动控制与监测   总被引:1,自引:0,他引:1  
文章介绍了在重庆双山隧道开挖爆破施工过程中,为控制爆破振动对山顶建筑物影响,隧道开挖采取了减小单段最大装药量,增设周边减震孔,以及选用合适的爆破器材等措施来控制爆破振动,并在施工过程中,对双山山顶建筑进行设点监测振动,对监测结果进行了分析.结果表明,在隧道掘进过程中对爆破振动控制所采取的措施是成功的,利用传统的经验预测公式保守估算单段最大用药量运用在该工程上可行,振动对测点周围的房屋影响不大,说明对爆破震动所采取的控制技术是成功的,结论为今后类似工程具有借鉴意义.  相似文献   

4.
工程爆破施工过程中如何控制其对周围建筑物、正在施工项目和处于养护龄期内的混凝土结构的影响一直是爆破施工中的实际问题,直接关系爆破施工的单响药量和施工进度。隧道爆破掘进施工中为了追求施工进度,往往在爆破方案中使用较大的单响装药量,从而忽略了大药量爆破产生的冲击波效应对隧道岩壁、已有结构的破坏,本文简单介绍了施工前或施工中,进行质点振动速度监测的实际应用。  相似文献   

5.
结合秦山核电二期扩建工程,在已运行核电站附近新扩建核电站的大型基坑开挖过程中进行爆破振动的监测与爆破振动的控制。通过理论分析与监测等多种手段对爆破振动进行有效的控制,确保了正在运行核电站的安全。所总结的减震措施经验对其他核电站的爆破振动控制具有借鉴作用。  相似文献   

6.
隧道开挖施工的爆破振动监测与控制技术   总被引:24,自引:0,他引:24  
以万松岭隧道工程开挖为研究对象,对隧道工程开挖施工爆破地震波的振动监测方法及控制技术进行了研究。通过对爆破振动监测结果的回归分析,建立了隧道工程开挖爆破振动传播的数学模型;确立了其传播衰减规律。结合工程实际,提出了修正后的爆破地震波衰减经验数学公式;经对比分析,所得爆破地震波衰减规律公式预测的质点振动速度具有较高的精度。同时,结合该隧道工程开挖爆破施工,从选择合理爆破时差、最大装药量、微差起爆、掘进进尺、预裂爆破等5个方面提出了爆破振动控制技术措施使该隧道开挖施工爆破中的地面振动速度值控制在了安全范围以内,从而确保了施工段地面建筑群的安全和该隧道工程开挖爆破作业的安全。其研究对指导隧道工程开挖爆破施工和保证地面建筑物安全起到了重要作用。  相似文献   

7.
龚伦  仇文革  高新强 《岩土力学》2006,27(Z1):1089-1092
结合内水-昆明铁路盐津1号隧道下穿楼房的实际情况,借助试爆和振动监测手段,对铁路隧道近距离下穿楼房应采用的爆破方法进行了研究。结果表明,在现场进行爆破设计所得的爆破参数是合理的,有利于近接隧道工程的成功修建;近接地下工程的修建中,在重难点工程施工前,现场进行爆破试验和振动监测是确保工程成功修建的有效手段;干扰减振爆破技术有着巨大的利用空间,随着爆破技术及爆破器材的发展,在将来的控制爆破中将发挥不可估量的作用。  相似文献   

8.
彭晓钢 《探矿工程》2003,30(4):55-58
结合深圳河水下基岩开挖控制爆破工程实例,介绍了水下控制爆破工程的爆破方案设计,爆破地震效应监测,水中爆炸冲击波监测,压缩空气气泡帷幕,减震孔排等爆破安全防护技术,以及在复杂环境条件下运用监测数据及时优化爆破参数,实现工程控制爆破信息化施工的实践。  相似文献   

9.
上下交叉隧道爆破振动控制技术研究   总被引:1,自引:0,他引:1  
钻爆法是隧道开挖中一种主要的施工方法,爆破开挖不可避免会对围岩产生扰动。以新建走马岗隧道上穿东深供水走马岗引水隧洞工程为背景,开展上下交叉隧道爆破振动控制技术研究。选取与交叉段岩性一致的爆破施工开挖区域进行爆破振动监测,得到了现场爆破施工方案条件下走马岗隧道爆破振动规律。对实测数据进行回归分析,计算得出走马岗地区爆破质点峰值振动速度(PPV)的Sadovsk公式,反演得到控制爆破振动的最大掏槽药量及安全距离,制定出交叉段施工的安全控制范围以及相应的爆破方案。通过数值模拟进行了验证并付于交叉段现场施工。现场监测数据表明,提出的振速控制标准及爆破方案符合安全要求,保证了在建隧道的顺利开挖以及既有隧道的安全运行。研究成果可为类似工程爆破开挖及振动控制提供参考。  相似文献   

10.
以三峡堤防工程基础开挖为研究对象,对堤防工程基础开挖爆破地震波的振动监测方法和监测物理量的选择进行了研究。通过对爆破振动监测结果的回归分析,确立了爆破振动速度的传播衰减规律。结合工程实际,对基础开挖爆破产生的地震波的振动频率与爆区周围建(构)筑物的自振频率进行了对比分析;经对比分析,此次开挖工程爆破引起的振动频率远大于周围民房结构的自振频率,从而保证了周围建(构)筑物的安全。同时,结合该堤防工程开挖爆破施工,从建(构)筑物的安全振动速度和爆破振动的安全距离两个方面确定了爆破振动安全控制建议标准。研究分析表明,本次爆破工程的振动速度和安全距离都在爆破振动安全控制标准的范围内,从而说明了本次爆破工程圆满安全地完成了施工任务,保证了爆破时周边建(构)筑物的安全;其研究对指导基础开挖爆破施工和保证地面建筑物安全起到了重要作用。  相似文献   

11.
针对深埋隧洞爆破开挖振动控制,以瀑布沟水电站2#引水隧洞爆破开挖为工程背景,讨论了地应力瞬态卸荷诱发振动特征及影响因素,并结合实测数据采用数值模拟的方法进行了验证分析。研究发现:中、高地应力条件下开挖面初始应力的瞬间释放诱发的振动是爆破开挖诱发振动的重要组成部分;当波阻抗一定时,开挖面初始应力动态卸荷诱发振动由地应力水平、开挖面初始应力、开挖面面积和振动衰减指数共同决定,动态卸荷诱发振动最强段发生在开挖面的初始应力和开挖面面积综合效应最大的位置;深埋隧洞爆破开挖振动的强度是由爆炸荷载和开挖面初始应力动态卸荷效应共同决定的,减小炮孔排距和进尺、采用较小洞径和分部开挖能有效降低地应力瞬态卸荷效应强度,控制深埋隧洞的爆破振动强度。  相似文献   

12.
结合南山下隧洞下穿温福客运专线钱仓山隧道工程,实时监测近距离交叉隧洞爆破施工对既有隧道的振动影响。实测结果表明,(1)迎爆面位置影响既有隧道断面的爆破振动速度分布;震源距离测点大于30 m时,距离是爆破振动的主要影响因素;震源距离测点小于30 m时,主要影响因素则为装药量与距离。(2)岩体越坚硬完整,爆破振动波传播衰减越慢。采用导洞先行预留光面爆破、导洞爆破掏槽眼和周边眼及底板眼分开起爆、控制最大段装药量等措施,可有效地降低爆破振动影响,控制其对钱仓山隧道的影响,对类似工程有借鉴作用。  相似文献   

13.
刘冬  高文学  孙宝平  刘丹卉  周世生 《岩土力学》2016,37(10):3011-3016
基于原有隧道改扩建拱顶塌腔段扩建开挖,系统研究了多临空面条件下岩体爆破振动规律。采用完全重启动数值方法和拉格朗日算法分析岩体爆破振动规律,模拟爆破振动对隧道塌腔加固区和既有隧道围岩的影响,并获得了特征点的振动速度和衰减规律。数值模拟的最大振速符合爆破振动安全允许标准的要求,从而验证了爆破设计的可行性,并指导了爆破施工。同时,对隧道塌腔段开挖进行爆破振动监测。通过对比分析现场振动监测数据,数值模拟与现场监测结果吻合。结果表明,采用拉格朗日算法和完全重启动数值模拟方法可以描述隧道多孔毫秒延期爆破破岩和质点振动传播规律。该研究结论对隧道多孔毫秒延时控制爆破工程具有参考和指导意义。  相似文献   

14.
龚伦  仇文革 《岩土力学》2006,27(Z2):779-783
结合云南省盐津县白水江三级电站引水隧洞下穿内-昆铁路手扒岩隧道的工程实际,采用数值模拟计算及现场测试对既有铁路隧道受下穿引水隧洞施工产生的振动影响进行研究。结果表明,经验公式的计算结果作为预测及警示是偏于安 全、可行的,数值模拟分析结果比经验公式更接近工程实际;引水隧洞的掌子面距铁路隧道前后4D(D为引水隧洞开挖洞径)范围内施工时,需对铁路隧道交叉点处的振动速度进行监测,重点是竖直方向的振动速度;引水隧洞在铁路隧道正下方爆破施工时,爆破施工所采用的最大段装药量不得大于2.5 kg,以满足振动速度控制标准;施工过程中进行的爆破振动监测并根据监测结果及时调整爆破参数,是此类地下近接工程成功修建的有力保障。  相似文献   

15.
超小净距隧道爆破振动现场监测及动力响应分析研究   总被引:1,自引:0,他引:1  
朱正国  孙明路  朱永全  孙星亮 《岩土力学》2012,33(12):3747-3752
以南京地铁超小净距隧道为工程背景,结合国内外现有研究成果和规范,研究确保小净距先行隧道安全稳定的后行隧道爆破施工控制技术。以现代信息化施工理论为依据,充分运用现场监控量测,对先行隧道爆破质点振动速度进行监测分析和施工中爆破采用减振和隔振两方面控制技术;最终现场监测结果表明,优化后的循环进尺、段最大装药量与分段爆破差等爆破参数设计合理,该爆破设计在施工中未对先行隧道安全产生较大影响;同时,通过三维数值模拟计算,得到先行隧道壁面的质点振动速度随时间的变化规律,所得最大振速符合规范要求,也再次验证了优化后的爆破设计是合理的。通过数据分析得出隧道边墙的切向和径向振速比拱脚相应振速大,爆破面前方先行洞衬砌受爆破振动的影响稍大于后方衬砌,临近爆破点的左线隧道衬砌表面振动大于远离爆破点的衬砌表面振动。该研究成果为本工程施工提供了科学依据与技术指导,也可为类似隧道工程的爆破掘进工程在理论和施工方法上提供参考借鉴。  相似文献   

16.
郝康群  周显贵 《地下水》2003,25(3):186-188
本文分析了单响药量和起爆网络对爆破振动的影响,结合控制爆破技术进行了振速监测,通过爆破监测估算出该地区爆破振动衰减规律,用以指导溢洪道开挖施工,保证了泄洪洞的安全。  相似文献   

17.
钟世航 《物探与化探》2005,29(1):84-87,92
招宝山公路隧道为大跨度并行超小净距的隧道,两隧道的净距仅为规范规定的1/7~1/10,保护两隧道间夹岩体成为关键技术。采用控制爆破保护岩体是主要措施之一。作者采用声波测量、陆地声纳等测量岩体受爆破破坏的深度及破坏情况,并监测质点振动速度来控制爆破的振动,还通过应变、位移和压力等量测的资料来监视隧道的安全,以选择和判定控制爆破的施工方案、施工顺序、爆破参数。工程获得成功,带来较大的经济效益。  相似文献   

18.
反映高程放大效应的爆破振动公式研究   总被引:7,自引:0,他引:7  
唐海  李海波 《岩土力学》2011,32(3):820-824
在地形起伏较大的情况下,地形地貌对爆破振动波的传播具有较大的影响。通过分析与爆破振动有关的物理量,运用量纲分析法推导了反映高程放大效应的爆破振动公式。结合现场爆破振动监测,当爆破场地的地形地貌变化较大时,用传统的萨道夫斯基公式预测爆破振动速度误差较大,其平均误差达42%~59%,其他4个常用经验公式预测的平均误差,分别为24%~49%、40%~58%、58%~59%、31%~39%;而采用量纲分析法推导的公式预测爆破振动速度误差较小,其平均误差仅为10%~14%。研究结果表明,通过量纲分析法得到的爆破振动公式能较准确地反映正高程差放大效应。  相似文献   

19.
考虑累积损伤效应的围岩变形特性研究   总被引:1,自引:0,他引:1  
罗忆  李新平  徐鹏程  董千  洪吉松 《岩土力学》2014,35(11):3041-2048
隧道爆破开挖诱发的动力扰动作用范围往往远大于其开挖进尺,同一部位围岩受到循环爆破开挖的多次扰动普遍存在累积损伤。对乌东德水电站左岸导流洞爆破开挖过程中的爆破振动和围岩变形监测进行了监测和数值分析,基于累积损伤理论,通过引入损伤判据及损伤变量,考虑计算中产生的不同程度的损伤区域的岩体参数劣化,并将劣化后的参数引入相应损伤单元进行后续开挖爆破数值模拟计算,从而对岩体爆破开挖累积损伤效应进行模拟。通过比较乌东德水电站导流洞的实测数据以及数值模拟计算结果发现,考虑累积损伤的计算结果无论是爆破振动速度还是围岩变形均更接近于实测值。对爆破开挖的分析模拟中应考虑围岩的多次循环爆破累积损伤效应。  相似文献   

20.
爆破荷载作用下岩体振动特征的数值模拟   总被引:41,自引:2,他引:39  
根据福建牛头山水电站地基岩体爆破开挖监测,运用离散元方法模拟了节理岩体距爆源不同距离处质点的振动速度和频率的变化特征,由此确定岩体质点最大振动速度和振动主频随爆源距离的衰减规律,并得到了距爆源一定距离处质点最大振动速度和振动主频与爆破药量的关系。数值模拟与现场实测的结果表明,用离散元软件UDEC计算得到的岩体振动特征和衰减规律与现场监测结果是基本符合的,误差在工程应用的允许范围之内,因此UDEC用于对岩体动态响应的数值模拟是适合的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号