首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed numerical simulations of star cluster encounters with Hernquist's treecode on a CRAY YMP-2E computer. We used different initial conditions (relative positions and velocities, cluster sizes, masses and concentration degrees) with the total number of particles per simulation ranging from 4608 to 20 480. Long-term interaction stages (up to 1 Gyr) when the pair coalesces into a single cluster are compared with isolated LMC clusters. Evidence is found that, when seen in a favourable plane, these resulting clusters show elliptical shapes as a result of the disruption of one of the companions. These elliptical shapes are essentially time-independent, but they do depend on the initial structural parameters of the pair components. We also analysed the fraction of stars that are ejected to the field by the interaction. We found that this fraction can be almost 50 per cent for the disrupted cluster. These simulations can represent a possible mechanism with which to explain the ellipticity observed in several star clusters in the Magellanic Clouds.  相似文献   

2.
In the course of investigation of Shakhbazian compact groups we studied the group ShCG 191 which has been identified also as the Abell cluster A1097. By its richness it may be classified as a rich compact group or a poor cluster. We determined redshifts of 14 objects in the area of the cluster and found that two of the supposed members of the group are stars. Redshifts of 12 galaxies show that the system is gravitationally bound. The V and R magnitudes of 23 member galaxies and their morphological types are determined. We present in this paper also the surface brightness contours of member galaxies in the central area of the cluster, the curves of isophotal twisting and the Fourier parameter a4. It is shown that some galaxies in the cluster are interacting with each other. Physical parameters of the group are close to those of ShCGs. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
4.
The key to using a strong gravitational lens system to measure the Hubble constant is to obtain an accurate model of the lens potential. In this paper, we investigate the properties of gravitational lens B1608+656, a quadruply imaged lens system with an extended source intensity distribution. Our analysis is valid for generic quadruply lensed systems. Limit curves and isophotal separatrices are defined for such systems, and we show that the isophotal separatrices must intersect at the critical curves and the satellite isophotes must be tangent to the limit curves. The most recent model of B1608+656 by Koopmans et al. satisfies these criteria for some, but not all, of the isophotal separatrices within the observational uncertainty. We study a non-parametric method of potential reconstruction proposed by Blandford, Surpi & Kundic and demonstrate that although the method works in principle and elucidates image formation, the initial potential only converges to the true model when it is within ∼1 per cent of the true model.  相似文献   

5.
We study the circumstances under which first collisions occur in young and dense star clusters. The initial conditions for our direct N -body simulations are chosen such that the clusters experience core collapse within a few million years, before the most massive stars have left the main sequence. It turns out that the first collision is typically driven by the most massive stars in the cluster. Upon arrival in the cluster core, by dynamical friction, massive stars tend to form binaries. The enhanced cross-section of the binary compared to a single star causes other stars to engage the binary. A collision between one of the binary components and the incoming third star is then mediated by the encounters between the binary and other cluster members. Due to the geometry of the binary–single star engagement the relative velocity at the moment of impact is substantially different than in a two-body encounter. This may have profound consequences for the further evolution of the collision product.  相似文献   

6.
We present a detailed study of the morphological features of 22 rich galaxy clusters. Our sample is constructed from a cross-correlation of optical     data with X-ray (0.1–2.4 keV) ROSAT pointed observations. We systematically compare cluster images and morphological parameters in an attempt to reliably identify possible substructure in both optical and the X-ray images. To this end, we compute various moments of the optical and X-ray surface-brightness distribution such as the ellipticities, centre-of-mass shifts and ellipsoidal orientations. We assess the significance of our results using Monte Carlo simulations. We find significant correlations between the optical and X-ray morphological parameters, indicating that in both parts of the spectrum it is possible to identify correctly the dynamical state of a cluster. Most of our clusters (17/22) have a good one-to-one correspondence between the optical and the X-ray images, and about 10 appear to have strong indications of substructure. This corresponds to a minimum percentage of order ∼45 per cent, which is in very good accordance with other similar analyses. Finally, five out of 22 systems (∼22 per cent) seem to have distinct subclumps in the optical which are not verified in the X-ray images, and thus are suspect of being due to optical projection effects. These results will serve as a useful guide in interpreting subsequent analyses of large optical cluster catalogues.  相似文献   

7.
A significant degree of mass segregation inconsistent with the effects of standard two-body relaxation has been observed in a number of young star clusters. In this paper we present the results of a survey of N-body simulations aimed at exploring the origin and the dynamical evolution of young mass-segregated star clusters. Our simulations show that large segregated clusters can form from the merger of small clumps that are either initially segregated or in which segregation is produced before the merger is complete; the large cluster produced at the end of the merger process inherits the progenitor clumps’ segregation. We show that, in a young mass-segregated cluster, the effect of early mass loss associated with stellar evolution is, in general, more destructive than for an unsegregated cluster with the same density profile, and leads to shorter lifetimes, a faster initial evolution towards less-concentrated structure and a faster flattening of the stellar initial mass function.  相似文献   

8.
The distribution of faint galaxies down toB=22.0 from COSMOS measurements on a deep U.K. Schmidt telescope plate is compared with stochastic simulations of fields of galaxies for a number of cluster galaxy multiplicities and cosmological models. The results support the view that the majority of galaxies are isolated in space or exist as members of pairs or triplets. Inclusion of superclustering in the simulations reduces agreement with the observations.  相似文献   

9.
评述了球状星团系统研究中的比频、金属度和质量谱三大问题,就目前的认识和存在的问题进行了讨论。指出不同星系球状星团比频之间的差别表明了需要有各种不同的球状星团形成模型;球状星团金属度的分布表明球状星团可能有三个形成时期,分别与三类形成模型效应;尽管对数正态初始质量的数值模拟初步结果与观测结果符合得更好,然而幂函数的初始质量谱在物理上能很好地与球状星团形成联系起来。  相似文献   

10.
Dynamical evolution of globular clusters in the Large Magellanic Cloud (LMC) is investigated by means of N-body simulations; particular attention is paid to time evolution in the ellipticitical figure of globular clusters. The simulations were started with a binary globular cluster. It merged into a single cluster with ellipticity of about 0.3. The simulations were continued until the cluster became rounder due to the effects of two body relaxation and of tidal field of LMC. It is found that the outward angular momentum transport due to the gravothermal contraction makes the inner region rounder; the ellipticity at about the initial half-mass radius (r h) decreases with the e-folding time of 20 relaxation times. On the other hand, the outer region becomes rounder due to the stripping of stars by the tidal field; the ellipticity at about 3r h decreases with the e-folding time of 80 crossing times therein, though the time scale depends on the direction of the tidal field relative to the spin of the cluster. These two effects are comparable at about the half-mass radius. Taking account of such theoretical results we reanalyzed observed data for the ellipticity at about the half-mass radius of LMC clusters. We estimated the relaxation time and crossing time for each of the observed clusters, from which we calculated the effective time of getting round of the cluster. We plotted the observed ellipticity of the clusters against their non-dimensional age — i.e., the age normalized by the effective time. We found that observed ellipticity distribution is consistent with our picture.  相似文献   

11.
We consider the large-scale collective motion of flat edge-on spiral galaxies from the Revised Flat Galaxy Catalogue (RFGC) taking into account the curvature of the space-time in the Local Universe at the scale 100h −1 Mpc. We analyse how the relativistic model of the collective motion should be modified to provide the best possible values of the parameters, the effects that impact these parameters and ways to mitigate them. Evolution of galactic diameters, selection effects, and the difference between isophotal and angular diameter distances are inadequate to explain this impact. At the same time, the measurement error in H i line widths and angular diameters can easily provide such an impact. This is illustrated by a toy model, which allows analytical consideration, and then in the full model using Monte Carlo simulations. The resulting velocity field is very close to that provided by the non-relativistic model of the collective galactic motion. The obtained bulk flow velocity is consistent with the ΛCDM cosmology.  相似文献   

12.
We study the mass distribution in six nearby  ( z < 0.06)  relaxed Abell clusters of galaxies A0262, A0496, A1060, A2199, A3158 and A3558. Given the dominance of dark matter in galaxy clusters, we approximate their total density distribution by the Navarro, Frenk & White (NFW) formula characterized by virial mass and concentration. We also assume that the anisotropy of galactic orbits is reasonably well described by a constant and that galaxy distribution traces that of the total density. Using the velocity and position data for 120–420 galaxies per cluster we calculate, after removal of interlopers, the profiles of the lowest order even velocity moments, dispersion and kurtosis. We then reproduce the velocity moments by jointly fitting the moments to the solutions of the Jeans equations. Including the kurtosis in the analysis allows us to break the degeneracy between the mass distribution and anisotropy and constrain the anisotropy as well as the virial mass and concentration. The method is tested in detail on mock data extracted from the N -body simulations of dark matter haloes. We find that the best-fitting Galactic orbits are remarkably close to isotropic in most clusters. Using the fitted pairs of mass and concentration parameters for the six clusters, we conclude that the trend of decreasing concentration for higher masses found in the cosmological N -body simulations is consistent with the data. By scaling the individual cluster data by mass, we combine them to create a composite cluster with 1465 galaxies and perform a similar analysis on such sample. The estimated concentration parameter then lies in the range  1.5 < c < 14  and the anisotropy parameter in the range  −1.1 < β < 0.5  at the 95 per cent confidence level.  相似文献   

13.
We have made a comparative study of morphological evolution in simulated dark matter (DM) haloes and X-ray brightness distribution, and in optical clusters. Samples of simulated clusters include star formation with supernovae feedback, radiative cooling and simulation in the adiabatic limit at three different redshifts,   z = 0.0, 0.10  and 0.25. The optical sample contains 208 Abell, Corwin & Olowin (ACO) clusters within redshift,   z ≤ 0.25  . Cluster morphology, within 0.5 and 1.0 h −1 Mpc from cluster centre, is quantified by multiplicity and ellipticity.
We find that the distribution of the DM haloes in the adiabatic simulation appears to be more elongated than the galaxy clusters. Radiative cooling brings halo shapes in excellent agreement with observed clusters; however, cooling along with feedback mechanism makes the haloes more flattened.
Our results indicate relatively stronger structural evolution and more clumpy distributions in observed clusters than in the structure of simulated clusters, and slower increase in simulated cluster shapes compared to those in the observed one.
Within   z ≤ 0.1  , we note an interesting agreement in the shapes of clusters obtained from the cooling simulations and observation. We also note that the different samples of observed clusters differ significantly in morphological evolution with redshift. We highlight a few possibilities responsible for the discrepancy in morphological evolution of simulated and observed clusters.  相似文献   

14.
The analysis of triaxial, coaxial ellipsoids with different intrinsic axial ratios initiated in a previous paper is extended here, introducing an intrinsic distribution of light for each shell.The general properties of this model are studied, considering the analytical solutions for the projection along a line-of-sight in three theoretical cases: (i) dust-free systems; (ii) dusty systems; (iii) luminous gaseous shells. The first case is then extended in order to predict some observable consequences.The observed properties of both an exponential and a power-law luminosity profile are compared with those of triaxial and axisymmetric systems. In addition, the variation of the central surface brightness and of the isophotal flattening at a fixed level with respect to the inclination of the Galaxy are analyzed.  相似文献   

15.
We present N -body simulations (including an initial mass function) of globular clusters in the Galaxy in order to study effects of the tidal field systematically on the properties of the outer parts of globular clusters. Using nbody6 , which correctly takes into account the two-body relaxation, we investigate the development of tidal tails of globular clusters in the Galactic tidal field. For simplicity, we have employed only the spherical components (bulge and halo) of the Galaxy, and ignored the effects of stellar evolution which could have been important in the very early phase of the cluster evolution. The total number of stars in our simulations is about 20 000, which is much smaller than the realistic number of stars. All simulations had been done for several orbital periods in order to understand the development of the tidal tails. In our scaled-down models, the relaxation time is sufficiently short to show the mass segregation effect, but we did not go far enough to see the core collapse, and the fraction of stars lost from the cluster at the end of the simulations is only ∼10 per cent. The radial distribution of extra-tidal stars can be described by a power law with a slope around −3 in surface density. The directions of tidal tails are determined by the orbits and locations of the clusters. We find that the length of tidal tails increases towards the apogalacticon and decreases towards the perigalacticon. This is an anti-correlation with the strength of the tidal field, caused by the fact that the time-scale for the stars to respond to the potential is similar to the orbital time-scale of the cluster. The escape of stars in the tidal tails towards the pericentre could be another reason for the decrease of the length of tidal tails. We find that the rotational angular velocity of tidally induced clusters shows quite different behaviour from that of initially rotating clusters.  相似文献   

16.
We have used 2D numerical simulations to study the evolution of galaxy cluster cooling flows undergoing a rotational perturbation. We show that such rotations in the intracluster medium may arise from cluster/subcluster mergers. Our galaxy cluster initial conditions involve spherically symmetric, steady-state cooling flows with varying mass-dropout strengths. The rotational perturbation serves to break the symmetry for each of the initial cooling flows, resulting in the formation of thin, gaseous disc-like structure extending radially out to ∼10 kpc. Disc-like structure formed for low mass-dropout strength simulations appears to contain cooling condensations whereas disc-like structure in higher mass-dropout strength simulations appears smooth. This is due to the influence of mass-dropout on the degree of cooling, which serves to reduce the strength of thermal instabilities by the removal of 'cold' gas from the flow. Morphological comparisons of the disc-like structure formed in our simulations are made to structure observed in the X-ray emitting gas of A4059. Comparisons of the gas dynamics within the disc-like structure are also made to the solid-body rotation profile observed from emission-line gas within the central galaxy of Hydra A. The influence of grid effects on the simulations is also discussed.  相似文献   

17.
The multiplicities of stars, and some other properties, were collected recently by Eggleton & Tokovinin, for the set of 4559 stars with Hipparcos magnitude brighter than 6.0 (4558 excluding the Sun). In this paper I give a numerical recipe for constructing, by a Monte Carlo technique, a theoretical ensemble of multiple stars that resembles the observed sample. Only multiplicities up to eight are allowed; the observed set contains only multiplicities up to seven. In addition, recipes are suggested for dealing with the selection effects and observational uncertainties that attend the determination of multiplicity. These recipes imply, for example, that to achieve the observed average multiplicity of 1.53, it would be necessary to suppose that the real population has an average multiplicity slightly over 2.0.
This numerical model may be useful for (i) comparison with the results of star and star cluster formation theory, (ii) population synthesis that does not ignore multiplicity above 2 and (iii) initial conditions for dynamical cluster simulations.  相似文献   

18.
We discuss prospects for cluster detection via the Sunyaev–Zel'dovich (SZ) effect in a blank field survey with the interferometer array, the Arcminute MicroKelvin Imager (AMI). Clusters of galaxies selected in the SZ effect probe cosmology and structure formation with little observational bias, because the effect measures integrated gas pressure directly, and does so independently of cluster redshift.
We use hydrodynamical simulations in combination with the Press–Schechter expression to simulate SZ cluster sky maps. These are used with simulations of the observation process to gauge the expected SZ cluster counts. Even with a very conservative choice of parameters we find that AMI will discover at least several tens of clusters every year with     the numbers depend on factors such as the mean matter density, the density fluctuation power spectrum and cluster gas evolution. The AMI survey itself can distinguish between these to some degree, and parameter degeneracies are largely eliminated given optical and X-ray follow-up of these clusters; this will also permit direct investigation of cluster physics and what drives the evolution.  相似文献   

19.
The oldest open clusters in our Galaxy set the lower limit to the age of the Galactic Disk (9–10 Gyr). Although they appear to be very rich now, it is clear that their primordial populations were much larger. Often considered as transitional objects, these populous open clusters show structural differences with respect to globular clusters so their dynamics and characteristic evolutionary time scales can also be different. On the other hand, their large membership lead to different dynamical evolution as compared with average open clusters. In this paper, the differential features of the evolution of rich open clusters are studied using N-body simulations, including several of the largest (104 stars) published direct collisional N-body calculations so far, which were performed on a CRAY YMP. The disruption rate of rich open clusters is analysed in detail and the effect of the initial spatial distribution of the stars in the cluster on its dynamics is studied. The results show that cluster life-time depends on this initial distribution, decreasing when it is more concentrated. The effect of stellar evolution on the dynamical evolution of rich clusters is an important subject that also has been considered here. We demonstrate that the cluster's life-expectancy against evaporation increases because of mass loss by evolving high-mass stars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We re-examine the formation of the inner Oort comet cloud while the Sun was in its birth cluster with the aid of numerical simulations. This work is a continuation of an earlier study (Brasser, R., Duncan, M.J., Levison, H.F. [2006]. Icarus 184, 59–82) with several substantial modifications. First, the system consisting of stars, planets and comets is treated self-consistently in our N-body simulations, rather than approximating the stellar encounters with the outer Solar System as hyperbolic fly-bys. Second, we have included the expulsion of the cluster gas, a feature that was absent previously. Third, we have used several models for the initial conditions and density profile of the cluster – either a Hernquist or Plummer potential – and chose other parameters based on the latest observations of embedded clusters from the literature. These other parameters result in the stars being on radial orbits and the cluster collapses. Similar to previous studies, in our simulations the inner Oort cloud is formed from comets being scattered by Jupiter and Saturn and having their pericentres decoupled from the planets by perturbations from the cluster gas and other stars. We find that all inner Oort clouds formed in these clusters have an inner edge ranging from 100 AU to a few hundred AU, and an outer edge at over 100,000 AU, with little variation in these values for all clusters. All inner Oort clouds formed are consistent with the existence of (90377) Sedna, an inner Oort cloud dwarf planetoid, at the inner edge of the cloud: Sedna tends to be at the innermost 2% for Plummer models, while it is 5% for Hernquist models. We emphasise that the existence of Sedna is a generic outcome. We define a ‘concentration radius’ for the inner Oort cloud and find that its value increases with increasing number of stars in the cluster, ranging from 600 AU to 1500 AU for Hernquist clusters and from 1500 AU to 4000 AU for Plummer clusters. The increasing trend implies that small star clusters form more compact inner Oort clouds than large clusters. We are unable to constrain the number of stars that resided in the cluster since most clusters yield inner Oort clouds that could be compatible with the current structure of the outer Solar System. The typical formation efficiency of the inner Oort cloud is 1.5%, significantly lower than previous estimates. We attribute this to the more violent dynamics that the Sun experiences as it rushes through the centre of the cluster during the latter’s initial phase of violent relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号