首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 939 毫秒
1.
Hala Lake is located in the Qilian Mountains, Qinghai Province, China, at 4,078?m a.s.l. Its sediments contain an archive of climate and hydrologic changes during the Late Quaternary, as it is located close to the area influenced by the East-Asian summer monsoon and westerly-driven air masses. Sedimentation patterns and depositional conditions within the lake were investigated using eight sediment cores from different water depths, and this information was used to evaluate the feasibility of using a single core to reconstruct past climate and hydrological conditions. Long core H7, from the center of the lake (65?m water depth) and core H8 from a western, near-shore location (20?m water depth), were compared in detail using sediment composition and geochemical data (X-ray fluorescence, loss-on-ignition and CNS analysis). Age models were constructed using 17 AMS radiocarbon dates and indicate negligible reservoir error for sediments from the lake center and?~1,000?year errors for the near-shore sediment core. Cores H1?CH5 and HHLS21-1 revealed a sediment succession from sand and silty clay to laminated clay on the southern side of the lake. Undisturbed, finely laminated sediments were found at water depths???15?m. Core H5 (2.5?m long), from 31?m water depth, yielded abundant green algal mats mixed with clayey lake deposits and was difficult to interpret. Algae occurred between 25 and 32?m water depth and influenced the dissolved oxygen content of the stratified lake. Comparison of cores H7 and H8 yielded prominent mismatches for different time periods, which may, in part, be attributed to internal lacustrine processes, independent of climate influence. We thus conclude that data from a single sediment core may lead to different climate inferences. Common shifts among proxy data, however, showed that major climate shifts, of regional to global significance, can be tracked and allow reconstruction of lake level changes over the last 24,000?years. Results indicate advance of glaciers into the lake basin during the LGM, at which time the lake experienced lowest levels, 25?C50?m below present stage. Stepwise refilling began at ca. 16 kyr BP and reached the ?25?m level during the B?lling/Aller?d warm phase, ca. 13.5 kyr BP. A desiccation episode falls within the Younger Dryas, followed by a substantial lake level rise during the first millennium of the Holocene, a result of climate warming, which promoted glacier melt. By ca. 7.6 kyr BP, the lake reached a stable high stand similar to the present level, which persisted until ca. 6 kyr BP. Disturbed sediments in core H7 indicate a single mass flow that was most likely triggered by a major seismic event?~8.5 kyr BP. Subsequent lake development remains unclear as a consequence of data mismatches, but may indicate a general trend to deteriorating conditions and lake level lowstands at ca. 5.0?C4.2, 2.0 and 0.5 kyr BP.  相似文献   

2.
We analysed a 620-cm-long sediment record from Lake Kotokel located in East Siberia (Russia) for subfossil diatoms, chironomids and pollen to provide a reconstruction of the climate history of the area for the last 12.2 kyr. The subfossil records show differing time lags in their responses to climate change; diatoms and chironomids were more sensitive to climate change than the pollen record. Changes in the biogenic proxies seem related with changes in insolation, the temperature of the North Atlantic and solar activity. The chironomids Chironomus plumosus-type and Einfeldia carbonaria-type and the diatom Aulacoseira granulata were interpreted as markers of warm climate condition. The proxy records were divided into four periods (A, B, C and D) suggesting differing climate in East Siberia during the Holocene. Period D (12.2–9.5 kyr BP) at the beginning of the Holocene, according to chironomid and diatom records, was characterized by warm climate with summer temperatures close to modern. However, forest vegetation had not become fully established yet. During Period C (9.5–5.8 kyr BP), the climate seemed to gradually become colder and wetter from the beginning of Period C to 7 kyr BP. From 7 to 5.8 kyr BP, the climate seemed to remain cold, but aridity increased. Period B (5.8–1.7 kyr BP) was characterised by frequent and sharp alternations between warm and cold conditions. Unstable conditions during this time are also registered in records from Lakes Baikal, Khubsugul and various other shallow lakes of the region. Optimal warm and wet conditions seemed to occur ca. 4 kyr BP. During Period A (the last 1.5 kyr) the diatom and chironomid records show evidence of cold conditions at 1.5–1 kyr BP, but the forest vegetation did not change significantly.  相似文献   

3.
Ostracode analysis was carried out on samples from ice-rich permafrost deposits obtained on the Bykovsky Peninsula (Laptev Sea). A composite profile was investigated that covers most of a 38-m thick permafrost sequence and corresponds to the last ca. 60 kyr of the Late Quaternary. The ostracode assemblages are similar to those known from European Quaternary lake deposits during cold stages. The ostracode habitats were small, shallow, cold, oligotrophic pools located in low centred ice wedge polygons or in small thermokarst depressions. In total, 15 taxa, representing 7 genera, were identified from 65 samples. The studied section is subdivided into six ostracode zones that correspond to Late Quaternary climatic and environmental stadial-interstadial variations established by other paleoenvironmental proxies: (1) cold and dry Zyrianian stadial (58–53 kyr BP); (2) warm and dry Karginian interstadial (48–34 kyr BP); (3) transition from the Karginian interstadial to the cold and dry Sartanian stadial (34–21 kyr BP); (4) transition from the Sartanian stadial to the warm and dry Late Pleistocene period, the Allerød (21–14 kyr BP); (5) transition from the Allerød to the warm and wet Middle Holocene (14–7 kyr BP); and (6) cool and wet Late Holocene (ca. 3 kyr BP). The abundance and diversity of the ostracodes will be used as an additional bioindicator for paleoenvironmental reconstructions of the Siberian Arctic.  相似文献   

4.
A 5.52 m long sediment sequence was recovered from Lake Terrasovoje, Amery Oasis, East Antarctica, in order to reconstruct the regional environmental history. The basal sediments, which are dominated by glacial and glaciofluvial clastic sediments, attest to a Late Pleistocene deglaciation of the lake basin. These sediments are overlain by 2.70 m of laminated algal and microbial mats and a few interspersed moss layers. Radiocarbon dating, conducted on bulk organic carbon of 12 samples throughout the organic sequence, provides a reliable chronology since the onset of biogenic accumulation at c. 12,400 cal. year BP. Successful diatom colonization, however, was probably hampered by extensive ice and snow cover on the lake and restricted input of nutrients until 10,200 cal. year BP. A subsequent increase of nutrient supply culminated between 8600 and 8200 cal. year BP and is related to warm summer temperatures and reduced albedo in the catchment. Warm conditions lasted until 6700 cal. year BP, supporting the establishment of a diatom community. Colder temperatures from 6700 cal. year BP culminated in several periods between 6200 and 3700 cal. year BP, when high amounts of sulphur and low abundances of diatoms were deposited due to a perennial ice and snow cover on the lake. During the late Holocene, relatively warm conditions between 3200 and 2300 cal. year BP and between 1500 to 1000 cal. year BP, respectively, indicated by high accumulation of organic matter and reducing bottom water conditions, were interrupted and followed by colder periods.  相似文献   

5.
通过对太湖北部钻孔沉积物地球化学元素的测试分析,可以很好的反演太湖8 000年来沉积环境演变,大体可以分为4个阶段:1)8.0~6.6 kyr BP气候温暖湿润阶段;2)6.6~2.6 kyr BP气候趋冷及频繁波动阶段;3)2.6~1.5 kyr BP气候回暖阶段;4)1.5 kyr~现在,气候再次快速变冷阶段。认为两次暖湿阶段指示近8 000年来东亚季风两次明显的加强,此变化导致长江中下游湖泊在全新世期间两次明显的高水位期。  相似文献   

6.
The post-glacial history of the Great Lakes has involved several changes in lake levels throughout the latest Pleistocene and Holocene, resulting from the changing position of the retreating Laurentide ice sheet, outlet incision and isostatic rebound. The final lowering of lake levels occurred at approximately 7600 14C yr BP, after which lake levels began to rise again to the Nipissing highstand at approximately 4700 14C yr BP. During this time of rising lake levels, black bands of iron sulfide were being formed in the sediments of all five of the Great Lakes. These bands signify suboxic to anoxic conditions, at least within the sediments and possibly at the sediment-water interface, during the middle Holocene warm interval. During this interval, the climate was warmer and drier than present, possibly resulting in the occasional absence of seasonal turnover in the lakes. We examined a series of piston cores from northern Lakes Michigan and Huron and found that the black bands are correlatable among cores taken from within the same basin. The observation that the banding can be correlated suggests a basin-wide cause, near-bottom or sub-bottom anoxia in the northern Michigan and northern Huron sediments during the mid-Holocene warm period. The sedimentary and geochemical processes in the Great Lakes during the middle Holocene warm interval are good indicators of possible future scenarios for the lakes as a result of global warming, as 21st-century temperatures are predicted to reach similar levels due to increased concentrations of greenhouse gases.  相似文献   

7.
Geochemical data obtained from X-ray fluorescence, physical properties, total organic and inorganic carbon content (TOC/TIC), and diatom analysis from a 6.61-m-long sedimentary sequence near the modern northern shore of Lake Zirahuen (101° 44′ W, 19° 26′ N, 2000 m asl) provide a reconstruction of lacustrine sedimentation during the last approximately 17 cal kyr BP. A time scale is based on ten AMS 14C dates and by tephra layers from Jorullo (AD 1759-1764) and Paricutin (AD 1943-1952) volcanoes. The multiproxy analyses presented in this study reveal abrupt changes in environmental and climatic conditions. The results are compared to the paleo-record from nearby Lake Patzcuaro. Dry conditions and low lake level are inferred in the late Pleistocene until ca. 15 cal kyr BP, followed by a slight but sustained increase in lake level, as well as a higher productivity, peaking at ca. 12.1 cal kyr BP. This interpretation is consistent with several regional climatic reconstructions in central Mexico, but it is in opposition to record from Lake Patzcuaro. A sediment hiatus bracketed between 12.1 and 7.2 cal kyr BP suggests a drop in lake level in response to a dry early Holocene. A deeper, more eutrophic and turbid lake is recorded after 7.2 cal kyr BP. Lake level at the coring site during the mid Holocene is considered the highest for the past 17 cal kyr BP. The emplacement of the La Magueyera lava flows (LMLF), dated by thermoluminiscence at 6560 ± 950 year, may have reduced basin volume and contributed to the relative deepening of the lake after 7.2 cal kyr BP. The late Holocene (after 3.9 cal kyr BP) climate is characterized by high instability. Extensive erosion, lower lake levels, dry conditions and pulses of high sediment influx due to high rainfall are inferred for this time. Further decrease in lake level and increased erosion are recorded after ca. AD 1050, at the peak of Purepechas occupation (AD 1300–1521), and until the eighteenth century. Few lacustrine records extend back to the late Pleistocene—early Holocene in central Mexico; this paper contributes to the understanding of late Pleistocene-Holocene paleoclimates in this region.  相似文献   

8.
Two sediment cores of 70 and 252 cm length were recovered from Hjort Sø, a small lake on Store Koldewey, Northeast Greenland, and studied with a multidisciplinary approach in order to reconstruct the local environmental history and to test the relevance of proxies for paleoenvironmental information. The basal sediments from the longer core are dominated by clastic matter, which was likely deposited during deglaciation of the lake basin. These clastic sediments are overlain by gyttja, which is also present throughout the shorter core. AMS radiocarbon dating was conducted on plant macrofossils of 11 samples from the gyttja in both cores. A reliable chronology was established for both cores, which dated the onset of organic accumulation at 9,500 cal. year BP. The Holocene temperature development, with an early to mid Holocene thermal maximum, is best reflected in the grain-size composition. Nutrient availability was apparently low during the early Holocene and led to low productivity in the lake and its vicinity. From ca. 7,000 cal. year BP, productivity in the lake increased significantly, probably induced by external nutrient input from goose excrements. From this time, micro- and macro-fossil remains reflect relatively well the climate history of East Greenland, with a cooling during the middle Holocene, the medieval warming, and the Little Ice Age. The amount of organic matter in the sequence seems to be more affected by lake ice cover or by nutrient supply from the catchment than by temperature changes. The record from Hjort Sø thus reveals the difficulties in interpreting sedimentary records from high arctic regions.  相似文献   

9.
A 12.87-m-long sediment core was retrieved from closed-basin Lake Daihai in the monsoon–arid transition zone of north-central China. Oxides of major elements and their ratios normalized to Al in the AMS-14C-dated core were employed to evaluate chemical weathering intensity (CWI) in the lake drainage basin, which reflects hydrothermal conditions in the study area. Lower CWI periods occurred prior to 14.5 ka BP, and during the intervals ca. 11.7–10.3, 3.5–3.2, 2.6–1.7 ka BP, and 1.2–0 ka BP, indicating relatively low temperatures and moisture availability. Greater CWI during the intervening periods ca. 14.5–11.7, 10.3–9.0, 3.2–2.6, and 1.7–1.2 ka BP, with the maximum CWI at ca. 6.7–3.5 ka BP, imply ameliorated hydrothermal conditions in the lake basin, i.e. higher temperatures and precipitation. Exceptionally low CWI, associated with high CaO/MgO ratio during ca. 9.0–6.7 ka BP, suggests higher evaporation rates in the area under warmer temperature. Overall, CWI displays in-phase variations with changes in organic matter (TOC, TN), carbonate (CaCO3) and pollen assemblages, all of which are related to variations in monsoon effective precipitation. High CWI indicates strong monsoon-induced precipitation, whereas low CWI reflects a weak precipitation regime. The optimum hydrothermal status, recorded by the strongest CWI and maximum monsoon effective precipitation during ca. 6.7–3.5 ka BP defines the Holocene climate optimum (HCO) in the Lake Daihai region. These results indicate that the HCO prevails after the early Holocene in the monsoon–arid transition zone of north-central China. Temperature and precipitation variations during most of the Holocene, inferred from the lake sediments, are due largely to insolation forcing. Dry but warm conditions ca. 9.0–6.7 ka BP, however, probably reflect the complex interactions between insolation and geography (e.g. altitude and local topography).  相似文献   

10.
We studied mineral magnetic properties of a 6-m-long, late Pleistocene through Holocene sediment sequence from Lake Aibi in Dzungaria (Zunggary, Junggar), northern Xinjiang, China. Results were used to infer environmental changes and are compared with previously studied cores from Lake Manas. Both water bodies occupy the deepest parts of the Dzungarian Basin and are remnants of large Holocene lakes. During the Late Pleistocene, the magnetic mineralogy in both lakes was dominated by detrital, iron oxide minerals. Oxic conditions, which dominated during sedimentation and early diagenesis, persisted over the Pleistocene–Holocene transition. Later, during the middle Holocene, lake bottom conditions enabled authigenic formation of iron sulphide minerals such as pyrite (FeS2) in Lake Aibi, and pyrite and greigite (Fe3S4) in Lake Manas. This iron sulphide mineralogy suggests increased biological activity in stagnant, anoxic bottom waters. Anoxic bottom conditions started about 9.8 cal kyr BP in Lake Manas and at about 7.2 cal kyr BP in Lake Aibi. A short dry event recorded in Lake Manas between 6.8 and 5.2 cal kyr BP is not clearly observed in Lake Aibi. In the late Holocene, i.e. the last 2.8 cal kyr, sediments of both lakes are again characterised by iron oxides, suggesting well-mixed, shallow water bodies. For this recent period, it seems that the detrital material in the two lakes had a common origin. Magnetic properties of sediments in Lakes Aibi and Manas show broadly similar environmental evolution during the late Pleistocene and Holocene. Nevertheless, despite the close proximity of the two lakes (~200 km) in the same basin, they display some different magnetic properties and record environmental changes at different times.  相似文献   

11.
The Bunger Hills in East Antarctica occupy a land area of approximately 400 km2. They have been exposed by Holocene retreat of the Antarctic ice sheet and its outlet glaciers. The accompanying sea level rise flooded the marine inlets that now separate the northern islands and peninsulas from the major part of the hills. During deglaciation the continental ice sheet margin retreated south‐eastwards with several temporary halts, during which ice‐dammed lakes were formed in some valleys. These lakes were maintained long enough to permit formation of beaches of sand and gravel, and for the erosion of shore platforms and low cliffs in bedrock. Around the western end of Fish Tail Bay impressive shoreline features 20 m above sea level define a former ice‐dammed lake that was 5.5 km long. A similar 7 km long former ice‐dammed lake was formed at Lake Dolgoe. The more extensive and deeper glacial lake is revealed by well‐developed and preserved shoreline features cut at 29 m which is 16 m above present lake level. In addition, several small ice‐dammed lakes existed temporarily near Lake Shchel and in the valley to the west. Lake Fish Tail existed more than 6,900 14C years ago and Lake Shchel probably more than 6,680 14C years ago. It is inferred that the shore platforms and beaches were formed by lake ice and wave action over considerable periods when the lakes were impounded by steep cold ice margins. There appears to have been a balance between meltwater input and evaporative loss from the lakes in the cold dry continental climate. There is no evidence for rapid lake level fluctuations, and there was very little input of clastic sediment. This resulted in poor development of deltaic and rhythmically laminated lake floor deposits. It is suggested that such deposits are more characteristic of ice‐dammed lakes formed in association with wet‐based temperate ice than those associated with dry‐based polar ice.  相似文献   

12.
ABSTRACT. Initial cosmogenic 10Be results from a former ice limit in Torres del Paine indicate a shortlived stillstand or readvance of Patagonian ice culminating at 12–15 kyr BP with a mean age of 13.2 ± 0.8 kyr BP. The glacier extended some 40 km beyond the present ice margin and was within 15 km of the presumed Last Glacial Maximum limits. The timing of the glacier stage spans the cooling event recorded in Antarctic ice cores, termed the Antarctic Cold Reversal (14.5–12.9 kyr BP). This result implies that glaciers at these latitudes were out of phase with those in the northern hemisphere; instead they mirrored the climate structure of Antarctica during the last glacial to interglacial transition.  相似文献   

13.
东南极拉斯曼丘陵地区莫愁湖(69°22.3’ S,76°22.0’ E)沉积柱中的有机生物标志物记录了全新世中晚期该地区气候演变过程。不饱和长链烯酮在沉积柱111-76 cm (6450-5100 cal. yr. BP)和36-30 cm(3700-3500 cal. yr. BP)深度有检出,76 cm深度以上基本消失,表明该地区在5100 cal. yr. BP前后气候开始由冷转暖,冰川消融,陆壳抬升,相对海平面下降,同时大量的冰融水使湖泊逐渐淡化。沉积柱底部长链烯酮的检出阶段与东南极相对海平面较高时期相一致,而沉积柱36-30 cm(3700-3500 cal. yr. BP)深度不饱和长链烯酮的痕量检出则揭示了一个短暂的气候干冷,湖泊盐度升高的时期。沉积物中正构烷烃反映的当地气候变化所控制的湖生植物群落演变过程与上述过程基本一致。  相似文献   

14.
Fossil diatoms were analysed from a 10.3 m core from Harris Lake, Cypress Hills, Saskatchewan, and a diatom-salinity transfer function was used to construct a history of Holocene salinity changes for the lake. The diatom paleosalinity record indicates that Harris Lake remained fresh <0.5 g l-1 throughout the Holocene, with only slight increases in salinity between approximately 6500 and 5200 years BP. This interval corresponds to the only period in the lake's history when planktonic diatoms were abundant; benthic Fragilaria taxa, mainly F. pinnata, F. construens and F. brevistriata were dominant throughout most of the Holocene. The shift from a benthic to a planktonic diatom flora between 6500 and 5200 years BP may be an indirect response to a warmer climate that reduced forest cover in the watershed and allowed greater rates of inorganic sedimentation. The small salinity increase that accompanies the floristic change is probably not the result of lower lake levels; in fact the lake was probably deeper at this point than in the later Holocene. This paleosalinity record indicates that Harris Lake did not experience episodes of hypersalinity during the mid-Holocene, as suggested by a previous study, and that the lake may have been fresh during the early Holocene as well.  相似文献   

15.
Pollen and diatoms preserved in the radiocarbon dated sediments of Two Frog Lake in the Seymour-Belize Inlet Complex of the central mainland coast of British Columbia document postglacial climate change. Two Frog Lake was isolated from the sea prior to 11,040 ± 50 yr BP (13,030 cal. yr BP) when the climate was cool and dry, and open Pinus contorta woodlands covered the landscape. These woodlands were replaced by a mixed conifer forest ca. 10,200 yr BP (ca. 12,300 cal. yr BP) when the climate became moister. A relatively dry and warm early Holocene climate allowed Pseudotsuga menziesii to migrate northward to this site where it grew with Picea, Tsuga heterophylla and Alnus. The climate became cooler and moister at ca. 8,000 yr BP (ca. 9,200 cal. yr BP), approximately 500–1,000 years prior to sites located south of Two Frog Lake and on the Queen Charlotte Islands, but contemporary with sites on the northern mainland coast of British Columbia and south coastal Alaska. Climate heterogeneity in central coastal British Columbia appears to have occurred on a synoptic scale, suggesting that atmospheric dynamics linked to a variable Aleutian Low pressure system may have had an important influence on early Holocene climate change in the Seymour-Belize Inlet Complex. The transition to cooler and moister conditions facilitated the expansion of Cupressaceae and the establishment of a modern-type coastal temperate rainforest dominated by Cupressaceae and T. heterophylla. This was associated with progressive lake acidification. Diatom changes independent of vegetation change during the late Holocene are correlative with the mid-Neoglacial period, when cooler temperatures altered diatom communities.  相似文献   

16.
The ca. 13 m long sediment core PG1351, recovered in 1998 from the central part of Lake El’gygytgyn, NE Siberia, was investigated for lithostratigraphy, water content, dry bulk density (DBD), total organic carbon (TOC), total nitrogen (TN), total sulphur (TS) and biogenic silica (opal) contents, and for TOC stable isotope ratios (δ13CTOC). The event stratigraphy recorded in major differences in sediment composition match variations in regional summer insolation, thus confirming a new age model for this core, which suggests that it spans the last 250 ka BP. Four depositional units of contrasting lithological and biogeochemical composition have been distinguished, reflecting past environmental conditions associated with relatively warm, peak warm, cold and dry, and cold but more moist climate modes. A relatively warm climate, resulting in complete summer melt of the lake ice cover and seasonal mixing of the water column, prevailed during the Holocene and Marine Isotope Stages (MIS) 3, 5.1, 5.3, 6.1, 6.3, 6.5, 7.1–7.3, 7.5, 8.1 and 8.3. MIS 5.5 (Eemian) was characterized by significantly enhanced aquatic primary production and organic matter supply from the catchment, indicating peak warm conditions. During MIS 2, 5.2, 5.4, 6.2 and 6.4 the climate was cold and dry, leading to perennial lake ice cover, little regional snowfall, and a stagnant water body. A cold but more moist climate during MIS 4, 6.6, 7.4, 8.2 and 8.4 is thought to have produced more snow cover on␣the perennial ice, strongly reducing light penetration and biogenic primary production in␣the lake. While the cold–warm pattern during␣the past three glacial–interglacial cycles is probably controlled by changes in regional summer insolation, differences in the intensity of the warm phases and in the degree of aridity (changing snowfall) during cold phases likely were due to changes in atmospheric circulation patterns. This is the seventh in a series of eleven papers published in this special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. JulieBrigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

17.
Four cores (ranging between ca. 9 and ca. 14 m in length) from Lago di Albano in Central Italy were studied for their ostracod content, as well as algal and bacterial pigments, CaCO3 and concentration of organic matter. Cores PALB 94 1E and PALB 94 1C from Site 1, located at the bottom of a steep slope at 70 m water depth, where oxygen concentration is below 6 mg l-1, spans the Holocene and the late Pleistocene until 28 kyr B.P. (calibrated age). The other cores, PALB 94 6A and PALB 94 6B taken at a depth of 30 m, where oxygen is 7--11 mg l-1, represent mainly Pleistocene deposits.Ostracod valves were found in the lowermost ca. 3 m of the sequence at Site 1, dated to ca. 28--24 kyr B.P., and throughout the sequence from Site 6 which represents the interval 23--17 kyr B.P.Candona neglecta is the dominant species in most of the levels at Site 1, whereas both C. neglecta and Cyclocypris sp. dominate during different biostratigraphic zones at Site 6. The influx of springs entering the lake at Site 1 was inferred on the basis of species of the genus Potamocypris and Ilyocypris bradyi present in the record. Wide fluctuations in species abundance and assemblages in both coring sites indicate lake-water level oscillations between 28 to 17 kyr B.P. In particular, a strong rise in water level of the order of 40 m occurred between 24 and 23 kyr B.P. Fluctuations in productivity, oxygen availability and water temperature at both sites were also reconstructed on the basis of the ostracod assemblages and the algal and bacterial pigment concentrations. The environmental reconstruction reached using ostracod remains and pigments was verified with other proxy records published elsewhere such as invertebrate remains, diatoms, magnetic properties, etc. A synthesis of climatic reconstructions for Central and Southern Italy for the late Full Glacial is attempted on the basis of previous studies on hydrology, lithostratigraphy and palynology. Sharp fluctuations in lake palaeoproductivity/palaeoclimate recorded by invertebrate and pigment remains at both sites from Lago di Albano might be related to similar events reported in North Atlantic Full-Glacial records from marine and ice cores.  相似文献   

18.
The Holocene environmental history and climate are reconstructed for Råtåsjøen, a low-alpine lake in south-central Norway. The reconstructions are based on chironomids, diatoms, pollen, plant macrofossils, and sediment characteristics. From plant macrofossil evidence, birch trees (Betula pubescens) immigrated ca. 10,000 cal BP. The chironomid-inferred mean July air temperature was high, but may be unreliable during the early stages of the lakes history due to the high abundance of Chironomus anthracinus type, a taxon that may include several species. From ca. 9000 cal BP the inferred mean July temperature was lower (ca. 9 °C). Temperatures increased towards 8000 cal BP and pine (Pinus sylvestris) reached its upper limit near the lake. July temperature may have become a significant factor controlling long-term pH in the lake, starting shortly after 8000 cal BP. High pH values were associated with periods of warm summers and lower pH values occurred during periods of colder summers. Alkalinity processes within the lake and/or the catchment are possible factors controlling this relationship. A temperature decline at ca. 5400 cal BP separated two 10.6 °C temperature maxima around 6400 and 4500 cal BP. The 1.5 °C decline in July air temperatures from ca. 4400 cal BP was paralleled by a decrease of pH from 7.2 to 6.8. Following the temperature drop, first pine and then birch trees declined and disappeared from the catchment and organic accumulation in the lake increased. The increased organic accumulation rate had a positive effect on diatom production. At ca. 2700 cal BP the temperature reached a minimum (ca. 9.2 °C) and correspondingly a second pH minimum was reached. Temperature decreased again slightly at ca. 400 cal BP during the Little Ice Age, before increasing by about 0.5 °C towards the present. Percentage organic carbon as estimated by loss-on-ignition appears to be better correlated with chironomid-inferred July temperatures than organic accumulation rates, at least for the last 9000 years. Accumulation rates of organic sediments are more coupled with catchment-related processes, such as erosion and major changes in vegetation, than is percentage organic carbon.  相似文献   

19.
A continuous, 1,420-cm sediment record from Lake Pupuke, Auckland, New Zealand (37°S) was analysed for diatom taxonomy, concentration and flux. A New Zealand freshwater diatom transfer function was applied to infer past pH, electrical conductivity, dissolved reactive phosphorus and chlorophyll a. A precise, mixed-effect regression model of age versus depth was constructed from 11 tephra and 13 radiocarbon dates, with a basal age of 48.2?cal kyr BP. Diatom-inferred changes in paleolimnology and climate corroborate earlier inferences from geochemical analyses (Stephens et al. 2012), with respect to the timing of marked climate changes in the Last Glacial Coldest Phase (LGCP; 28.8?C18.0?cal kyr BP), the Last Glacial Interglacial Transition (LGIT; 18.0 to ca. 12?C10?cal kyr BP) and the Holocene, the onset of which is difficult to discern from LGIT amelioration, but which includes an early climatic optimum (10.2?C8.0?cal kyr BP). The LGCP is readily defined by a reduction in lake level and effective precipitation, whereas the LGIT represents a period of rising lake level, with greater biomass during the Holocene. There was limited change in diatom assemblage structure, influx or inferred water quality during a Late Glacial Reversal (LGR; 14.5?C13.8?cal kyr BP), associated with heightened erosional influx. In contrast, an LGIT peak in paleoproductivity is recorded by increased diatom influx from 13.8 to 12.8?cal kyr BP. Changes in sediment influx and biomass record complex millennial-scale events attuned to the Antarctic Cold Reversal (ACR; 14.5?C12.8?cal kyr BP). Additional millennial-scale environmental change is apparent in the Holocene, with marked changes in lake circulation beginning at 7.6?cal kyr BP, including the onset of seasonal thermal stratification and rapid species turnover at 5.7?cal kyr BP. The most rapid diatom community turnover accompanied widely varying nutrient availability and greater seasonality during the last 3.3?cal kyr. Rising seasonality appears to have been linked to strengthened Southern Westerlies at their northern margins during the middle and late Holocene.  相似文献   

20.
Fairfax Lake is a small, oligotrophic to mesotrophic headwater lake situated in the Foothills of the Rocky Mountains of west-central Alberta (Latitude 52° 58 N; Longitude 116° 34 W). Through acquisition of a sediment core, and analyses of the diatoms, chrysophyte stomatocysts, pollen and sedimentary pigments, including myxoxanthophyll and oscillaxanthin, a palaeoenvironmental history of the lake has been determined. The sedimentary record spans ca. 13 200 years. An open tree-less vegetation existed in the region ca. 13 200–ca. 11 600 years BP. Maximum oscillaxanthin and myxoxanthophyll concentrations, hence the largest blue-green algal populations, occurred during the same interval. With increasing temperature pioneering parkland vegetation appeared ca. 11 600 years BP but was replaced ca. 10 100 years BP by spruce forest. Pine appeared ca. 7800 years BP and this marked the development of the present day montane boreal forest. Diatoms were not found until ca. 11 255 years BP. Benthic taxa dominated but by ca. 10 100 years BP planktonic taxa had become more prominent. Lake levels are interpreted as having risen, and the lake water was probably more transparent. Maximum chlorophyll and total carotenoid concentrations occur ca. 11 255 to ca. 7000 years BP corresponding to the warm early to mid-Holocene period. Lake nutrient levels appear to have been higher prior to ca. 7000 years BP, and the lake has changed from being eutrophic during the early Holocene to its present status as an oligotrophic to mesotrophic lake. Subtle hydrological changes have also occurred in the catchment as water levels do not appear to have remained constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号