首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Divrigi and Kuluncak ophiolitic mélanges are located in central Anatolia in the Tauride ophiolite belt. The stratigraphic sequence in the Divrigi ophiolitic mélange includes, from bottom to top, the Upper Jurassic-Lower Cretaceous Akdag limestone, Upper Cretaceous Çalti ultramafic rocks, and the Curek listwaenite. The Divrigi ophiolitic mélange is intruded by the Late Cretaceous-Eocene Murmano pluton. The above stratigraphic sequence is followed by the Eocene-Paleocene Ekinbasi metasomatite and the Quaternary Kilise Formation.

The oldest sequence of rocks in Kuluncak ophiolitic mélange in the GuvenÇ area is the Karadere serpentine/ultramafic body overlain successively by the Kurtali gabbro, Gundegcikdere radiolarite, the GuvenÇ listwaenites, and the Buldudere Formation. All of these units are Late Cretaceous in age. The Karamagra siderite deposit in the Hekimhan area probably was formed in the Lower Cretaceous at the contact between Çalti ultramafic rocks and the Buldudere Formation. The Kuluncak ophiolitic mélange was intruded by a subvolcanic trachyte in the Late Cretaceous. The Eocene-Paleocene Konukdere metasomatite, the Miocene Yamadag volcanic rocks, and Quaternary slope deposits are late in the stratigraphic sequence in the GuvenÇ area.

The Kuluncak ophiolitic mélange in the Karakuz area is similar to that at GuvenÇ; however, gabbro, radiolarite, and Miocene volcanic rocks are not present. The Miocene is represented by the Ciritbelen Formation at Karakuz and the Karakuz iron deposit is hosted by a Late Cretaceous subvolcanic trachyte.

The rareearth and trace-element concentration of serpentinite in the Divrigi and Kuluncak ophiolitic mélanges indicate that all of the ultramafics and their alteration products were derived from a MORB, which was depleted in certain elements and oxides. The results expressed in this study support the idea that the Divrigi and Kuluncak ophiolitic mélanges within the Tauride ophiolite belt originated from Northern Tauride oceanic lithosphere (Poisson, 1986), instead of a northern branch of Neo-Tethys (Sengor and Yilmaz, 1981).  相似文献   

2.
A belt of Jurassic to Cretaceous ophiolitic rocks borders the western margin of the U.S. Cordillera and stretches from central California to northwestern Washington State. The northern end of this belt lies between the San Juan Islands and the Northwest Cascades. Within this region, ophiolitic rocks consist of a succession of oceanic and arc-affinity igneous and sedimentary rocks which form a sedimentary mélange and sedimentary overlap sequence which is imbricated during the mid-Cretaceous. The mélange contains blocks and olistoliths of peridotite, plagiogranite, chert, basalt, and volcanoclastic conglomerate which range in size from a meter to over 1 km and are contained within a matrix of argillite and volcanoclastic breccia and conglomerate. Peridotites were exposed to the sub-aqueous surface along serpentinized shear zones prior to their incorporation into the mélange, and the sedimentary matrix of the mélange underwent brittle deformation during the earliest stages of its structural history. Mélange rocks are overlain in angular unconformity by a Jura-Cretaceous arc-sourced sedimentary succession which is at least 500 meters thick and passes upward from a basal breccia containing clasts of plagiogranite, gabbro, tonalite, chert, and basalt into argillite containing Late Jurassic radiolarians. The argillite is overlain by poorly-sorted greywacke and conglomerate with clast populations similar to those of the basal breccia. The conglomerate fines upward into a massive to bedded, feldspathic-lithic arenite and greywacke that yields mid-Cretaceous detrital zircons. The overlap succession and the mélange are deformed by two generations of highly-penetrative structures (D1a and D1b) which produced north-to-east vergent tight-to-isoclinal folds and axial-planar pressure-solution cleavages. All units are further deformed by three generations of penetrative structures. The successively younger NNE to NW, NE, and E-W to WNW trending folds have foliations that cross-cut the earlier structural fabrics and faults. Formation of the mélange required differential elevations during the time of deposition and the presence of rocks which are sourced from both arc and oceanic crust. Extension within the forearc provides a mechanism to exhume peridotites and generate differential topography for arc and oceanic affinity rocks to erode and be incorporated into the mélange as part of olistostromal deposits.  相似文献   

3.
Abstract

Basic volcanic rocks within the Zildat ophiolitic mélange of Indus suture zone in eastern Ladakh are medium to fine grained with partially preserved primary texture and mineralogy. These rocks are predominantly alkaline basalt with high Nb/Y and enriched incompatible trace element characteristics, similar to those of the oceanic island basalt (OIB). The minor sub-alkaline basaltic rocks resemble N-type mid ocean ridge basalt (N-MORB) but with much lower abundances of incompatible trace element including REE. The alkaline rocks probably generated through variable, but low degrees of partial melting of enriched mantle source and evolved through high pressure olivine and clinopyroxene fractionation. Low pressure plagioclase and Fe- Ti oxide do not appear to be major fractionating phases. Limited data on the sub-alkaline rocks suggest that their parental melts were derived from mantle sources some what similar to that of N- MORB. Significant role of added cumulates of olivine, clinopyroxene and Fe- Ti oxides is also indicated in their genesis. Ophiolitic mélanges all along the Indus suture zone appear to have formed due to the accumulation of mélange material in the upper part of the subduction zone where they suffered glaucophanitic (blueschist) metamorphism and retrograded partially to greenschist grade as these were subsequently obducted to its present position probably during the Cenozoic Himalayan orogeny due to collision of Indian and Eurasian plates.  相似文献   

4.
The Mount Athos Peninsula is situated in the south-easternmost part of the Chalkidiki Peninsula in northern Greece. It belongs to the Serbo-Macedonian Massif (SMM), a large basement massif within the Internal Hellenides. The south-eastern part of the Mount Athos peninsula is built by fine-grained banded biotite gneisses and migmatites forming a domal structure. The southern tip of the peninsula, which also comprises Mount Athos itself, is built by limestone, marble and low-grade metamorphic rocks of the Chortiatis Unit. The northern part and the majority of the western shore of the Mount Athos peninsula are composed of highly deformed rocks belonging to a tectonic mélange termed the Athos-Volvi-Suture Zone (AVZ), which separates two major basement units: the Vertiskos Terrane in the west and the Kerdillion Unit in the east. The rock-types in this mélange range from metasediments, marbles and gneisses to amphibolites, eclogites and peridotites. The gneisses are tectonic slivers of the adjacent basement complexes. The mélange zone and the gneisses were intruded by granites (Ierissos, Ouranoupolis and Gregoriou). The Ouranoupolis intrusion obscures the contact between the mélange and the gneisses. The granites are only slightly deformed and therefore postdate the accretionary event that assembled the units and created the mélange. Pb–Pb- and U–Pb-SHRIMP-dating of igneous zircons of the gneisses and granites of the eastern Athos peninsula in conjunction with geochemical and isotopic analyses are used to put Athos into the context of a regional tectonic model. The ages form three clusters: The basement age is indicated by two samples that yielded Permo-Carboniferous U–Pb-ages of 292.6?±?2.9?Ma and 299.4?±?3.5?Ma. The main magmatic event of the granitoids now forming the gneiss dome is dated by Pb–Pb-ages between 140.0?±?2.6?Ma and 155.7?±?5.1?Ma with a mean of 144.7?±?2.4?Ma. A within-error identical age of 146.6?±?2.3?Ma was obtained by the U–Pb-SHRIMP method. This Late Jurassic age is also known from the Kerdillion Unit and the Rhodope Terrane. The rather undeformed granites are interpreted as piercing plutons. The small granite stocks sampled have Late Cretaceous to Early Tertiary ages of 66.8?±?0.8?Ma and 68.0?±?1.0?Ma (U–Pb-SHRIMP)/62.8?±?3.9?Ma (Pb–Pb). The main accretionary event was according to these data in the Late Jurassic since all younger rocks show little or no deformation. The age distribution together with the geochemical and isotopic signature and the lithology indicates that the eastern part of the Mount Athos peninsula is part of a large-scale gneiss dome also building the Kerdillion Unit of the eastern SMM and the Rhodope Massif. This finding extends the area of this dome significantly to the south and indicates that the tectonic boundary between the SMM and the Rhodope Massif lies within the AVZ.  相似文献   

5.
The Cycladic blueschist belt in the central Aegean Sea has experienced high‐pressure (HP) metamorphism during collisional processes between the Apulian microplate and Eurasia. The general geological and tectonometamorphic framework is well documented, but one aspect which is yet not sufficiently explored is the importance of HP mélanges which occur within volcano‐sedimentary successions. Unresolved issues concern the range in magmatic and metamorphic ages recorded by mélange blocks and the significance of eventual pre‐Eocene HP metamorphism. These aspects are here addressed in a U‐Pb zircon study focusing on the block–matrix association exposed on the island of Syros. Two gneisses from a tectonic slab of this mélange, consisting of an interlayered felsic gneiss‐glaucophanite sequence, yielded zircon 206Pb/238U ages of 240.1 ± 4.1 and 245.3 ± 4.9 Ma, respectively, similar to Triassic ages determined on zircon in meta‐volcanic rocks from structurally coherent sequences elsewhere in the Cyclades. This strongly suggests that parts of these successions have been incorporated in the mélanges and provides the first geochronological evidence that the provenance of mélange blocks/slabs is neither restricted to a single source nor confined to fragments of oceanic lithosphere. Zircon from a jadeitite and associated alteration zones (omphacitite, glaucophanite and chlorite‐actinolite rock) all yielded identical 206Pb/238U ages of c. 80 Ma. Similar Cretaceous U‐Pb zircon ages previously reported for mélange blocks have been interpreted by different authors to reflect magmatic or metamorphic ages. The present study adds a further argument in favour of the view that zircon formed newly in some rock types at c. 80 Ma, due to hydrothermal or metasomatic processes in a subduction zone environment, and supports the interpretation that the Cycladic blueschist belt records both Cretaceous and Eocene HP episodes and not only a single Tertiary HP event.  相似文献   

6.
《Geodinamica Acta》2013,26(5):349-361
The most widespread blocks within the Cretaceous ophiolitic mélange (North Anatolian ophiolitic mélange) in Central Anatolia (Turkey) are pillow basalts, radiolarites, other ophiolitic fragments and Jurassic-Cretaceous carbonate blocks. The pillow basalts crop out as discrete blocks in close relation to radiolarites and ophiolitic units in Cretaceous ophiolitic mélange.

The geochemical results suggest that analyzed pillow basalts are within-plate ocean island alkali basalts. The enrichment of incompatible elements (Nb, Ta, Light REE, Th, U, Cs, Rb, Ba, K) demonstrates the ocean island environment (both tholeiites and alkali basalts) and enriched MORB. Dated calcareous intrafills and biodetrital carbonates reveal an age span of Callovian—Early Aptian. The thin-shelled protoglobigerinids, belonging to the genus Globuligerina, in the calcareous intrafills between pillow basalt lobes indicates a Callovian—Barremian age interval, most probably, Valanginian to Late Barremian. The volcanic and radiolarite detritus-bearing orbitolinid—Baccinella biodetrital carbonates dated as Late Barremian-Early Aptian in age, were probably deposited around atolls and have a close relationship with the ocean island pillow basalts.

The results collectively support the presence of a seamount on the Neo-Tethyan oceanic crust during the Valanginian—Late Barremian and atolls during the Late Barremian-Early Aptian interval. The presence of an oceanic crust older than that seamount along the Northern Branch of Neo-Tethys is conformable with the geodynamic evolution of the Tethys.  相似文献   

7.
Palaeo- and Neo-Tethyan-related magmatic and metamorphic units crop out in Konya region in the south central Anatolia. The Neotethyan assemblage is characterized by mélange and ophiolitic units of Late Cretaceous age. They tectonically overlie the Middle Triassic–Upper Cretaceous neritic to pelagic carbonates of the Tauride platform. The metamorphic sole rocks within the Konya mélange crop out as thin slices beneath the sheared serpentinites and harzburgites. The rock types in the metamorphic sole are amphibolite, epidote-amphibolite, garnet-amphibole schist, plagioclase-amphibole schist, plagioclase-epidote-amphibole schist and quartz-amphibole schist. The geochemistry of the metamorphic sole rocks suggests that they were derived from the alkaline (seamount) and tholeiitic (E-MORB, IAT and boninitic type) magmatic rocks from the upper part of the Neotethyan oceanic crust. Four samples from the amphibolitic rocks yielded 40Ar/39Ar isotopic ages, ranging from 87.04 ± .36 Ma to 84.66 ± .30 Ma. Comparison of geochemistry and geochronology for the amphibolitic rocks suggests that the alkaline amphibolite (seamount-type) cooled below 510 ± 25 °C at 87 Ma whereas the tholeiitic amphibolites at 85 Ma during intraoceanic thrusting/subduction. When all the evidence combined together, the intraoceanic subduction initiated in the vicinity of an off-axis plume or a plume-centered spreading ridge in the Inner Tauride Ocean at 87 Ma. During the later stage of the steady-state subduction, the E-MORB volcanics on the top of the down-going slab and the arc-type basalts (IAT/boninitic) detached from the leading edge of the overriding plate, entered the subduction zone after ~2 my and metamorphosed to amphibolite facies in the Inner Tauride Ocean. Duration of the intraoceanic detachment (~87 Ma) and ophiolite emplacement onto the Tauride-Anatolide Platform (Tav?anl? Zone), followed by subsequent HP/LT metamorphism (~82 Ma) spanned ~5 my in the western part of the Inner Tauride Ocean.  相似文献   

8.
张能  李剑波  杨云松  那福超 《岩石学报》2012,28(4):1291-1304
弯岛湖蛇绿混杂岩带是金沙江缝合带西段的重要组成部分。蛇绿岩混杂于上三叠统变质碎屑岩夹变质火山岩中,成份主要为镁铁质-超镁铁质杂岩,岩石类型有变质橄榄岩、变质堆晶质辉长岩及其伴生的岛弧型花岗岩系。岩石化学及地球化学特征表明:蛇绿岩主要为低Ti(岛弧-弧后)型、富集型洋中脊(E-MORB)拉斑玄武岩;与之共(伴)生的基性喷出岩、辉绿岩脉属板内洋岛型裂谷型碱性玄武岩及其过渡类型系列。在变质辉长岩获得全岩Sm-Nd等时线年龄值为232±11Ma,代表了镁铁质-超镁铁质杂岩的形成年龄,可能为洋壳初始俯冲变质的时间。在蛇绿岩上覆的硅质岩中发现有中三叠世拉丁晚期至晚三叠世卡宁早期的放射虫化石,表明弯岛湖镁铁质-超镁铁质杂岩可能形成于中三叠世多岛洋盆或弧后盆地构造环境。  相似文献   

9.
The Batinah mélange which overlies the late Cretaceous Semail ophiolite in the northern Oman Mountains comprises mostly sedimentary rocks of deep-water facies, alkalic lavas and intrusives, all of continental margin affinities, together with smaller volumes of Semail ophiolitic and metamorphic rocks. Four intergradational textural types of mélange can be recognized. Sheet mélange has large (>1 km) intact sheets either with little intervening matrix or set in other mélange types, and with an organised sheet orientation fabric. Slab mélange is finer textured (>100 m) and more disrupted. Block mélange has smaller (> m) blocks with some matrix and a weak to random block fabric. Clast mélange is matrix-supported rudite with a weak depositional clast fabric. Structural relationships, particularly the absence of tectonic fabrics, the decreasing strength of fragment fabrics with increasing fragmentation, and the abundance of brittle fragmentation, suggest that these mélange types formed by either gravity-driven sedimentary processes or superficial sliding or thrusting of individual rock slabs.In the slab mélange, long sequences can be pieced together, passing up from Upper Triassic mafic sub-marine extrusives and sediments into radiolarian cherts, hemipelagic and redeposited limestones, and terminating in non-calcareous radiolarities with Mn-deposits of early Cretaceous age. Mafic sills are numerous. These sequences can be matched with sub-ophiolite rocks now exposed in fault corridors through the Semail. These sequences become progressively disrupted upwards in the corridors and can be traced continuously into overlying mélange, which then thins away from the corridors.We argue that, during late Cretaceous emplacement over the Arabian margin, active fault corridors split the Semail slab and acted as conduits up which sub-ophiolite rocks were supplied to the ophiolite surface. There the rocks were redisributed by superficial processes.  相似文献   

10.
岩湾-鹦鸽咀蛇绿混杂岩是秦岭商丹蛇绿混杂岩带的重要组成部分,由变质基性火山岩(玄武岩)、蛇纹岩、变辉长岩、硅质岩、变复理石(云母石英片岩)等构造岩块组成.其中变基性火山岩具有N-MORB的地球化学特征,安山岩具有与俯冲作用密切相关的岛弧火山岩的性质.玄武岩的锆石SHRIMP U-Pb年龄为483 Ma±13Ma,与天水关子镇和丹风蛇绿混杂岩的时代相一致.对岩湾-鹦鸽咀蛇绿混杂岩的岩石组成和形成时代进行研究,可为进一步探讨商丹蛇绿混杂岩带和秦岭造山带的增生造山作用提供重要证据.  相似文献   

11.
The Makbal Complex in the northern Tianshan of Kazakhstan and Kyrgyzstan consists of metasedimentary rocks, which host high‐P (HP) mafic blocks and ultra‐HP Grt‐Cld‐Tlc schists (UHP as indicated by coesite relicts in garnet). Whole rock major and trace element signatures of the Grt‐Cld‐Tlc schist suggest a metasomatized protolith from either hydrothermally altered oceanic crust in a back‐arc basin or arc‐related volcaniclastics. Peak metamorphic conditions of the Grt‐Cld‐Tlc schist reached ~580 °C and 2.85 GPa corresponding to a maximum burial depth of ~95 km. A Sm‐Nd garnet age of 475 ± 4 Ma is interpreted as an average growth age of garnet during prograde‐to‐peak metamorphism; the low initial εΝd value of ?11 indicates a protolith with an ancient crustal component. The petrological evidence for deep subduction of oceanic crust poses questions with respect to an effective exhumation mechanism. Field relationships and the metamorphic evolution of other HP mafic oceanic rocks embedded in continentally derived metasedimentary rocks at the central Makbal Complex suggest that fragments of oceanic crust and clastic sedimentary rocks were exhumed from different depths in a subduction channel during ongoing subduction and are now exposed as a tectonic mélange. Furthermore, channel flow cannot only explain a tectonic mélange consisting of various rock types with different subduction histories as present at the central Makbal Complex, but also the presence of a structural ‘dome’ with UHP rocks in the core (central Makbal) surrounded by lower pressure nappes (including mafic dykes in continental crust) and voluminous metasedimentary rocks, mainly derived from the accretionary wedge.  相似文献   

12.
在内蒙牙克石地区发育两种不同构造属性的岩石组合:一类为乌奴耳-头道桥蛇绿混杂岩,另一类为晚古生代弧属性侵入岩。乌奴耳-头道桥蛇绿混杂岩由辉长岩、辉长辉绿岩、辉绿玢岩(岩墙?)、变玄武岩和放射虫硅质岩组成;地球化学特征显示基性岩类属于拉斑玄武岩系列,具有相似的稀土和原始地幔标准化配分模式,与N-MORB的特征类似,不具有Nb-Ta负异常,Nb/Nb~*值平均1;构造环境判别图显示该蛇绿混杂岩可能形成于扩张脊。晚古生代弧属性侵入岩出露于白井山、乌尔其汗,由中基性单元(辉长岩、辉长闪长岩和石英闪长岩)和酸性单元(花岗闪长岩和二长花岗岩)组成;地球化学特征显示中基性单元和酸性单元属于钙碱性岩系列,富集LREEs和LILEs,具有Nb-Ta负异常,高Sr、Sr/Y值,低HREEs和Y,Eu异常不明显;酸性单元显示埃达克质岩的地球化学特征。乌奴耳-头道桥蛇绿混杂岩可能形成于新元古代,与头道桥蓝片岩、吉峰蛇绿混杂岩、新林蛇绿岩构成一条重要的缝合带,暗示本区古洋盆的存在。晚古生代弧属性侵入岩中,辉长岩的结晶年龄为326±1.9Ma,花岗闪长岩的结晶年龄为323.7±1.9Ma;微量元素的组成特征显示,中基性单元和酸性单元的形成与早石炭世洋壳板片的俯冲作用有关,暗示兴安地块和松嫩地块之间洋盆的萎缩。  相似文献   

13.
Two large blocks of red bedded chert identified within the Late Cretaceous–Paleocene Bornova mélange in northern Karaburun Peninsula yielded Jurassic (late Bathonian–early Oxfordian) and Cretaceous (middle–late Albian) radiolarian assemblages. These new data confirm the correlation of the Bornova mélange with the Bornova Flysch Zone (BFZ) and the ?zmir–Ankara mélanges. A review of all previously obtained ages in chert blocks of the BFZ and the ?zmir–Ankara mélanges is provided in order to strengthen this correlation.  相似文献   

14.
Low‐T, intermediate to high‐P assemblages indicative of the prehnite–pumpellyite, greenschist and blueschist facies are preserved in mélange zones and slivers of oceanic crust within two major fault zones of the turbidite‐dominated Lachlan Orogen. In one of these fault zones (Governor Fault Zone), blueschists occur as Franciscan‐like blocks in a serpentinite/talc matrix that is interleaved with phyllites and slates, and structurally overlain by a fault slice or duplex of predominantly pillow basalt, chert, and turbidite. The blueschist metavolcanics are interpreted to have formed at < 450 °C and at a depth of approximately 21–27 km. The presence of blue amphibole in the blocks, rinds and matrix indicate that the metavolcanics were emplaced in the matrix prior to blueschist metamorphism. Blocks and matrix were partially exhumed, interleaved with tectonic slices of phyllite and slate, and subsequently folded at about 10–12 km depth, inferred from bo values of the dominant mica fabric in the phyllites and slates. Metamorphic P–T is highest in the structurally lowest slice (mélange zone) and lowest in the overlying ophiolitic fault slice, suggestive of an accretionary burial metamorphic pattern formed by underplating of the mélange. In the other fault zone (Heathcote Fault Zone), blueschists transitional to greenschist facies are interpreted to have formed at < 450 °C and at a depth of approximately 15–21 km. They occur as blocks in serpentinite/talc‐matrix mélange and are also associated with fault slices of oceanic crust. Textural and mineralogical evidence suggests that the protoliths for the blueschists in both fault zones were boninitic pillow lavas. The metamorphic facies and patterns, and the structural and lithological associations, can be interpreted in terms of disruption of oceanic crust and overlying sediments during subduction, and formation of serpentinite‐matrix mélange overprinted by blueschist metamorphism either prior to or during underplating of the mélange and duplex formation. The presence of blueschist metavolcanics indicate that these processes occurred at considerable depth. These interpretations have implications for the evolution of large‐scale fault zones in noncollisional, convergent oceanic settings.  相似文献   

15.
The West Junggar lies in the southwest part of the Central Asian Orogenic Belt (CAOB) and consists of Palaeozoic ophiolitic mélanges, island arcs, and accretionary complexes. The Barleik ophiolitic mélange comprises several serpentinite-matrix strips along a NE-striking fault at Barleik Mountain in the southern West Junggar. Several small late Cambrian (509–503 Ma) diorite-trondhjemite plutons cross-cut the ophiolitic mélange. These igneous bodies are deformed and display island arc calc-alkaline affinities. Both the mélange and island arc plutons are uncomfortably covered by Devonian shallow-marine and terrestrial volcano-sedimentary rocks and Carboniferous volcano-sedimentary rocks. Detrital zircons (n = 104) from the Devonian sandstone yield a single age population of 452–517 million years, with a peak age of 474 million years. The Devonian–Carboniferous strata are invaded by an early Carboniferous (327 Ma) granodiorite, late Carboniferous (315–311 Ma) granodiorites, and an early Permian (277 Ma) K-feldspar granite. The early Carboniferous pluton is coeval with subduction-related volcano-sedimentary strata in the central West Junggar, whereas the late Carboniferous–early Permian intrusives are contemporary with widespread post-collisional magmatism in the West Junggar and adjacent regions. They are typically undeformed or only slightly deformed.

Our data reveal that island arc calc-alkaline magmatism occurred at least from middle Cambrian to Late Ordovician time as constrained by igneous and detrital zircon ages. After accretion to another tectonic unit to the south, the ophiolitic mélange and island arc were exposed, eroded, and uncomfortably overlain by the Devonian shallow-marine and terrestrial volcano-sedimentary strata. The early Carboniferous arc-related magmatism might reflect subduction of the Junggar Ocean in the central Junggar. Before the late Carboniferous, the oceanic basins apparently closed in this area. These different tectonic units were stitched together by widespread post-collisional plutons in the West Junggar during the late Carboniferous–Permian. Our data from the southern West Junggar and those from the central and northern West Junggar and surroundings consistently indicate that the southwest part of the CAOB was finally amalgamated before the Permian.  相似文献   

16.
The Shyok tectonic zone lies to the north of Ladakh magmatic arc or the Ladakh batholith in the Trans-Himalaya of Ladakh district, J & K. Investigations were carried out on the granitoids exposed along Leh-Siachan highway between Khardung and Panamik villages. The granitoid bodies under study are: Khardung granite (KG), Tirit granite (TG) and Panamik granite (PG) belonging to Ladakh batholith, Shyok ophiolitic mélange and Karakoram batholith respectively. Though the granitoids belong to different litho-tectonic units, yet they have subduction related geochemical characters typical of Andean-type granitoids. Re-melting of crustal rocks of volcanic arc affinity has played an important role for the origin of KG rocks which are more evolved, while the TG and PG rocks represent transitional tectonic environment from primitive to mature arc.  相似文献   

17.
The Sistan Suture Zone (SSZ) of eastern Iran is part of the Neo‐Tethyan orogenic system and formed by convergence of the Central Iranian and Afghan microcontinents. Ar Ar ages of ca. 125 Ma have been obtained from white micas and amphibole from variably overprinted high‐pressure metabasites within the Ratuk Complex of the SSZ. The metabasites, which occur as fault‐bounded lenses within a subduction mélange, document peak‐metamorphic conditions in eclogite or blueschist facies followed by near‐isothermal decompression resulting in an epidote–amphibolite‐facies overprint. 40Ar/39Ar step heating experiments were performed on a phengite + paragonite mixture from an eclogite, phengites from two amphibolites, and paragonite from a blueschist; ‘best‐fit’ ages from these micas are, respectively, 122.8 ± 2.2, 124 ± 13, 116 ± 19 and 139 ± 19 Ma (2σ error). Barroisite from an amphibolite yielded an age of 124 ± 10 Ma. The ages are interpreted as cooling ages that record the post‐epidote–amphibolite stage in the exhumation of the rocks. Our results imply that both the high‐pressure metamorphism and the epidote–amphibolite‐facies overprint occurred prior to 125 Ma. Subduction of oceanic lithosphere along the eastern margin of the Sistan Ocean had therefore begun by Barremian (Early Cretaceous) times. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
ABSTRACT

The La Tinta mélange is a small but singular ultramafic mélange sheet that crops out in eastern Cuba. It is composed of dolerite-derived amphibolite blocks embedded in a serpentinite matrix. The amphibolite blocks have mid-ocean ridge basalt (MORB)-like composition showing little if any imprint of subduction zone component, similar to most forearc and MOR basalts worldwide. Relict Cr-spinel and olivine mineral chemistry of the serpentinized ultramafic matrix suggest a forearc position for these rocks. These characteristics, together with a hornblende 40Ar/39Ar age of 123.2 ± 2.2 Ma from one of the amphibolite blocks, suggest that the protoliths of the amphibolite blocks correspond to forearc basalt (FAB)-related rocks that formed during the earlier stage of subduction initiation of the Early Cretaceous Caribbean arc. We propose that the La Tinta amphibolites correspond to fragments of sills and dikes of hypoabyssal rocks formed in the earlier stages of a subduction initiation scenario in the Pacific realm (ca. 136 Ma). The forearc dolerite-derived amphibolites formed by partial melting of upwelling fertile asthenosphere at the beginning of subduction of the Proto-Caribbean (Atlantic) slab, with no interaction with slab-derived fluids/melts. This magmatic episode probably correlates with Early Cretaceous basic rocks described in Hispaniola (Gaspar Hernandez serpentinized peridotite-tectonite). The dikes and sills cooled and metamorphosed due to hydration at low pressure (ca. 3.8 kbar) and medium to high temperature (up to 720ºC) and reached ca. 500ºC at ca. 123 Ma. At this cooling stage, serpentinite formed after hydration of the ultramafic upper mantle. This process might have been favoured by faulting during extension of the forearc, indicating an early stage of dike and sill fragmentation and serpentinite mélanges formation; however, full development of the mélange likely took place during tectonic emplacement (obduction) onto the thrust belt of eastern Cuba during the latest Cretaceous.  相似文献   

19.
In the area of Arosa?CDavos?CKlosters (Eastern Switzerland) the different tectonic elements of the Arosa zone mélange e.g. the Austroalpine fragments, the sedimentary cover of South Penninic ophiolite fragments, as well as the matrix (oceanic sediments and flysch rocks) show distinctively different metamorphic histories and also different climaxes (??peaks??) of Alpine metamorphism. This is shown by a wealth of Kübler-Index, vitrinite and bituminite reflectance measurements, and K-white mica b cell dimension data. At least six main metamorphic events can be recognized in the area of Arosa?CDavos?CKlosters: (1) A pre-orogenic event, typical for the Upper Austroalpine and for instance found in the sediments at the base of the Silvretta nappe but also in some tectonic fragments of the Arosa zone (Arosa zone mélange). (2) An epizonal oceanic metamorphism observed in the close vicinity of oceanic basement rocks units of the Arosa zone (South Penninic) is another pre-orogenic process. (3) A metamorphic overprint of the adjacent Lower Austroalpine nappes and structural fragments of the Lower Austroalpine in the Arosa zone. This metamorphic overprint is attributed to the orogenic metamorphic processes during the Late Cretaceous. (4) A thermal climax observed in the South Penninic sediments of the Arosa zone can be bracketed by the Austroalpine Late Cretaceous event (3) and the middle Tertiary event (5) in the Middle Penninic units and predates Oligocene extension of the ??Turba phase??. (6) North of Klosters, in the northern part of our study area, the entire tectonic pile from the North Penninic flysches to the Upper Austroalpine is strongly influenced by a late Tertiary high-grade diagenetic to low-anchizone event. In the Arosa zone mélange an individual orogenic metamorphic event is evidenced and gives a chance to resolve diagenetic?Cmetamorphic relations versus deformation. Six heating episodes in sedimentary rocks and seven deformation cycles can be distinguished. This is well explained by the propagation of the Alpine deformation front onto the foreland units. Flysches at the hanging wall of the mélange zone in the north of the study area (Walsertal zone) show data typical for low-grade diagenetic thermal conditions and are therefore sandwiched between higher metamorphic rock units and separated from theses units by a disconformity. The Arosa zone s.s., as defined in this paper, is characterised by metamorphic inversions in the hanging wall and at the footwall thrust, thus shows differences to the Walsertal zone in the north and to the Platta nappe in the south.  相似文献   

20.
阿尔金山地区构造单元划分和前寒武纪重要地质事件   总被引:25,自引:4,他引:21  
阿尔金山地区构造单元从北至南划分为敦煌地块、阿尔金北缘蛇绿混杂岩带、中阿尔金中—新元古代构造岩片、阿尔金构造杂岩带和阿尔金南缘基性超基性岩带5个构造单元,它们具有不同的岩石组合和变质变形特征。在正确识别地质事件的性质和特征的基础上,根据现有同位素年龄资料甄别出5期重要地质事件。3600~2500Ma的数据表明敦煌地块内存在始太古代、古太古代、中太古代、新太古代古老地壳和多期的岩浆活动;2500~1800Ma的古元古代是敦煌地块遭受强烈改造和中基性侵入岩形成的时代;1000~800Ma存在新元古代碰撞造山和大规模的岩浆活动;530~500Ma是阿尔金北缘蛇绿混杂岩带、高压变质泥质岩和榴辉岩的变质时代,形成的构造杂岩带是古生代早期秦岭-柴达木盆地北缘巨型碰撞带的西延部分;400Ma的柴水沟辉长岩的斜锆石年龄代表了碰撞后的裂解事件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号