首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Petrographic, petrological and geochemical studies have demonstrated the presence of three distinctive basic volcanic suites in the Eastern Goldfields Province, Yilgarn Block, Western Australia. These are termed the high magnesian series basalts (HMSB), the low magnesian series basalts (LMSB) and the siliceous high magnesian series basalts (SHMSB).The HMSB and SHMSB constitute differentiation series which contain both high MgO (9.5–14 wt.%) and low MgO (<9.5 wt.%) members. These suites are commonly characterized by igneous textures indicative of very rapid crystallization suggesting high eruption temperatures. This feature clearly distinguishes those low MgO members of HMSB which contain amphibole pseudomorphs after spherulitic-textured pyroxene from compositionally similar LMSB. The LMSB are generally characterized by an intergranular texture consisting of plagioclase laths and interstitial amphibole pseudomorphs after pyroxene grains. Variolitic-textured basalts are common and appear to be restricted to the SHMSB suite of basic volcanics.The HMSB and LMSB were derived from source mantle regions which were variably depleted in the incompatible elements. Archaean komatiites were derived from similarly depleted source regions and it is argued that the main petrogenetic difference between these three volcanic suites was the degree of partial melting from which they were derived. The depleted nature of the source regions may have been induced by earlier small degree (< 5%) partial melting events with subsequent extraction of a proportion of that melt. Variations in both the degree of such melting, and the proportions of melt removal, could induce considerable heterogeneity of incompatible elements in the Archaean upper mantle.Source mantle regions of the SHMSB were variably enriched in the incompatible elements and water and parental magmas of the SHMSB were derived from moderately hydrous conditions of partial melting.The relative proportions of each basalt suite varies considerably between the layered successions examined. For example, the basic volcanics overlying the komatiites at Kambalda are SHMSB, while the footwall volcanics consist predominantly of HMSB with subordinate LMSB. However, the Norseman succession, where no ultramafic volcanics are known to occur, is comprised mainly of LMSB with a smaller proportion of HMSB.  相似文献   

2.
科马提岩仅限于超镁铁质熔融体(Mgo>30wt%)所生成的火山岩.它具有高温、高密度和低粘度的特征.以及独特的地球化学性质.结合高压熔融实验成果,评述了有关科马提岩成因的干地幔熔融模式、湿地幔熔融模式、温超镁铁质板块俯冲模式和热地幔柱熔融模式,并认为热地幔柱熔融模式较好地解释了科马提岩的成因.  相似文献   

3.
Intermediate calc-alkaline magma (52-65% SiO2) in western-central Mexico is the focus of this paper, and the typically porphyritic andesites (57-65% SiO2) form large central volcanoes, whereas basaltic andesites (52-57% SiO2) are less porphyritic, and they are found as cones and flows but are absent from central volcanoes. Several studies of experimental phase equilibria on these lavas relate water concentration to the phenocryst assemblages and to the degree of crystallinity, so that the abundance, composition and variety of phenocrysts can be used to constrain the amount of water dissolved in the magmas. Thus, the plagioclase-rich andesites of Volcan Colima, Mexico, become so as a result of decompressional crystallisation at ~950 °C (the pyroxene phenocryst temperature), and lose their dissolved water (2.5 to 4.5 wt% H2O) which is inversely proportional to the modal abundance of plagioclase. The feeding magma to V. Colima, North America's most productive central volcano, is represented by hornblende lamprophyre, a lava type without plagioclase phenocrysts which requires at least 6 wt% water to reproduce the phenocryst assemblage. Thus, degassing of the V. Colima magmas, and of those of the other central volcanoes in the western-central Mexican volcanic belt, contributes essentially all their dissolved water to the conduit or to the atmosphere. The source of this magmatic water is related to the source of the intermediate magmas. For some this must lie in the mantle, as the incorporation of hornblende-lherzolite nodules in a hydrous andesite with hornblende phenocrysts could only have occurred while ascending through the mantle. Consistent with a mantle source is the composition of the olivine phenocrysts in Mexican lavas with 10 to 5% MgO, which is in the mantle range of Fo88-92. Accordingly, basaltic andesites and andesites with >5% MgO are candidates for a mantle source. The equilibration of intermediate magmas with the mantle, as illustrated by the experiments of various workers, requires that the magmas be hydrous at pressure. An additional constraint is that the activity of silica in the mantle must be equal to that in the hydrous magma at equilibrium. Using published and new experiments to define RTln%SiO2 in hydrous liquids, this quantity is shown to vary as a function of liquid composition (H2O, MgO, Na2O+K2O), and it approaches zero for quartz-saturated hydrous liquids. Using appropriate values of RTln%SiO2 for three intermediate lavas, the amount of water required to equilibrate with an olivine-orthopyroxene mantle source is calculated, and within error indicates that only the most silica-rich magma is at water saturation in the mantle, in agreement with published experimental work. Hydrous intermediate magmas, ascending from their hornblende-lherzolite source regions (~1 to 1.5 GPa) along the hydrous adiabat, may not encounter any phase boundaries until 0.2-0.4 GPa because of the increase in the thermal stability of hornblende in water-undersaturated magmas. Therefore, the phenocryst assemblages of hornblende-free andesites equilibrate at low pressures. The virtual absence of basalt in west-central Mexico (<4 Ma) is considered to be related to the large increase in crystallinity found in isobaric hydrous experiments crystallising hornblende at pressures close to those at the base of the crust. As a large proportion of the ferromagnesian components of basalt is acceptable to hornblende, it does not take a significant cooling interval (~40-50 °C) below the liquidus for hydrous basaltic magma to acquire >50% crystallinity, evidently also an eruptible limit for V. Colima andesitic lavas. If the lower limit of water dissolved in Mexican intermediate magmas is accepted as that required for phenocryst equilibration (~6 wt% water), and the upper limit as saturation in the mantle source at 1 GPa (~16 wt%) then, with an estimate of the volcanic and plutonic magma delivery rate (km3/106 year) per km of volcanic arc, the flux of water returned from the mantle along the 35,000-km, global subduction-related arc system can be estimated. Measurements of the volcanic flux are woefully few, and estimates from Mexico, the Lesser Antilles and central America show a range from 4 to 20 km3/106 year2km which, if subtracted from the isotopically constrained continental growth rate, gives the plutonic flux rate. This suggests that, of the magma flux ascending to the continental crust, only about a fifth reaches the surface. If the dissolved magmatic water limits are coupled with the volcanic and plutonic emplacement rates, then the amount of water returned by magmatism to the crust is crudely in balance with that subducted.  相似文献   

4.
An exceptional occurrence of ultramafic lavas within the volcanic member of the Mesozoic (or younger) Gorgona Igneous Complex represents the first known komatiites of post-Precambrian age. Gorgona komatiites are virtually unaltered and display typical spinifex textures, with 7–10 cm long plates of olivine (Fo 88 to 91) surrounded by acicular aluminous augite, subordinate plagioclase (An 56 to 78), basaltic glass, and two spinel phases. The MgO contents of the komatiites range from 15 to 22 wt.%. Sr and Nd isotopic compositions are indicative of depletion of incompatible elements in the mantle source region, as is the case for normal mid-ocean ridge basalts. The komatiites are low in total REE abundances and extremely depleted in LREE. They represent primary melts generated by high degree of partial melting of the mantle. Eruption temperatures are estimated at 1,450° to 1,500° C.  相似文献   

5.
A sequence of ultramafic rocks in the Lac Guyer Archean greenstone belt exhibit brecciated flow tops, pillow structures, and spinifex textures testifying to their volcanic origin. Massive, spinifex-textured and differentiated flows in the sequence have the chemical characteristics of peridotitic komatiite, with MgO ranging from 19–25 wt.%. Associated pillowed flows have compositions that straddle the conventional boundary between komatiite and komatiitic basalt with MgO contents ranging from 16 to 19 wt.% MgO and are best termed pyroxenitic komatiites. Unlike other komatiitic occurrences, the peridotitic and pyroxenitic komatiites at Lac Guyer constitute a continuous chemical spectrum with no evidence of population minimum near 18 wt.% MgO. The contrasting behaviour of highly compatible elements, such as Ni and Cr, versus incompatible elements, such as Zr, indicate that this compositional spectrum was produced by a variation in the extent of partial melting (10–40%) of a garnet lherzolite source in the Archean mantle. The pyroxenitic komatiites represent liquids produced during lower (10–20%) degrees of melting during which garnet remained in the mantle residue. However, a change in slope in the distribution of Zr vs. Y between the pyroxenitic and the peridotitic komatiites indicates that garnet was completely consumed at the more extensive degrees of melting which produced the peridotitic komatiites. The Lac Guyer volcanic rocks display a population minimum at 15 wt.% MgO separating komatiitic magmas whose compositions are controlled by partial melting from basalts whose composition is controlled by crystal fractionation. The population minimum near 18 wt.% MgO which is taken as the boundary between komatiite and komatiitic basalt may have a similar origin.  相似文献   

6.
The Younger Andesites and Dacites of Iztacc?huatl volcano, Mexico,constitute a medium-K calcalkaline rock suite (58–66 wt.per cent SiO2) characterized by high Mg-numbers (100Mg/(Mg+0?85Fe2+=55–66) and relatively high abundances of MgO (2?5–6?6wt. per cent), Ni(17–158 p.p.m.), and Cr (42–224p.p.m.). Chemical stratigraphy plots of eruptive sequences indicatethe existence of a plexus of long-lived dacite magma chambersperiodically replenished by influxes of basaltic magma ascendingfrom depth. Short-term geochemical evolution after batch influxwas dictated by magma mixing and eventual dilution of the basalticcomponent by ‘quasi-steady state’ hornblende dacitemagma. The chemical data support textural and mineralogicalevidence for rapid homogenization of originally diverse magmasby convective blending of residual liquids accompanied by dynamicfractional crystallization (Nixon, 1988). Internally-consistent mixing calculations used to derive thecomposition of basaltic magma influx incorporate analyticaluncertainties and the observed range of salic end-member compositions.Mafic end-members are basalts to basaltic andesites (52–54wt. per cent SiO2) with Mg-numbers (73–76), MgO (9–11wt. per cent), Ni (250 p.p.m.), and Cr (340–510 p.p.m.)concentrations, and liquidus olivine compositions (Fo90–88),appropriate for unfractionated partial melts of mantle peridotite.The majority of model compositions are Ol-Hy-normative, similarto those of primitive basaltic lavas on the flanks of Iztacc?huatland in the Valley of Mexico. However, calculated magma batchesrange from weakly Qz-normative to strongly Ne-normative. Bothcalculated and analyzed basaltic compositions are distinguishedby highly variable abundances of alkalies and incompatible traceelements, notably Rb, Ba, Sr, P, Zr, and Y. Initial 87Sr/86Sr ratios for Iztacc?huatl lavas (0?7040–0?7046;n=24) are comparable to those for primitive basaltic rocks (0?7037–0?7045;?=4) and indicate that (1) mantle source regions are isotopicallyheterogeneous; and (2) contamination of iztacc?huatl magma chambersby radiogenic crustal rocks was not a significant factor inthe evolution of calc-alkaline andesites and dacites. The replenishment of Iztacc?huatl dacite reservoirs by Ne-normativemagmas late in the history of cone growth precludes exhaustionof mantle source regions by progressive partial melting. Thewaning stages of volcanic activity at Iztacc?huatl appear toreflect the inability of dense basaltic influxes to successfullypenetrate a large high-level chamber of low density hornblendedacite magma.  相似文献   

7.
The phase relations of primitive magnesian andesites and basaltic andesites from the Mt. Shasta region, N California have been determined over a range of pressure and temperature conditions and H2O contents. The experimental results are used to explore the influence of H2O and pressure on fractional crystallization and mantle melting behavior in subduction zone environments. At 200-MPa H2O-saturated conditions the experimentally determined liquid line of descent reproduces the compositional variation found in the Mt. Shasta region lavas. This calc-alkaline differentiation trend begins at the lowest values of FeO*/MgO and the highest SiO2 contents found in any arc magma system and exhibits only a modest increase in FeO*/MgO with increasing SiO2. We propose a two-stage process for the origin of these lavas. (1) Extensive hydrous mantle melting produces H2O-rich (>4.5--6 wt% H2O) melts that are in equilibrium with a refractory harzburgite (olivine + orthopyroxene) residue. Trace elements and H2O are contributed from a slab-derived fluid and/or melt. (2) This mantle melt ascends into the overlying crust and undergoes fractional crystallization. Crustal-level differentiation occurs under near-H2O saturated conditions producing the distinctive high SiO2 and low FeO*/MgO characteristics of these calc-alkaline andesite and dacite lavas. In a subset of Mt. Shasta region lavas, magnesian pargasitic amphibole provides evidence of high pre-eruptive H2O contents (>10 wt% H2O) and lower crustal crystallization pressures (800 MPa). Igneous rocks that possess major and trace element characteristics similar to those of the Mt. Shasta region lavas are found at Adak, Aleutians, Setouchi Belt, Japan, the Mexican Volcanic Belt, Cook Island, Andes and in Archean trondhjemite--tonalite--granodiorite suites (TTG suites). We propose that these magmas also form by hydrous mantle melting.Editorial responsibility: J. Hoefs  相似文献   

8.
The Honolulu Volcanics comprises small volume, late-stage (post-erosional)vents along rifts cutting the older massive Koolau tholeüticshield on Oahu, Hawaii. Most of these lavas and tuff of theHonolulu Volcanics have geochemical features expected of near-primarymagmas derived from a peridotite source containing Fo87–89olivine; e. g. 100 Mg/(Mg + Fe2+) >65, >250 p. p. m. Ni,and presence of ultramafic mantle xenoliths at 18 of the 37vents. Consequently, the geochemistry of the alkali olivinebasalt, basanite, nephelinite and nepheline melilitite lavasand tuff of the Honolulu Volcanics have been used to deducethe composition of their mantle source and the conditions underwhich they were generated by partial melting in the mantle. Compositional trends in 30 samples establish that the magmaswere derived by partial melting of a garnet (<10 per cent)Iherzolite source, which we infer to have been carbon-bearing,from analogy with experimental results. This source was isotopicallyhomogeneous (Sr, Lanphere & Dalrymple, 1980; Pb, Sun, 1980;Nd, Roden et al., 1981), and we infer that the source was compositionallyuniform in all major-element oxides except TiO2, in compatibletrace elements (Sc, V, Cr, Mn, Co and Ni), and in highly incompatibletrace elements (P, Th, La, Ce). However, the source appearsto have been heterogeneous in TiO2, Zr, Hf, Nb, and Ta, elementsthat were not strongly incompatible during partial melting.Some nepheline melilitite samples may be derived from a sourcewith distinct Sc and heavy-rare-earth-elements (REE) abundances,or which had a phase or phases controlling the distributionof these elements. The relatively limited abundance range for several elements,such as Ti, Zr, Nb, is partly a consequence of the low degreesof melting inferred for the series (2 per cent for nephelinemelilitite, 11 per cent for alkali olivine basalt), which failedto exhaust the source in minor residual phases. We infer thatthese residual phases probably included phlogopite, amphibole,and another Ti-rich phase (an oxide?), but not apatite. In comparison with estimates of a primordial mantle compositionand the mantle source of mid-oceanic-ridge basalt the garnetperidotite source of the Honolulu Volcanics was increasinglyenriched in the sequence heavy REEs, Y, Tb, Ti, Sm, Zr, andHf all <P <Nd <Sr Ce <La <Nb Ta. A multi-stagehistory for the source of the Honolulu Volcanics is requiredbecause this enrichment was superimposed on a mantle that hadbeen previously depleted in incompatible elements, as indicatedby the relatively low 87Sr/86Sr ratio, high 143Nd/144Nd ratioand low contents of K, Rb, Ba, and Th. The composition of thesource of the Honolulu Volcanics differs from the source ofthe previously erupted tholeiitic shield. The modal mineralogyof the source of the Honolulu Volcanics is not represented inthe upper-mantle xenoliths, e. g. the garnet pyroxenite andolivine-poor garnet Iherzolite included within the lavas andtuff of the unit.  相似文献   

9.
Komatiitic and Iron-rich Tholeiitic Lavas of Munro Township, Northeast Ontario   总被引:12,自引:6,他引:12  
Munro Township, in the Archean Abitibi greenstone belt of northeastOntario, contains volcanic and hypabyssal rocks of two magmaseries: (1) an Fe-rich tholeiitic series of basaltic to daciticlava flows (3–10 m thick), layered peridotite-pyroxenite-gabbroflows (120 m thick), and layered sills (700 m thick); (2) anultramafic-mafic komatiitic series, comprising discrete lavaflows of peridotitic to andesitic composition (1–17 mthick), layered peridotite-gabbro flows (120 m thick), and layeredsills (500 m thick). The komatiitie lavas form a successionabout 1000 m thick that is both underlain and overlain by thickersuccessions of tholeiitic volcanic rocks. Three types of komatiite are recognized: peridotitic, pyroxenitic,and basaltic komatiites. The most ultramafic are peridotiticcumulates rich in forsteritic olivine (Fo89–94), at thebases of flows and sills. Many less mafic peridotitic komatiites(MgO: 20–30 per cent), which typically form the upperparts of flows and the marginal parts of small intrusions, exhibitspinifex textures indicative of their formation from ultrabasicliquids. Pyroxenitic komatiites (MgO: 12–20 per cent)also may contain olivine, but are dominated by clinopyroxene,usually in spinifex textures. Basaltic komatiites (MgO <12per cent) are composed mainly of clino-pyroxene and plagioclaseor devitrified glass, rarely in spinifex texture and more commonlyin equigranular textures. Peridotitic komatiite with roughly30 per cent MgO appears to represent a parental liquid fromwhich the more ultramafic komatiites formed by accumulationof olivine, and the less mafic types were derived by fractionationof olivine, joined and finally succeeded in later stages byclinopyroxene and plagioclase. Komatiites of Munro Township share many of the characteristicsof the komatiites from the Barberton Mountain Land, South Africa(Voljoen & Viljoen, 1969a and b), but lack the high CaO/Al2O3ratios that distinguish the Barberton rocks. The Munro komatiitesare identical in this respect to ultramafic volcanic rocks inAustralia, Canada, Rhodesia, and India. It is proposed thatthe definition of the term komatiite be broadened so that itincludes all members of this ultramafic-mafic rock series, notonly those from Barberton Mountain Land. The proposed criteriaare: (1) highly ultramafic compositions in noncumulate lavas;(2) unusual volcanic structures such as spinifex texture andpolyhedral jointing; (3) low Fe/Mg ratios at given Al2O3 valuesor high CaO/Al2O3 ratios; low TiO2 at given SiO2; and high MgO,NiO, and Cr2O3.  相似文献   

10.
峨眉山大火成岩省:地幔柱活动的证据及其熔融条件   总被引:138,自引:5,他引:138  
对苦橄岩中橄榄石斑晶及其中熔体包裹体的电子探针分析表明,峨眉山大火山岩省的原始岩浆具高镁( MgO > 16%)特征。玄武岩的 REE反演计算揭示,参与峨眉山玄武岩岩浆作用的地幔具有异常高的潜能温度( 1 550℃)。这些特征以及峨眉山玄武岩的大面积分布和一些熔岩所显示的类似于洋岛玄武岩 (OIB)的微量元素和 Sr- Nd同位素特征均为地幔热柱在能量和物质上参与峨眉山溢流玄武岩的形成提供了确凿证据。峨眉山两个主要岩类(高钛和低钛玄武岩)可能是不同地幔源区物质在不同条件下的熔融产物。低钛玄武岩形成于温度最高、岩石圈最薄的地幔柱轴部。地幔( ISr≈ 0.705,ε Nd(t)≈+ 2)熔融始于 140 km,并一直延续到较浅的深度( 60 km,尖晶石稳定区 ),部分熔融程度为 16%,这类岩石可能代表了峨眉山玄武岩的主体。而高钛玄武岩的母岩浆的形成基本局限在石榴子石稳定区( > 70 km),其源区特征为 : ISr≈ 0.704,ε Nd(t)≈+ 5,可能代表了热柱边部或消亡期地幔小程度部分熔融( 1.5%)的产物。  相似文献   

11.
We report the oxygen isotope composition of olivine and orthopyroxene phenocrysts in lavas from the main magma types at Mt Shasta and Medicine Lake Volcanoes: primitive high-alumina olivine tholeiite (HAOT), basaltic andesites (BA), primitive magnesian andesites (PMA), and dacites. The most primitive HAOT (MgO > 9 wt%) from Mt. Shasta has olivine δ18O (δ18OOl) values of 5.9–6.1‰, which are about 1‰ higher than those observed in olivine from normal mantle-derived magmas. In contrast, HAOT lavas from Medicine Lake have δ18OOl values ranging from 4.7 to 5.5‰, which are similar to or lower than values for olivine in equilibrium with mantle-derived magmas. Other magma types from both volcanoes show intermediate δ18OOl values. The oxygen isotope composition of the most magnesian lavas cannot be explained by crustal contamination and the trace element composition of olivine phenocrysts precludes a pyroxenitic mantle source. Therefore, the high and variable δ18OOl signature of the most magnesian samples studied (HAOT and BA) comes from the peridotitic mantle wedge itself. As HAOT magma is generated by anhydrous adiabatic partial melting of the shallow mantle, its 1.4‰ range in δ18OOl reflects a heterogeneous composition of the shallow mantle source that has been influenced by subduction fluids and/or melts sometime in the past. Magmas generated in the mantle wedge by flux melting due to modern subduction fluids, as exemplified by BA and probably PMA, display more homogeneous composition with only 0.5‰ variation. The high-δ18O values observed in magnesian lavas, and principally in the HAOT, are difficult to explain by a single-stage flux-melting process in the mantle wedge above the modern subduction zone and require a mantle source enriched in 18O. It is here explained by flow of older, pre-enriched portions of the mantle through the slab window beneath the South Cascades.  相似文献   

12.
The Mikabu and Sorachi–Yezo belts comprise Jurassic ophiolitic complexes in Japan, where abundant basaltic to picritic rocks occur as lavas and hyaloclastite blocks. In the studied northern Hamamatsu and Dodaira areas of the Mikabu belt, these rocks are divided into two geochemical types, namely depleted (D-) and enriched (E-) types. In addition, highly enriched (HE-) type has been reported from other areas in literature. The D-type picrites contain highly magnesian relic olivine phenocrysts up to Fo93.5, and their Fo–NiO trend indicates fractional crystallization from a high-MgO primary magma. The MgO content is calculated as high as 25 wt%, indicating mantle melting at unusually high potential temperature (T p) up to 1,650 °C. The E-type rocks represent the enrichment in Fe and LREE and the depletion in Mg, Al and HREE relative to the D-type rocks. These chemical characteristics are in good accordance with those of melts from garnet pyroxenite melting. Volcanics in the Sorachi–Yezo belts can be divided into the same types as the Mikabu belt, and the D-type picrites with magnesian olivines also show lines of evidence for production from high T p mantle. Evidence for the high T p mantle and geochemical similarities with high-Mg picrites and komatiites from oceanic and continental large igneous provinces (LIPs) indicate that the Mikabu and Sorachi–Yezo belts are accreted oceanic LIPs that were formed from hot large mantle plumes in the Late Jurassic Pacific Ocean. The E- and D-type rocks were formed as magmas generated by garnet pyroxenite melting at an early stage of LIP magmatism and by depleted peridotite melting at the later stage, respectively. The Mikabu belt characteristically bears abundant ultramafic cumulates, which could have been formed by crystal accumulation from a primary magma generated from Fe-rich peridotite mantle source, and the HE-type magma were produced by low degrees partial melting of garnet pyroxenite source. They should have been formed later and in lower temperatures than the E- and D-type rocks. The Mikabu and Sorachi Plateaus were formed in a low-latitude region of the Late Jurassic Pacific Ocean possibly near a subduction zone, partially experienced high P/T metamorphism during subduction, and then uplifted in association with (or without, in case of Mikabu) the supra-subduction zone ophiolite. The Mikabu and Sorachi Plateaus may be the Late Jurassic oceanic LIPs that could have been formed in brotherhood with the Shatsky Rise.  相似文献   

13.
Three linear zones of active andesite volcanism are present in the Andes — a northern zone (5°N–2°S) in Colombia and Ecuador, a central zone (16°S–28°S) largely in south Peru and north Chile and a southern zone (33°S–52°S) largely in south Chile. The northern zone is characterized by basaltic andesites, the central zone by andesite—dacite lavas and ignimbrites and the southern zone by high-alumina basalts, basaltic andesites and andesites. Shoshonites and volcanic rocks of the alkali basalt—trachyte association occur at scattered localities east of the active volcanic chain,The northern and central volcanic zones are 140 km above an eastward-dipping Benioff zone, while the southern zone lies only 90 km above a Benioff zone. Continental crust is ca. 70 km in thickness below the central zone, but is 30–45 km thick below northern and southern volcanic zones. The correlation between volcanic products and their structural setting is supported by trace element and isotope data. The central zone andesite lavas have higher Si, K, Rb, Sr and Ba, and higher initial Sr isotope ratios than the northern or southern zone lavas. The southern zone high-alumina basalts have lower Ce/Yb ratios than volcanics from the other zones. In addition, the central zone andesite lavas show a well-defined eastward increase in K, Rb and Ba and a decrease in Sr.Andean andesite magmas are a result of a complex interplay of partial melting, fractional crystallization and “contamination” processes at mantle depths, and contamination and fractional crystallization in the crust. Variations in andesite composition across the central Andean chain reflect a diminishing degree of partial melting or an increase in fractional crystallization or an increase in “contamination” passing eastwards. Variations along the Andean chain indicate a significant crustal contribution for andesites in the central zone, and indicate that the high-alumina basalts and basaltic andesites of the southern zone are from a shallower mantle source region than other volcanic rocks. The dacite-rhyolite ignimbrites of the central zone share a common source with the andesites and might result from fractional crystallization of andesite magma during uprise through thick continental crust. The occurrence of shoshonites and alkali basalts eat of the active volcanic chain is attributed to partial melting of mantle peridotite distant from the subduction zone.  相似文献   

14.
Rare earth element (REE) and major element data are presented on 44 Archaean samples which include spinifex textured ultramagnesian lavas (STPK) spinifex textured basalts (STB) and low MgO tholeiites. The samples come from the Yilgarn and Pilbara Blocks (W. Australia), Barberton (South Africa), Belingwe and Que Que (Rhodesia), Abitibi (Canada) and the 3.7 b.y. Isua Belt of Western Greenland. In addition REE data are given on three near primitive mid-ocean ridge basalts (MORB) and a glassy MORB-type basalt from Taiwan. We suggest that REE patterns, particularly the light REE and Eu, can be affected by metamorphism, but argue that the consistency of pattern from samples both within and between areas enables recognition of primary patterns. La/Sm ratios of 2.7 b.y. STPK are characterised by being lower than those of associated basalts. The 3.5 b.y. STPK Barberton material does not show this feature but instead displays significant heavy REE depletion. The separation of garnet from these liquids is suggested as a possible mechanism for the high CaO/Al2O3 ratios, (Al loss) and the heavy REE and Sc depletion. The REE data on Barberton material is equivocal on the derivation of the so-called basaltic komatiites from the peridotitic komatiites. However, REE analyses on STPK and high magnesian lavas from elsewhere suggests that crystal fractionation is not a viable mechanism to produce one from the other. We suggest instead, that varying amounts of partial melting of different sources is responsible for the spectrum of compositions. The STB appear to be an easily recognised rock type within the Archaean. They are characterised by quench (clinopyroxene) textures and a light REE enriched pattern. It is suggested that these are near primary melts and that their REE patterns mirror their mantle source. We propose a two stage model for the 2.7 b.y. mafic complexes, in which, prior to the generation of ultrabasic magmas, the source underwent a small amount of partial melting which resulted in the removal of a melt enriched in incompatible elements. The depletion process could be achieved either during mantle diapirism or by upward migration of interstitial melts into an Archaean low velocity zone. The spread of La/Sm ratios in STPK and STB is used as an argument that the Archaean mantle was chemically heterogeneous and that the degree of heterogeneity was similar to that observed in modern ocean volcanics. As a result, partial melting of the mantle under different P-T conditions produced a spectrum of magma types. The information presently available on Archaean mafic and silicic magmatism and the incompleteness of geochemical data on present day tectonic environments are two major obstacles in formulating Archaean tectonic models. In addition a comparison of present day and Archaean ultramafic and silicic rocks suggests that plate tectonic models as presently understood may not be suitable analogues for all Archaean tectonic environments.  相似文献   

15.
Camiguin is a small volcanic island located 12 km north of Mindanao Island in southern Philippines. The island consists of four volcanic centers which have erupted basaltic to rhyolitic calcalkaline lavas during the last ∼400 ka. Major element, trace element and Sr, Nd and Pb isotopic data indicate that the volcanic centers have produced a single lava series from a common mantle source. Modeling results indicate that Camiguin lavas were produced by periodic injection of a parental magma into shallow magma chambers allowing assimilation and fractional crystallization (AFC) processes to take place. The chemical and isotopic composition of Camiguin lavas bears strong resemblance to the majority of lavas from the central Mindanao volcanic field confirming that Camiguin is an extension of the tectonically complex Central Mindanao Arc (CMA). The most likely source of Camiguin and most CMA magmas is the mantle wedge metasomatized by fluids dehydrated from a subducted slab. Some Camiguin high-silica lavas are similar to high-silica lavas from Mindanao, which have been identified as “adakites” derived from direct melting of a subducted basaltic crust. More detailed comparison of Camiguin and Mindanao adakites with silicic slab-derived melts and magnesian andesites from the western Aleutians, southernmost Chile and Batan Island in northern Philippines indicates that the Mindanao adakites are not pure slab melts. Rather, the CMA adakites are similar to Camiguin high-silica lavas which are products of an AFC process and have negligible connection to melting of subducted basaltic crust. Received: 27 February 1998 / Accepted: 27 August 1998  相似文献   

16.
《International Geology Review》2012,54(13):1569-1595
ABSTRACT

Palaeoarchaean (3.38–3.35 Ga) komatiites from the Jayachamaraja Pura (J.C. Pura) and Banasandra greenstone belts of the western Dharwar craton, southern India were erupted as submarine lava flows. These high-temperature (1450–1550°C), low-viscosity lavas produced thick, massive, polygonal jointed sheet flows with sporadic flow top breccias. Thick olivine cumulate zones within differentiated komatiites suggest channel/conduit facies. Compound, undifferentiated flow fields developed marginal-lobate thin flows with several spinifex-textured lobes. Individual lobes experienced two distinct vesiculation episodes and grew by inflation. Occasionally komatiite flows form pillows and quench fragmented hyaloclastites. J.C. Pura komatiite lavas represent massive coherent facies with minor channel facies, whilst the Bansandra komatiites correspond to compound flow fields interspersed with pillow facies. The komatiites are metamorphosed to greenschist facies and consist of serpentine-talc ± carbonate, actinolite–tremolite with remnants of primary olivine, chromite, and pyroxene. The majority of the studied samples are komatiites (22.46–42.41 wt.% MgO) whilst a few are komatiitic basalts (12.94–16.18 wt.% MgO) extending into basaltic (7.71 – 10.80 wt.% MgO) composition. The studied komatiites are Al-depleted Barberton type whilst komatiite basalts belong to the Al-undepleted Munro type. Trace element data suggest variable fractionation of garnet, olivine, pyroxene, and chromite. Incompatible element ratios (Nb/Th, Nb/U, Zr/Y Nb/Y) show that the komatiites were derived from heterogeneous sources ranging from depleted to primitive mantle. CaO/Al2O3 and (Gd/Yb)N ratios show that the Al-depleted komatiite magmas were generated at great depth (350–400 km) by 40–50% partial melting of deep mantle with or without garnet (majorite?) in residue whilst komatiite basalts and basalts were generated at shallow depth in an ascending plume. The widespread Palaeoarchaean deep depleted mantle-derived komatiite volcanism and sub-contemporaneous TTG accretion implies a major earlier episode of mantle differentiation and crustal growth during ca. 3.6–3.8 Ga.  相似文献   

17.
Evidence for a Picritic, Volatile-rich Magma beneath Mt. Shasta, California   总被引:2,自引:1,他引:2  
Large, magnesium-rich olivines are plentiful in several Holocenecinder cones within 20 km of Mt. Shasta Summit. Glasses (formerlysilicate melts) included in the olivines are high alumina basalts(tholeiites and olivine tholeiites). In the most magnesian olivinesthe glass inclusions have large vapor bubbles. Surrounding someof the glass inclusions are broad Fe-rich zones and ghost outlines.These facts indicate crystallization of major proportions ofolivine from the initial trapped melts. The initial melts containedan inferred 24 per cent of MgO and were rich in volatiles. Theinferred entrapment temperature of the initial melt is 1410°C. The initial liquid is a possible mantle derived parentof Mt. Shasta basalts and andesites and of some hidden alpineperidotite.  相似文献   

18.
热状态和壳幔岩浆作用是理解早期地壳形成演化动力学机制的关键.华北克拉通是世界范围内为数不多的保存有大量新太古代晚期(约26~25亿年)变质火山岩记录的克拉通之一,对揭示全球新太古代晚期壳-幔动力学演化过程具有重要的指示意义.在我们研究组近期关于华北克拉通中东部中新太古代热状态和地壳厚度研究基础上,本文收集并整理了726...  相似文献   

19.
The maximum potential temperature of the Archaean mantle is poorly known, and is best constrained by the MgO contents of komatiitic liquids, which are directly related to eruptive temperatures. However, most Archaean komatiites are significantly altered and it is difficult to assess the composition of the erupted liquid. Relatively fresh lavas from the SASKMAR suite, Belingwe Greenstone Belt, Zimbabwe (2.7 Ga) include chills of 25.6 wt.% MgO, and olivines ranging to Fo93.6, implying eruption at around 1520°C. A chill sample from Alexo Township, Ontario (also 2.7 Ga) is 28 wt.% MgO, and associated olivines range to Fo94.1, implying eruption at 1560°C. However, inferences of erupted liquids containing 32–33 wt.% MgO, from lavas in the Barberton Greenstone Belt, South Africa (3.45 Ga) and from the Perseverance Complex, Western Australia (2.7 Ga) may be challenged on the grounds that they contain excess (cumulate) olivine, or were enriched in Mg during alteration or metamorphism. Re-interpretation of olivine compositions from these rocks shows that they most likely contained a maximum of 29 wt.% MgO corresponding to an eruption temperature of 1580°C. This composition is the highest liquid MgO content of an erupted lava that can be supported with any confidence. The hottest modern magma, on Gorgona Island (0.155 Ga) contained 18–20% MgO and erupted at circa 1400°C.

If 1580°C is taken as the temperature of the most magnesian known eruption, then the source mantle from which the liquids rose would have been at up to 2200°C at pressures of 18 GPa corresponding to a mantle potential temperature of 1900°C. These temperatures are in excess of the mantle temperatures predicted by secular cooling models, and thus komatiites can only be formed in hot rising convective jets in the mantle. This result requires that Archaean mantle jets may have been 300°C hotter than the Archaean ambient mantle temperature. This temperature difference is similar to the 200–300°C temperature difference between present day jets and ambient mantle temperatures. An important subsidiary result of this study is the confirmation that spinifex rocks may be cumulates and do not necessarily represent liquid compositions.  相似文献   


20.
The only known post-Archaean komatiites are found on Gorgona,a small island off the Colombian coast that forms part of theCaribbean oceanic plateau. Mafic and ultramafic intrusions arelocated in the interior of the island. To establish the relationshipbetween intrusive and extrusive phases of ultramafic magmatism,and to help understand how an oceanic plateau is constructed,we undertook the first petrological and geochemical study ofthe intrusive rocks. Rare earth element patterns in gabbrosrange from almost flat to moderately depleted; in dunites andwehrlites, the depletion is more pronounced. These patternsfall midway in the range measured in Gorgona volcanics, whosecompositions vary from slightly enriched to extremely depleted.Nd isotope compositions indicate two distinct mantle sources,one highly depleted, the other less depleted. MgO contents ofparental liquids are estimated from olivine compositions at20–25 % in ultramafic lavas, and 12–13% in the intrusives.Petrographic observations and similarities in trace-elementcontents indicate that the two magma types are comagmatic, relatedthrough olivine fractionation. Modelling of major and traceelements indicates that the primary ultramafic magmas formedby advanced critical melting at high pressure in a rising mantleplume. The plumbing system that fed the Gorgona plateau wascomplex, being characterized by a series of magma chambers atdifferent crustal levels. Mantle-derived ultramafic liquidseither travelled directly to the surface to erupt as komatiiteflows, or were trapped in magma chambers where they differentiatedinto basaltic liquid and mafic to ultramafic cumulates. Gorgonagabbros and peridotites formed in shallow-level examples ofthese intrusions. KEY WORDS: Gorgona Island, Colombia; komatiite; mantle melting; oceanic plateau; melt transport  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号