首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 410 毫秒
1.
1IntroductionThe oceanic Rossby waves play an importantrole in the large-scale oceanic circulations.In the o-ceans baroclinic Rossby waves have surface manifes-tations of just a fewcentimeters,and wavelengths atmid-latitudes of hundreds to thousands of ki…  相似文献   

2.
利用1992年10月22日-2001年7月17日扣除年循环的T/P和ERS-1/-2的卫星融合高度计资料,应用二维Radon变换方法,对太平洋和大西洋的洋盆东部、西部的大洋Rossby波的纬向传播速度进行了分析与对比,并将二者分别与经典线性理论值比较,得出洋盆西部的Rossby波普遍比洋盆东部传播要快;中纬度海域大洋Rossby波的传播速度观测值与理论值的比率小于前人结果;并且在热带及副热带海域,大洋Rossby波的传播速度的观测值要低于理论值的结论。  相似文献   

3.
Using hydrographic data of three extended zonal sections, which cover the upper 1000 dbar layer along 10°, 21°, and 32°N in the North-East Atlantic between 20° and 45°W, observational evidence is presented for zonal wavelengths of resonantly excited, first mode, long, baroclinic Rossby waves. The amplitudes of associated anomalies in the mass field decrease with increasing offshore distance. The associated zonal wavelengths reach several hundred kilometres and decrease with increasing latitude. Due to the Rossby dispersion, the detected wave patterns slowly propagate westward, somewhat faster in the south than in the north. The results obtained confirm the data sets remotely sensed by satellites, as well as the outcomes of analytical and numerical models.  相似文献   

4.
The interannual variations of sea level at Chichi-jima and five other islands in the subtropical North Pacific are calculated for 1961–95 with a model of Rossby waves excited by wind. The Rossby-wave forcing is significant east of 140°E. Strong forcing of upwelling (downwelling) Rossby wave occurs during El Niño (La Niña) and warm (cold) water anomaly in the eastern equatorial Pacific. The first and second baroclinic modes of Rossby wave are more strongly generated than the barotropic mode in the study area. A higher vertical mode of Rossby wave propagates more slowly and is more decayed by eddy dissipation. The best coefficient of vertical eddy dissipation is determined by comparing the calculated sea level with observation. The variation in sea level at Chichi-jima is successfully calculated, in particular for the long-term change of the mean level between before and after 1986 with a rise in 1986 as well as the variations with periods of two to four years after 1980. It is concluded that variations of sea level at Chichi-jima are produced by wind-forced Rossby waves, the first baroclinic wave primarily and the barotropic wave secondly. The calculation for other islands is less successful. Degree of the success in calculation almost corresponds to a spatial difference in quantity of wind data, and seems to be determined by quality of wind data.  相似文献   

5.
Rossby波对菲律宾以东太平洋海平面年际变化的影响研究   总被引:1,自引:0,他引:1  
采用能够反映斜压大洋对大尺度海表面风应力旋度响应的一层半约化重力模式研究菲律宾以东太平洋海区Rossby波与海平面年际变化的关系.模式分别利用海区东侧验潮站和卫星高度计海表面数据作初始东边界,对Rossby波西传路径上的风应力旋度进行积分,得到西侧海平面信号.结果发现,模拟的海平面信号跟验潮站和卫星高度计资料相关性很高,并能模拟出海平面年际变化特征和低(高)异常信号由东侧产生并向西传播的过程,反映了一阶斜压Rossby波对菲律宾以东太平洋海区年际海平面变化的动力机制.  相似文献   

6.
During the IOP (Intensive Observation Period) of TOGA/COARE (Tropical Ocean and Global Atmosphere/Coupled Ocean Atmosphere Response Experiment) from December 1992 to February 1993, four Japanese moored ADCPs (Acoustic Doppler Current Profilers) measured vertical profiles of three-component velocities at the stations 2S (2°S, 156°E), 2N (2°N, 156°E), 154E (0°N, 154°E) and 147E (0°N, 147°E). Power spectra of the surface current showed a pronounced peak having a period of around 14 days for both the zonal and meridional velocities at the stations 2S and 2N near the equator, and for only the meridional velocity at the equator. This 14-day phenomenon is considered to be a kind of equatorial wave of the first baroclinic mode, from a comparison of the result of the vertical mode analysis and the vertical distribution of the standard deviation of band-pass filtered velocity fluctuations. A dispersion relationship obtained from the horizontal mode analysis of this wave confirmed that the 14-day phenomenon is a mixed Rossby-gravity wave with the westward propagating phase speed and eastward propagating group velocity. From the cross-spectral analysis of velocity data, the average phase speed and wavelength of the wave were estimated as 3.64 m s−1 and 3939 km, respectively, for station pair 2S∼147E. These values were in good agreement with the average phase speed and wavelength of 3.58 m s−1 and 3836 km estimated from the dispersion curve and the observed period. A northerly wind burst blew over all the mooring sites during the middle of the observation period. The mixed Rossby-gravity wave, which is anti-symmetric for the zonal velocity about the equator, is likely to be forced by this northerly wind burst crossing the equator. Generation of the oceanic mixed Rossby-gravity wave of the first baroclinic mode is discussed in association with the atmospheric Rossby wave having the same period.  相似文献   

7.
张永垂  张立凤 《海洋与湖沼》2013,44(6):1409-1417
根据海洋Rossby波的西传特性, 使用一阶斜压Rossby波模型对北太平洋海表面高度的年际变异进行了回报和预测研究。回报结果表明, Rossby 波模型能够较好地模拟北太平洋海表面高度的年际变异。尤其是黑潮延伸区的下游, 模拟结果与卫星观测的相关系数达到0.8以上。预测结果表明, Rossby 波模型在两个纬向分布的海域有显著的预报能力, 分别位于高纬度中部和副热带环流西部。前者可提前5—6年, 后者可提前2—4年。此外, 重点开展了Rossby波模型在西北太平洋的预报能力研究。结果表明, Rossby波模型对中国的边缘海有着很好的预测能力, 包括南海北部、台湾以东和东海黑潮海域, 分别在提前32、40和52个月时能取得最佳的预测效果。  相似文献   

8.
The combined and individual responses of the first and second baroclinic mode dynamics of the tropical Indian Ocean to the well-known Indian Ocean Dipole mode (IOD) wind anomalies are investigated. The IOD forced first baroclinic Rossby waves arrive at the western boundary in three months, while the reflected component from the eastern boundary with opposite phase arrives in five to six months, both carry input energy to the west. The inclusion of the second baroclinic mode slows down the wave propagation by mode coupling and stretches the energy spectrum to a relatively longer time scale. The total energy exists in the equatorial wave guide for at least five months from the forcing, as much as 10% of that of the atmospheric input, which mainly dissipates at the western boundary. The individual responses of the ocean to IOD interannual wind anomaly show that the significant modes of oceanic anomalies are confined to a wave guide of 10° on either side of the equator.  相似文献   

9.
Transmission and reflection coefficients are calculated for Rossby waves incident on a bottom topography with constant slope in a continuously stratified ocean. The characteristics of the coefficients are interpreted in terms of the quasigeostrophic waves on the slope. In the parameter range where only the barotropic Rossby waves can propagate in the region outside the slope, the bottom trapped wave plays the same role as the topographic Rossby wave in a homogeneous ocean, and hence the transmission is weak unless phase matching takes place. When both of the barotropic and baroclinic Rossby waves can propagate outside the slope, the total transmission can be strong. The bottom trapped wave affects the transmission and reflection, and it leads to the possibility that the Rossby wave is transmitted as a mode different from the incident mode. When the number of the wavy modes on the slope is smaller than that of the Rossby wave modes outside the slope, strong reflection occurs.The results for an ocean with linear distribution of the squared Brunt-Väisälä frequency are compared to those in a uniformly stratified ocean. The weakening of the stratification near the bottom is almost equivalent to reducing the effect of the slope.  相似文献   

10.
Numerical experiments with a multi-level general circulation model have been performed to investigate basic processes of westward propagation of Rossby waves excited by interannual wind stress forcing in an idealized western North Pacific model with ocean ridges. When the wind forcing with an oscillation period of 3 years is imposed around 180°E and 30°N, far from Japan, barotropic waves excited by the wind can hardly cross the ridges, such as the Izu-Ogasawara Ridge. On the other hand, a large part of the first-mode baroclinic waves are transmitted across the ridges, having net mass transport. The propagation speed of the first-mode baroclinic wave is accelerated (decelerated) when an anticyclonic (cyclonic) circulation is formed at the sea surface, due to a deeper (shallower) upper layer, and to southward (slightly northward) drift of the circulation. Thus, when the anticyclonic circulation is formed on the northern side of the cyclonic one, they propagate almost together. The second-mode baroclinic waves converted from the first-mode ones on the ridges arrive south of Japan, although their effects are small. The resulting volume transport variation of the western boundary current (the Kuroshio) reaches about 60% of the Sverdrup transport variability estimated from the wind stress. These characteristics are common for the interannual forcing case with a longer oscillation period. In the intraseasonal and seasonal forcing cases, on the other hand, the transport variation is much smaller than those in the interannual forcing cases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The satellite altimeter data reveal that intraseasonal long Rossby wave is amplified in the western part of subtropical ocean. Based on a two and half layer ocean model we infer that the intraseasonal long Rossby wave may be amplified by the baroclinic instability. According to the baroclinic instability criterion derived from the two and half layer model, we calculate the baroclinic instability area of the Subtropical North Pacific Ocean based on Levitus98 data. The baroclinic instability area is well in accord with the amplification area of the intraseasonal long Rossby wave, and this also proves that the baroclinic instability is the main amplification mechanism of the intraseasonal long Rossby wave in the subtropical ocean. The consistency between the baroclinic instability area and potential vorticity (PV) pool is further proved in this paper, therefore, we have confidence that the intraseasonal long Rossby wave is amplified in the PV pool. Due to the relatively large ocean basin and weak ventilation, the PV pool is much larger in the North Pacific Ocean than in the North Atlantic Ocean, and this is the reason for the difference of wave amplification areas of these two Oceans.  相似文献   

12.
The sea surface height anomaly in the Pacific equatorial area was separated into equatorial modes using satellite altimeter data. The power-spectral density (PSD) was obtained for the east-west wavenumber and frequency for each separated mode. The PSD distribution was compared with the theoretical dispersion curve for the equatorial modes derived by Matsuno (1966). The first Rossby modes have a high-density distribution that is slightly lower than the theoretical dispersion curve, but the Kelvin mode and the higher Rossby modes have high-density distribution that almost matches each dispersion curve. Results of analyses of satellite observational data show that wave motion near the equator mainly shows characteristics of equatorial waves, especially for a intraseasonal time scale.  相似文献   

13.
Field measurements during the Bay of Bengal Monsoon Experiment (BOBMEX-99), data from a deep sea moored buoy, and satellite altimeter were used to describe variability in the hydrographic and meso-scale features in the Bay of Bengal (BoB) during the summer monsoon of 1999. The thermohaline fields showed two regions of upsloping of isopleths centered at 82°E and 84.75°E, ~110 km and 450 km away from the coast, respectively, followed by downsloping. The upsloping/downsloping of isopleths and the alternating currents was part of cyclonic and anti-cyclonic circulation patterns in the western BoB. In this region, both wind and current were important in the dynamics of coastal upwelling. The observations showed a relationship between the propagating waves and eddy on variability of thermohaline fields. On an annual cycle, four Kelvin waves were observed in the BoB, but only the downwelling Kelvin wave formed during October entered the Arabian Sea. During the monsoon season, four eddies were formed in the western BoB, of which the anticyclonic eddy centered at 15°N, 84°E and the cyclonic eddy centered at 17.5°N, 84.5°E were prominent. The baroclinic instability caused by the opposing currents along the east coast and the wind stress curl favored the formation of eddies. Okhubo-Weiss and Isern-Fontanet parameter confirmed the presence of eddies in the BoB.  相似文献   

14.
On the basis of maps of sea level anomalies data set from October 1992 to January 2004, pronounced low frequency variations with periods of about 500 d are detected in the area near 20°N from 160°W to 130°E. A linear two-layer model is employed to explain the mechanism. It is found that the first-mode long baroclinic Rossby waves at 20°N in the northwest Pacific propagate westward in the form of free waves at a speed of about 10.3 cm/s. This confirms that the observed low frequency variabilities appear as baroclinic Rossby waves. It further shows that these low frequency variabilities around 20°N in the northwest Pacific can potentially be predicted with a lead up to 900 d.  相似文献   

15.
袁欣  王庆业 《海洋科学》2020,44(3):15-22
利用1993~2017年海表面高度异常数据集,分析研究了西北太平洋季节内变化(20~120d)的整体分布特征,结果表明空间上季节内信号在20°N附近海域(16°~24°N)最强,时间上在6~8月达到一年中的最大值。在吕宋海峡东侧(123.875°E,20.125°N)季节内信号周期(70d)和传播速度(10.7~12.7cm/s)均大于吕宋海峡西侧(119.625°E, 20.125°N)(60 d, 6.5~7.8cm/s)。在大洋内部(123°~140°E, 18°~24°N)存在准90d的周期信号,传播速度约10.3cm/s。传播路径受黑潮的影响发生改变,由沿纬度西传转向向西北方向传播。第一斜压Rossby波理论对海表面高度季节内变化的周期和传播速度具有很好的解释性。  相似文献   

16.
The recent sea-ice reduction in the Arctic Ocean is not spatially uniform, but is disproportionally large around the Northwind Ridge and Chukchi Plateau compared to elsewhere in the Canada Basin. In the Northwind Ridge region, Pacific Summer Water (PSW) delivered from the Bering Sea occupies the subsurface layer. The spatial distribution of warm PSW shows a quite similar pattern to the recent ice retreat, suggesting the influence of PSW on the sea-ice reduction. To understand the regionality of the recent ice retreat, we examine the dynamics and timing of the delivery of the PSW into this region. Here, we adopt a two-layer linearized potential vorticity equation to investigate the behavior of Rossby waves in the presence of a topographic discontinuity in the high latitude ocean. The analytical results show a quite different structure from those of mid-latitude basins due to the small value of β. Incident barotropic waves excited by the sea-ice motion with large annual variation can be scattered into both barotropic and baroclinic modes at the discontinuity. Since the scattered baroclinic Rossby wave with annual frequency cannot propagate freely, a strong baroclinic current near the topographic discontinuity is established. The seasonal variation of current near the topographic discontinuity would cause a kind of selective switching system for shelf water transport into the basin. In our simple analytical model, the enhanced northward transport of summer water and reduced northward transport of winter water are well demonstrated. The present study indicates that these basic dynamics imply that a strengthening of the surface forcing during winter in the Canada Basin could cause sea-ice reduction in the Western Arctic through the changes of underlying Pacific Summer Water.  相似文献   

17.
Zonally propagating wave solutions of the linearized shallow water equations (LSWE) in a zonal channel on the rotating spherical earth are constructed from numerical solutions of eigenvalue equations that yield the meridional variation of the waves' amplitudes and the phase speeds of these waves. An approximate Schrödinger equation, whose potential depends on one parameter only, is derived, and this equation yields analytic expressions for the dispersion relations and for the meridional structure of the waves' amplitudes in two asymptotic cases. These analytic solutions validate the accuracy of the numerical solutions of the exact eigenvalue equation. Our results show the existence of Kelvin, Poincaré and Rossby waves that are harmonic for large radius of deformation. For small radius of deformation, the latter two waves vary as Hermite functions. In addition, our results show that the mixed mode of the planar theory (a meridional wavenumber zero mode that behaves as a Rossby wave for large zonal wavenumbers and as a Poincaré wave for small ones) does not exist on a sphere; instead, the first Rossby mode and the first westward propagating Poincaré mode are separated by the anti-Kelvin mode for all values of the zonal wavenumber.  相似文献   

18.
This study investigated the eastern Pacific Intertropical Convergence Zone (ITCZ) as an atmospheric forcing to the ocean by using various observed and reanalysis data sets over 29 years. Climatologically, a zonal band of positive wind stress curl (WSC) with a 10° meridional width was exhibited along the ITCZ. A southward shift of the positive WSC band during the El Niño phase induced a negative (positive) WSC anomaly along the northern (southern) portion of the ITCZ, and vice versa during the La Niña phase. This meridional dipole accounted for more than 25 % of interannual variances of the WSC anomalies (WSCAs), based on analysis of the period 1993–2008. The negative (positive) WSCA in the northern portion of the ITCZ during the El Niño (La Niña) phase was collocated with a positive (negative) sea surface height anomaly (SSHA) that propagated westward as a Rossby wave all the way to the western North Pacific. This finding indicates that this off-equatorial Rossby wave is induced by the WSCA around the ITCZ. Our analysis of a 1.5-layer reduced gravity model revealed that the Rossby waves are mostly explained by wind stress forcing, rather than by reflection of an equatorial Kelvin wave on the eastern coastal boundary. The off-equatorial Rossby wave had the same SSHA polarity as the equatorial Kelvin wave, and generation of a phase-preserving Rossby wave without the Kelvin wave reflection was explained by meridional movement of the ITCZ. Thus, the ITCZ acts as an atmospheric bridge that connects the equatorial and off-equatorial oceanic waves.  相似文献   

19.
A seasonal simulation from a medium-resolution ocean general circulation mode (OGCM) is used to investigate the vertical structure variability of the Southeast Pacific (SEP). The focus is on the extra-tropical Rossby wave (ETRW) variability and associated forcing mechanism. Some aspects of the model mean state are validated from available observations, which justifies a vertical mode decomposition of the model variability. The analysis of the baroclinic mode contributions to sea level indicates that the gravest mode is dominant over most of the domain at all frequencies. Annual variability is on average twice as large as the semi-annual variability which is confined near the coast for all the modes. The first baroclinic mode contribution to the annual cycle exhibits a clear westward propagation north of the critical latitude. The higher-order modes only contribute near the coast where they are associated with vertically propagating energy. The residual variability, which is the energy at all timescales other than annual and semi-annual periods peaks offshore between 20°S and 30°S for all baroclinic modes. The third baroclinic mode also exhibits a relative maximum variability off the coast of Peru south of the critical latitude of the annual cycle (13°S), where the Peru–Chile Undercurrent is the most intense. Sensitivity experiments to the atmospheric and boundary forcing suggest that the residual variability results from the non-linear interaction between annual Rossby waves and the mean flow, while the annual ETRWs in the model result from the summed-contribution from both the local wind stress and remote equatorial forcing. Overall the study extends the classical analysis of sea level variability in the SEP based on linear theory, and suggests that the peculiarities of the baroclinic modes need to be taken into account for interpreting the sea level variability and understanding its connection with the equatorial variability.  相似文献   

20.
The annual variabilities of the sea surface height in the Pacific Ocean were investigated by analyzing the TOPEX/POSEIDON satellite data and by solving a reduced gravity model. We discuss how adequately the simple model can capture the variabilities of the sea surface height, and what the cause of the variabilities is. Three large amplitude peaks in the satellite data are found along the 12°N longitude line. Two elongated zones with a large amplitude are also found: one extends east-west along 6°N and the other extends northwestward from South America around 25°S. These features are adequately reproduced in the numerical simulation of the reduced gravity model. The propagation of the Rossby wave is analyzed by the use of the extended Eliassen-Palm flux to investigate the mechanism of these annual variabilities. The two east peaks around 12°N can be explained in terms of the interference between the local Ekman pumping and the free wave emitted near the western coast of North America, and the most western peak is affected by the Rossby wave formed by the local wind stress. The elongated zonal area around 6°N is mainly due to the local Ekman pumping. Another area around 25°S results from the convergence of the free Rossby wave emitted from the eastern boundary and the area with the strong wind stress curl off South America. A discrepancy between the satellite data and the model results suggests that the eastern equatorial Pacific Ocean is relatively calm in the model but not in the satellite data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号