首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
In this study, the trends of the annual, seasonal and monthly maximum (T max) and minimum (T min) air temperatures time series were investigated for 20 stations in the western half of Iran during 1966?C2005. Three statistical tests including Mann?CKendall, Sen??s slope estimator and linear regression were used for the analysis. The annual T max and T min series showed a positive trend in 85% of the stations and a negative trend in 15% of the stations in the study region. The highest increase of T max and T min values were obtained over Kermanshah and Ahwaz at the rates of (+)0.597°C/decade and (+)0.911°C/decade, respectively. On the seasonal scale, the strongest increasing trends were identified in T max and T min data in summer. The highest numbers of stations with positive significant trends occurred in the monthly T max and T min series in August. In contrast, the lowest numbers of stations with significant positive trends were observed between November and March. Overall, the results showed similar increasing trends for the study variables, although T min generally increased at a higher rate than T max in the study period.  相似文献   

2.
Observations show that the surface diurnal temperature range (DTR) has decreased since 1950s over most global land areas due to a smaller warming in maximum temperatures (T max) than in minimum temperatures (T min). This paper analyzes the trends and variability in T max, T min, and DTR over land in observations and 48 simulations from 12 global coupled atmosphere-ocean general circulation models for the later half of the 20th century. It uses the modeled changes in surface downward solar and longwave radiation to interpret the modeled temperature changes. When anthropogenic and natural forcings are included, the models generally reproduce observed major features of the warming of T max and T min and the reduction of DTR. As expected the greenhouse gases enhanced surface downward longwave radiation (DLW) explains most of the warming of T max and T min while decreased surface downward shortwave radiation (DSW) due to increasing aerosols and water vapor contributes most to the decreases in DTR in the models. When only natural forcings are used, none of the observed trends are simulated. The simulated DTR decreases are much smaller than the observed (mainly due to the small simulated T min trend) but still outside the range of natural internal variability estimated from the models. The much larger observed decrease in DTR suggests the possibility of additional regional effects of anthropogenic forcing that the models can not realistically simulate, likely connected to changes in cloud cover, precipitation, and soil moisture. The small magnitude of the simulated DTR trends may be attributed to the lack of an increasing trend in cloud cover and deficiencies in charactering aerosols and important surface and boundary-layer processes in the models.  相似文献   

3.
This paper analyzes the spatial dependence of annual diurnal temperature range (DTR) trends from 1950–2004 on the annual climatology of three variables: precipitation, cloud cover, and leaf area index (LAI), by classifying the global land into various climatic regions based on the climatological annual precipitation. The regional average trends for annual minimum temperature (T min) and DTR exhibit significant spatial correlations with the climatological values of these three variables, while such correlation for annual maximum temperature (T max) is very weak. In general, the magnitude of the downward trend of DTR and the warming trend of T min decreases with increasing precipitation amount, cloud cover, and LAI, i.e., with stronger DTR decreasing trends over drier regions. Such spatial dependence of T min and DTR trends on the climatological precipitation possibly reflects large-scale effects of increased global greenhouse gases and aerosols (and associated changes in cloudiness, soil moisture, and water vapor) during the later half of the twentieth century.  相似文献   

4.
The absence of continuous long term meteorological dataset has led to limited knowledge of glaciers’ response to climate change over Himalayas. This study presents an open source long term temperature dataset Climatic Research Unit (CRU) available since 1901 to study trend analysis of temperature (Tmax, Tmin and Tmean) for Gangotri basin in Himalayas. The study first establishes close agreement between CRU time series data and observed temperature dataset available from National Institute of Hydrology (NIH), Roorkee for a period of 11 years from 2005 to 2015 using standard anomaly, Wilcoxon Signed-Rank (WSR) and correlation tests. The close agreement of CRU with NIH data validate the use of CRU time series to study variation in meteorological parameter for hilly terrain of Himalayas. The second part includes application of different statistical tests such as Mann-Kendall (MK), Sen’s slope and CUSUM technique on CRU data to detect existence of any possible trends and identification of change points in Tmax, Tmin and Tmean on long term scale. On annual scale, significant increasing trends for Tmean and Tmin were observed with no significant trend for Tmax. On seasonal and monthly scale, Tmax showed significant decreasing trend for monsoon season and increasing trend for winters while Tmin show significant increasing trend for all months (except May) and seasons. CUSUM technique identified 8 change points from 3 annual time series with 2 for Tmean (1974 and 1999), 3 each for Tmax (1941, 1975 and 1999) and Tmin (1941, 1965 and 1999) respectively. Overall, significant increase in Tmin with no significant trend for Tmax has been identified over the study area.  相似文献   

5.

This study focuses on changes in the maximum and minimum temperature over the Subansiri River basin for different climate change scenarios. For the study, dataset from Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5) (i.e., coupled model intercomparison project phase five (CMIP5) dataset with representative concentration pathway (RCP) scenarios) were utilized. Long-term (2011–2100) maximum temperature (T max) and minimum temperature (Tmin) time series were generated using the statistical downscaling technique for low emission scenario (RCP2.6), moderate emission scenario (RCP6.0), and extreme emission scenario (RCP8.5). Trends and change of magnitude in T max, T min, and diurnal temperature range (DTR) were analyzed for different interdecadal time scales (2011–2100, 2011–2040, 2041–2070, 2070–2100) using Mann-Kendall non-parametric test and Sen’s slope estimator, respectively. The temperature data series for the observed duration (1981–2000) has been found to show increasing trends in T max and T min at both annual and monthly scale. Trend analysis of downscaled temperature for the period 2011–2100 shows increase in annual maximum temperature and annual minimum temperature for all the selected RCP scenarios; however, on the monthly scale, T max and T min have been seen to have decreasing trends in some months.

  相似文献   

6.
This study examines the potential impact of vegetation feedback on the changes in the diurnal temperature range (DTR) due to the doubling of atmospheric CO2 concentrations during summer over the Northern Hemisphere using a global climate model equipped with a dynamic vegetation model. Results show that CO2 doubling induces significant increases in the daily mean temperature and decreases in DTR regardless of the presence of the vegetation feedback effect. In the presence of vegetation feedback, increase in vegetation productivity related to warm and humid climate lead to (1) an increase in vegetation greenness in the mid-latitude and (2) a greening and the expansion of grasslands and boreal forests into the tundra region in the high latitudes. The greening via vegetation feedback induces contrasting effects on the temperature fields between the mid- and high-latitude regions. In the mid-latitudes, the greening further limits the increase in T max more than T min, resulting in further decreases in DTR because the greening amplifies evapotranspiration and thus cools daytime temperature. The greening in high-latitudes, however, it reinforces the warming by increasing T max more than T min to result in a further increase in DTR from the values obtained without vegetation feedback. This effect on T max and DTR in the high latitude is mainly attributed to the reduction in surface albedo and the subsequent increase in the absorbed insolation. Present study indicates that vegetation feedback can alter the response of the temperature field to increases in CO2 mainly by affecting the T max and that its effect varies with the regional climate characteristics as a function of latitudes.  相似文献   

7.
本文利用1961~2015年(55年)中国地区577个地面观测站的冰雹资料,应用统计学方法,分析了冰雹持续时间的空间分布、年际变化以及日变化特征,包括站点降雹累积持续时间、平均单次降雹持续时间、区域平均单次降雹持续时间、小时降雹累积持续时间和总降雹累积持续时间。结果表明:(1)1961~2015年中国地区站点降雹累积持续时间与海拔高度呈现较高的正相关关系,相关系数高达0.99。站点降雹累积持续时间的最大值出现在青藏高原地区,累积持续时间高达250分钟,其次为内蒙古中部以及东北部的山区地带,累积持续时间约为150分钟。(2)1961~2015年平均单次降雹持续时间呈现上升趋势,55年冰雹累积持续时间大约增长1分钟,且通过了95%信度水平的显著性检验。(3)西北地区、北部平原地区和东南地区在1961~1980年期间,区域平均单次降雹持续时间都有显著的下降趋势,而在1970~2015年期间西北地区和青藏高原地区呈现显著的上升趋势。1961~1980年期间区域平均单次降雹持续时间在西北地区的长期趋势变化主要受到日最低气温以及温度日较差长期年际变化的影响,在北部平原地区仅与温度日较差相关,而在东南地区与三个对流参数都有较好的相关性;1970~2015年和1961~2015年期间西北地区和青藏高原地区的区域平均单次降雹持续时间的上升趋势分别与这两个区域的区域平均日最高气温、日最低气温呈正相关。(4)单次降雹持续时间的日变化明显,午后至夜间出现的冰雹持续时间长于凌晨和上午的冰雹持续时间,持续时间峰值出现在当地时间17时和18时。本文还利用探空资料分析了对流有效势能和Totals-totals指数与冰雹持续时间的关系,结果表明中国地区20时(北京时)的对流有效势能和Totals-totals指数可能是冰雹持续时间日变化的影响因子之一。  相似文献   

8.
Wind plays an important role on the ecosystems and hydrological cycles besides other meteorological parameters such as temperature, precipitation, sunshine, and relative humidity. It strongly affects evapotranspiration, especially in arid and semiarid regions where there are serious problems in regard to water resource management. Evaluating the wind speed trend can provide good information for future agricultural planning. This study was conducted in order to investigate the wind speed trends over 24 synoptic meteorological stations located in arid and semiarid regions of Iran from 1975 to 2005. Near-surface wind speed was trended by nonparametric Mann–Kendall test spatially and temporally in three time scales (annual, seasonal, and monthly). Then, Sen’s slope estimator was used to determine the amount of the changes; furthermore, 10-year moving average low-pass filter was applied to show general trends. Finally, the smoothed time series derived from the mentioned filter were classified in three clusters for each time series and then mapped to show their spatial distribution pattern. Results showed insignificant and significant, increasing and decreasing trends during the surveyed time. Wind speeds in less than 50 % of stations changed statistically in all time scales, and in most cases, the frequency of the upward trends was more than that of downward ones. The spatial distribution of significant wind speed showed that the increase mostly occurred in eastern part. Clustering gave us the turning point around 1990. Clearly, when clusters were mapped, they indicated the same pattern as the Z value maps derived from Mann–Kendall test which meant that the outputs of the mentioned method confirmed the other one. As the wind speed trends in different stations likely to follow the previous evapotranspiration (ET0) trend results in Iran, it confirms that wind speed was an effective parameter on ET0, even though other parameters should be considered too.  相似文献   

9.
On the basis of the mean annual and seasonal temperatures from 30 meteorological stations in the Jinsha River Basin (JRB) from 1961 to 2008, the temperature trends are analyzed by using Mann–Kendall test and linear trend analysis. There is an increasing trend in mean annual and seasonal temperatures during this period, and the increasing trends in winter seem more significant than those in the other three seasons. The mean annual temperature has increased by 0.0158°C/year during the last 48 years. There are more than 70% of stations exhibiting increasing trends for annual and seasonal temperatures. The increasing trends in the headwater and upper reaches are more dominant than those in the middle and lower reaches. The largest increase magnitude occurred in the low temperature area, while the largest decrease magnitude occurred in the high temperature area. The decreasing trends are mainly characterized for the maximum temperature time series, and summer is the only season showing a slight and insignificant increasing trend. All the time series showed a statistically significant increasing trend at the level of α?=?0.05 for the minimum temperature time series. As a whole, the increasing magnitude of the minimum temperature is significantly greater than the decreasing magnitude of the maximum temperature.  相似文献   

10.
The analysis of trends in hydroclimatic parameters and assessment of their statistical significance have recently received a great concern to clarify whether or not there is an obvious climate change. In the current study, parametric linear regression and nonparametric Mann?CKendall tests were applied for detecting annual and seasonal trends in the relative humidity (RH) and dew point temperature (T dew) time series at ten coastal weather stations in Iran during 1966?C2005. The serial structure of the data was considered, and the significant serial correlations were eliminated using the trend-free pre-whitening method. The results showed that annual RH increased by 1.03 and 0.28?%/decade at the northern and southern coastal regions of the country, respectively, while annual T dew increased by 0.29 and 0.15°C per decade at the northern and southern regions, respectively. The significant trends were frequent in the T dew series, but they were observed only at 2 out of the 50 RH series. The results showed that the difference between the results of the parametric and nonparametric tests was small, although the parametric test detected larger significant trends in the RH and T dew time series. Furthermore, the differences between the results of the trend tests were not related to the normality of the statistical distribution.  相似文献   

11.
Trends in air temperature and precipitation data are investigated for linkages to global warming and climate change. After checking for serial correlation with trend-free pre-whitening procedure, the Mann–Kendall test is used to detect monotonic trends and the Mann–Whitney test is used for trend step change. The case study is Maharlo watershed, Southwestern Iran, representing a semi-arid environment. Data are for the 1951–2011 period, from four temperature sites and seven precipitation sites. A homogeneity test investigates regional similarity of the time series data. The results include mean annual, mean annual maximum and minimum and seasonal analysis of air temperature and precipitation data. Mean annual temperature results indicate an increasing trend, while a non-significant trend in precipitation is observed in all the stations. Furthermore, significant phase change was detected in mean annual air temperature trend of Shiraz station in 1977, indicating decreasing trend during 1951–1976 and increasing trend during 1977–2011. The annual precipitation analysis for Shiraz shows a non-significant decrease during 1951–1976 and 1977–2011. The result of homogeneity test reveals that the studied stations form one homogeneous region. While air temperature trends appear as regional linkage to global warming/global climate change, more definite outcome requires analysis of longer time series data on precipitation and air temperature.  相似文献   

12.
Summary Summer-season (May–September) daily maximum temperature (T max) and daily minimum temperature (T min) observations and three types of heat spells obtained from these temperature observations at seven weather stations located in southern Quebec (Canada) for the 60-year period from 1941 to 2000 are studied to assess temporal changes in their characteristics (i.e. frequency of occurrence, seasonal hot days and extremal durations of heat spells). Type-A and Type-B heat spells are obtained respectively from T max and T min observations and Type-C heat spells from simultaneous joint observations of T max and T min using suitable thresholds and spells of duration ≥1-day and ≥3-day. The results of this investigation show that the majority of the selected percentiles (i.e. 5P, 10P, 25P, 50P, 75P, 80P, 90P, 92P, 95P, and 98P) of T max observations show a negative time-trend with statistically significant decreases (at 10% level) in some of the higher percentiles and in the maximal values at four out of seven stations. Almost all of the selected percentiles (same as for the T max) and the maximal and minimal values of T min observations show a positive trend, with statistically significant increases for all seven stations. Examination of frequencies of occurrence of heat spells, seasonal hot days and annual extremes of heat spell durations indicate that many of these characteristics of heat spells have undergone statistically significant changes over time at some of the stations for Type-A and Type-B heat spells as compared to Type-C heat spells. The Type-C heat spells are generally small in number and are found to be relatively temporally stable. More severe Type-C heat spells, i.e. the ones having T max and T min values simultaneously above very high thresholds and with duration ≥3-day have been rarely observed in southern Quebec.  相似文献   

13.
The spatiotemporal trends of aridity index in the arid and semi-arid regions of Iran in 1966–2005 were investigated using the Mann–Kendall test and Theil–Sen’s slope estimator. The results of the analysis showed negative trends in annual aridity index at 55 % of the stations, while just one site had a statistically significant (α?=?0.1) negative trend. Furthermore, the positive trends in the annual aridity index series were significant at the 95 % confidence level at Bushehr and Isfahan stations. The significant negative trend in the annual aridity index was obtained over Mashhad at the rate of ?0.004. In the seasonal series, the negative trends in the spring and winter aridity index were larger compared with those in the other seasonal series. A noticeable decrease in the winter aridity index series was observed mostly in the southeast of the study area. In the summer and autumn aridity index, two significant positive trends were found.  相似文献   

14.
Due to the substantial decrease of water resources as well as the increase in demand and climate change phenomenon, analyzing the trend of hydrological parameters is of paramount importance. In the present study, investigations were carried out to identify the trends in streamflow at 20 hydrometric stations and 11 rainfall gauging stations located in Karkheh River Basin (KRB), Iran, in monthly, seasonal, and annual time scales during the last 38 years from 1974 to 2011. This study has been conducted using two versions of Mann–Kendall tests, including (i) Mann–Kendall test by considering all the significant autocorrelation structure (MK3) and (ii) Mann–Kendall test by considering LTP and Hurst coefficient (MK4). The results indicate that the KRB streamflow trend (using both test versions) has decreased in all three time scales. There is a significant decreasing trend in 78 and 73 % of the monthly cases using the MK3 and MK4 tests, respectively, while these percentages changed to 80 and 70 % on seasonal and annual time scales, respectively. Investigation of the trend line slope using Theil–Sen’s estimator showed a negative trend in all three time scales. The use of MK4 test instead of the MK3 test has caused a decrease in the significance level of Mann–Kendall Z-statistic values. The results of the precipitation trends indicate both increasing and decreasing trends. Also, the correlation between the area average streamflow and precipitation shows a strong correlation in annual time scale in the KRB.  相似文献   

15.
Extreme normalised residuals, defined as departures from the average values, of 65 daily maximum, T max, and minimum, T min, temperature series recorded in Catalonia (NE Spain) during 1950–2004 are analysed. Similarly to the sampling strategies applied to long dry spells, the partial duration series (PDS) offer some advantages in comparison with the annual extreme series. Instead of using a common percentile threshold for all temperature series, PDS are chosen according to the mean excess plot procedure. Series of extreme residuals are modelled, in terms of the L-moments formulation, by the generalised Pareto distribution. Extreme residuals of T max and T min are estimated for return periods ranging from 2 to 50 years and their spatial distribution is represented for selected return periods of 2, 5, 10, 25 and 50 years. Two daily extreme temperatures events, a hot episode (in August) and a cold episode (in February), are simulated taking into account the average T max (T min) for a day in August (February), their standard deviations and the extremes for a 50-year return period. Both simulations are compared with outstanding real episodes recorded on August 13th 2003 and February 11th 1956. Additionally, a spatial regionalisation of Catalonia in several clusters, in terms of the extreme residuals for return periods from 2 to 50 years, is done. A principal component analysis is applied to the extreme residual curves characterising every temperature series and, using as variables the principal components, the regionalisation is obtained by applying the average linkage clustering algorithm. Finally, each cluster is characterised by its average extreme residual curve for return periods ranging from 2 to 50 years at 1-year interval.  相似文献   

16.
Daily mean air temperatures from 81 meteorological stations in Northeast China were analyzed for the spatiotemporal change of the climatic growing season during the period 1960–2009. Our results showed that latitude strongly influenced the spatial patterns of the mean start (GSS), end (GSE), and length (GSL) of the growing season. For the area studied, a significant increasing trend in GSL during 1960–2009 was detected at a significance level of 0.01, especially after the early 1980s. The area-average GSL has extended 13.3 days during the last 50 years, mainly due to the advanced GSS evident in the spring (7.9 days). The variations of GSS and GSE were closely correlated with the monthly mean temperature (T mean) of April and October, respectively, while GSL was closely related to the monthly minimum temperatures (T min) of spring (March to April) and autumn (September to October). The distributions of the trends in growing season parameters (GSS, GSE, and GSL) showed great spatial variability over Northeast China. Significant relationships between altitude and the trend rates of the GSS and GSL were detected, while geographic parameters had little direct effect on the change in GSE. This extended growing season may provide favorable conditions for agriculture and forest, and improve their potential production.  相似文献   

17.
We developed an operationally applicable land-only daily high-resolution (5?km?×?5?km) gridding method for station observations of minimum and maximum 2?m temperature (T min/T max) for Europe (WMO region VI). The method involves two major steps: (1) the generation of climatological T min/T max maps for each month of the year using block regression kriging, which considers the spatial variation explained by applied predictors; and (2) interpolation of transformed daily anomalies using block kriging, and combination of the resulting anomaly maps with climatological maps. To account for heterogeneous climatic conditions in the estimation of the statistical parameters, these steps were applied independently in overlapping climatic subregions, followed by an additional spatial merging step. Uncertainties in the gridded maps and the derived error maps were quantified: (a) by cross-validation; and (b) comparison with the T min/T max maps estimated in two regions having very dense temperature observation networks. The main advantages of the method are the high quality of the daily maps of T min/T max, the calculation of daily error maps and computational efficiency.  相似文献   

18.
Trend analysis of temperature parameters in Iran   总被引:1,自引:1,他引:0  
In this study, long-term annual and monthly trends in mean maximum, mean minimum and mean temperature are investigated at 35 synoptic stations in Iran. The statistical significance of trends is assessed by the Mann–Kendall test. Most stations, especially those in western and eastern parts of country, had significant positive trends in monthly temperature time series in summer season. However, the maximum number of stations with the positive trend were observed in April (30 stations), and then in August (29 stations) while the negative trends were seen in February (16 stations) and March (15 stations). On annual scale, most stations in western and southern parts of Iran had significant positive trend. Overall, about 71%, 66% and about 40% of stations had statistically significant trends in mean annual temperature, mean annual minimum temperature and in mean annual maximum temperature, respectively. These results, however, indicate that the climate in Iran is growing warmer, especially in summer.  相似文献   

19.
Identifying changes in reference evapotranspiration (ETo) can help in future planning of crop water requirements and water resources for high water-use efficiency. This study analyzes the ETo trends on a seasonal and annual timescale by applying various statistical tools to data from 41 Iranian weather stations during the period between 1966 and 2005. The Mann–Kendall test after removal of significant serial correlation was used to determine the statistical significance of the trends, and the change point in the ETo time series was determined using the cumulative sum technique. The results showed that (1) the significant increasing trends of annual ETo were observed at seven stations which are located in different parts of Iran, (2) the stations located at the southeast, northeast, and northwest corners of Iran experienced the highest positive change of annual ETo, and (3) the changes in seasonal ETo were most pronounced in the winter season, both in terms of trend magnitude and the number of stations with significant trends.  相似文献   

20.
This study reveals the impacts of climatic variable trends on drought severity in Xinjiang, China. Four drought indices, including the self-calibrating Palmer drought severity index (sc-PDSI), Erinç’s index (I m), Sahin’s index (I sh), and UNEP aridity index (AI), were used to compare drought severity. The ensemble empirical mode decomposition and the modified Mann-Kendall trend test were applied to analyze the nonlinear components and trends of the climatic variable and drought indices. Four and six climatic scenarios were generated in sc-PDSI, I m, I sh, and AI with different combinations of the observed and detrended climatic variables, respectively. In Xinjiang, generally increasing trends in minimal, average, and maximal air temperature (T min, T ave, T max) and precipitation (P) were found, whereas a decreasing trend in wind speed at 2 m height (U 2) was observed. There were significantly increasing trends in all of the four studied drought indices. Drought relief was more obvious in northern Xinjiang than in southern Xinjiang. The strong influences of increased P on drought relief and the weak influences of increased T min, T ave, and T max on drought aggravation were shown by comparing four drought indices under different climate scenarios. Decreased U 2 had a weak influence on drought, as shown by the AI in different climate scenarios. The weak influences of T and U 2 were considered to be masked by the strong influences of P on droughts. Droughts were expected to be more severe if P did not increase, but were likely milder without an increase in air temperature and with a decrease in U 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号