首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basic characteristics of optical scattering in a mixed-phase cloud (asymmetry parameter of the scattering phase function and efficiency scattering factors and scattering coefficients) are considered. Theoretical consideration is based on the mixed-phase cloud model in the form of a uniform mixture of ice crystals and water droplets. Expressions allowing calculation of asymmetry parameter of the mixed-phase cloud scattering phase function are obtained as functions of the cloud temperature, average size of cloud particles, and ratios of the number densities of differently shaped ice crystals. Data calculated for the asymmetry parameter of infrared scattering in a mixed-phase cloud layer at its given temperature are presented.  相似文献   

2.
Under bilateral cooperation between the United States of America and the People's Republic of China, a series of research cruises were conducted over the western Pacific Ocean. It was found that a) the non-sea-salt sulfate aerosol particles are the major source of cloud condensation nuclei, b) the population of clouds and the total albedo are proportional to the concentration of condensation nuclei and consequently to the concentration of the non-sea-salt aerosol particles, and c) the amount of rainfall is inversely proportional to the concentration of non-sea-salt sulfate aerosol particles. It seems that anthropogenic sulfate aerosol particles affect the regional planetary albedo and climate and that the contribution from biogenically derived sulfate aerosol particles is of lesser importance.  相似文献   

3.
Specific features of an internal freezing (crystallization) mechanism for both ordinary supercooled water and amorphous water (A-water) are considered. Amorphous water plays the role of an intermediate phase in condensation ice formation and is capable of metastable existence in the form of cloud drops. It is demonstrated that, after passing the crystallization front, the ice phase takes the liquid-phase volume and the excessive water mass is detached from the front in the form of free molecules, which escape through the liquid into the gaseous medium. The released energy of the phase transition is removed with these molecules, so that the formed ice retains the initial temperature of the liquid. A high-rate vapor outflow from the freezing drop generates (around the drop) a zone of microscale turbulence, which accelerates the mass exchange between cloud particle and vapor. Since the freezing frequency of drops in a cloud increases with their size, the effects of their freezing develop initially in time. At the same time, these effects initiate such processes that end in a complete evaporation of supercooled water drops and in a sharp enlargement of A-water and ice particles, i.e., in cloud transition to such a phase-mixed state where the liquid disperse phase consists of A-water drops. A reduction in the duration of the initial (fine-dispersed) stage of the evolution of clouds with their temperature lowering can be explained only by the development of microscale disturbances as a result of the freezing of drops.  相似文献   

4.
One of the underlying assumptions in the effective medium theory describing the propagation of acoustic waves through bubble clouds is that the probability of an individual bubble being located at some position in space is independent of the locations of other bubbles. However, bubbles within naturally occurring clouds may be influenced by the dynamics of the fluids in which they are entrained so that they become preferentially concentrated, or clustered, leading to statistical dependence in their positions. For bubble clouds in which the important scattering terms include those with interactions between at least two bubbles, statistical dependence between bubble positions leads to a reduction in the attenuation of the coherent acoustic pressure field from that which would be predicted for a nonclustered bubble cloud. Bubble clustering can be accommodated in effective medium theories using correlation functions describing the relationship between the positions of the bubbles. For double scattering, the two-bubble correlation (i.e., the pair correlation function) must be used, for triple scattering, the three bubble correlation must be used, and so on. In contrast to the three attenuation of the coherent field, making the assumption of independent bubble positions leads to an underestimate of the incoherent field. Both the coherent and incoherent acoustic fields for bubble clouds exhibiting correlated bubble positions are explored in this paper with the use of numerical simulations.  相似文献   

5.
To assess the performances of state-of-the-art global climate models on simulating the Arctic clouds and surface radiation balance, the 2001–2014 Arctic Basin surface radiation budget, clouds, and the cloud radiative effects(CREs) in 22 coupled model intercomparison project 6(CMIP6) models are evaluated against satellite observations. For the results from CMIP6 multi-model mean, cloud fraction(CF) peaks in autumn and is lowest in winter and spring, consistent with that from three satellite observation products(Cloud Sat-CALIPSO, CERESMODIS, and APP-x). Simulated CF also shows consistent spatial patterns with those in observations. However,almost all models overestimate the CF amount throughout the year when compared to CERES-MODIS and APP-x.On average, clouds warm the surface of the Arctic Basin mainly via the longwave(LW) radiation cloud warming effect in winter. Simulated surface energy loss of LW is less than that in CERES-EBAF observation, while the net surface shortwave(SW) flux is underestimated. The biases may result from the stronger cloud LW warming effect and SW cooling effect from the overestimated CF by the models. These two biases compensate each other,yielding similar net surface radiation flux between model output(3.0 W/m~2) and CERES-EBAF observation(6.1 W/m~2). During 2001–2014, significant increasing trend of spring CF is found in the multi-model mean,consistent with previous studies based on surface and satellite observations. Although most of the 22 CMIP6 models show common seasonal cycles of CF and liquid water path/ice water path(LWP/IWP), large inter-model spreads exist in the amounts of CF and LWP/IWP throughout the year, indicating the influences of different cloud parameterization schemes used in different models. Cloud Feedback Model Intercomparison Project(CFMIP)observation simulator package(COSP) is a great tool to accurately assess the performance of climate models on simulating clouds. More intuitive and credible evaluation results can be obtained based on the COSP model output. In the future, with the release of more COSP output of CMIP6 models, it is expected that those inter-model spreads and the model-observation biases can be substantially reduced. Longer term active satellite observations are also necessary to evaluate models' cloud simulations and to further explore the role of clouds in the rapid Arctic climate changes.  相似文献   

6.
本文通过对2001—2017年秋季北极低云的多源数据的分析,展示了本世纪以来北极秋季低云的变化,并为其变化提供了一个新的可能的解释。卫星和再分析数据表明,秋季北极有冰海面低云存在减少的趋势,且在北极边缘海区表现为950 hPa(约500 m)以下近地面云显著减少。本文研究表明,在有冰海面上,低云减少的趋势与背景大气增暖导致的大气相对湿度降低有关,这一关系在80°N以北的北极中央区更明显。而在北极边缘海区,气旋活动对云的影响更重要。在有冰海面,气旋与低云的长期变化趋势相反,两者的年际变化呈负相关关系。利用自组织映射(SOM,Self-Organizing Map)对所有气旋日垂直运动和云分布进行了初步分析,结果表明:在无冰海面和有冰海面由于气旋垂直运动及背景(无气旋日)云分布的差异,气旋对云的影响存在差异。气旋在有冰海面导致低云减少为主,而在无冰海面导致低云增加为主。  相似文献   

7.
渤海沿岸固定冰粗糙特征的实测研究   总被引:1,自引:0,他引:1  
The surface roughness characteristics(e.g., height and slope) of sea ice are critical for determining the parameters of an electromagnetic scattering, a surface emission and a surface drag coefficients. It is also important in identifying various ice types, retrieval ice thickness, surface temperature and drag coefficients from remote sensing data. The point clouds(a set of points which are usually defined by X, Y, and Z coordinates that represents the external surface of an object on earth) of land fast ice in five in situ sites in the eastern coast Bohai Sea were measured using a laser scanner-Trimble GX during 2011–2012 winter season. Two hundred and fifty profiles selected from the point clouds of different samples have been used to calculate the height root mean square, height skewness, height kurtosis, slope root mean square, slope skewness and slope kurtosis of them. The root mean square of the height, the root mean square of the slope and the correlation length are about 0.090, 0.075 and 11.74 m, respectively. The heights of 150 profiles in three sites manifest the Gaussian distribution and the slopes of total 250 profiles distributed exponentially. In addition, the fractal dimension and power spectral density profiles were calculated. The results show that the fractal dimension of land fast ice in the Bohai Sea is about 1.132. The power spectral densities of 250 profiles can be expressed through an exponential autocorrelation function.  相似文献   

8.
基于2006年6月—2021年10月期间CALIPSO星载激光雷达观测数据,对吕宋海峡低云和深对流等影响飞行的云时空分布特征进行统计学分析。结果表明,在南海季风、太阳辐射和季风槽的共同影响下:(1)低云覆盖率在8月左右最小,为2.9% ,在1月左右最大,为67.4%;低云平均云底高在7月左右最低,为756.1 m,在1月左右最高,为1 259.4 m;低云平均厚度在7月最小,为714.1 m,在12月最大,为1 039.4 m。(2)深对流发生概率在10月左右最小,为1.9%,12月最大,为18.7%;深对流顶高在10月最大,平均顶高为16 056.2 m,在4月最小,平均顶高为14 164.0 m。  相似文献   

9.
A formula for the relationship between the spectrum-integrated flux of outgoing long-wave radiation,F cn, and the albedo,A cn, of an ice-free sea surface-atmosphere system has been derived using historical (1974–1983) NIMBUS (NOAA) satellite observations. Also determined is the sensitivity of the system's radiation budget to albedo variations, fluctuations of the sea surface temperature, cloud amount and optical density, depending on the time of the year and latitude.Translated by V. Puchkin. UDK 372.21.17.17+372.21.17.19.  相似文献   

10.
为探究冬季不同背景风场下黑潮锋影响边界层云的机理,采用高分辨率卫星数据和再分析数据,研究了冬季海面背景风为垂直(西北风)和平行(东北风)东海黑潮海表面温度锋(黑潮锋)条件下,边界层云对黑潮锋的响应。结果表明:背景风垂直黑潮锋情况下,黑潮锋强迫的边界层内次级环流明显,黑潮锋暖水侧海面冷平流强,海气温差增大,海气界面潜热感热通量增大,海气界面不稳定性增大,产生上升运动,云底高度抬升。上升运动在边界层底向南北两侧辐散,在冷水侧产生下沉运动与500 hPa高压下沉叠加,使局地云量明显减少,形成晴空少云区(云洞)。在暖水侧以南的下沉支叠加云顶上的下沉运动和边界层退耦效应共同作用,产生另一个云洞。气压调整机制为次级环流产生的主要原因。背景风平行黑潮锋情况下,海面空气温度平流作用小,暖水侧海气温差较小,虽然海洋仍然加热大气,但海气界面不稳定较弱,湍流增强使云底高度抬升,垂直混合机制为该湍流增强的主要原因。  相似文献   

11.
Time-series of remotely sensed distributions of phytoplankton, sea ice, surface temperature, albedo, and clouds were examined to evaluate the variability of environmental conditions and physical forcing affecting phytoplankton in the Beaufort and Chukchi Seas. Large-scale distributions of these parameters were studied for the first time using weekly and monthly composites from April 1998 to September 2002. The basic data set used in this study are phytoplankton pigment concentrations derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), ice concentrations obtained from the Special Sensor Microwave Imager (SSM/I) and surface temperature, cloud cover, and albedo derived from the Advanced Very High Resolution Radiometer (AVHRR). Seasonal variation of ice cover was observed to be the dominant environmental factor as the ice-edge blooms followed the retreating marginal ice zones northward. Blooms were most prominent in the southwestern Chukchi Sea, and were especially persistent immediately north of the Bering Strait in nutrient-rich Anadyr Water and in some fronts. Chlorophyll concentrations are shown to increase from a nominal value during the onset of melt in April to a maximum value in mid-spring or summer depending on location. Large interannual variability of ice cover and phytoplankton distributions was observed with the year 1998 being uniquely associated with an early season occurrence of a massive bloom. This is postulated to be caused in part by a rapid response of phytoplankton to an early retreat of the sea-ice cover in the Beaufort Sea region. Correlation analyses showed relatively high negative correlation between chlorophyll and ice concentration with the correlation being highest in May, the correlation coefficient being −0.45. 1998 was also the warmest in the 5 years globally and the sea-ice cover was least extensive in the Beaufort/Chukchi Sea region, partly because of the 1997–1998 El Niño. Strong correlations were noted between ice extent and surface temperature, the correlation coefficient being highest at −0.79 in April, during the onset of the bloom period.  相似文献   

12.
The evolution of cloud microstructure initiated by hygroscopic seeding is studied on the basis of numerical simulation of cloud formation in the initial stage of condensation. The influence of both physicochemical properties of atmospheric aerosol and atmospheric conditions controlling the cloud type on the microstructure of a developing cloud (without hygroscopic seeding) is analyzed. It is shown that cloud seeding with additional particles whose sizes exceed the characteristic size of atmospheric condensation nuclei leads to a decrease in the concentration of cloud droplets and an increase in their sizes. This result of cloud seeding represents a positive effect for stimulation of precipitation from convective clouds. It is shown that this positive effect is achieved if there are some relationships between the parameters characterizing the hygroscopic particles and the atmospheric conditions. In particular, the maximum effect of action can be achieved at some optimal concentration of seeded particles. The decrease in the concentration of cloud droplets because of hygroscopic seeding is compared to the results of numerical simulations performed by other authors with allowance for coagulation processes in clouds. It is shown that this decrease can serve as an estimate for the effectiveness of hygroscopic seeding as a means for artificial intensification of precipitation from convective clouds.  相似文献   

13.
The purpose of this study is to validate and improve satellite-derived downward surface shortwave radiation (DSSR) over the northwestern Pacific Ocean using abundant in situ data. The DSSR derivation model used here assumes that the reduction of solar radiation by clouds is proportional to the product of satellite-measured albedo and a cloud attenuation coefficient. DSSR is calculated from Geostationary Meteorological Satellite-5/Visible Infrared Spin-Scan Radiometer data in 0.05° × 0.05° grids. The authors first compare the satellite DSSR derived with a cloud attenuation coefficient table determined in past research with in situ values. Although the hourly satellite DSSR agrees well with land in situ values in Japan, it has a bias of +13∼+34 W/m2 over the ocean and the bias is especially large in the low latitudes. The authors then improve the coefficient table using the ocean in situ data. Usage of the new table successfully reduces the bias of the satellite DSSR over the ocean. The cloud attenuation coefficient for low-albedo cases over the ocean needs to be larger in the low latitudes than past research has indicated. Daily and hourly DSSR can be evaluated from the satellite data with RMS errors of 11–14% and 30–33%, respectively, over a wide region of the ocean by this model. It is also shown that the cloud attenuation coefficient over land needs to be smaller than over the ocean because the effect of the radiation reflected by the land surface cannot be ignored.  相似文献   

14.
On the basis of the satellite and ship data of many-year observations, we parametrize the albedo of the ocean-atmosphere system both for the conditions of “fair weather” and for the maximum and climatic optical thicknesses of oceanic clouds. These results are used to develop a procedure of practically exact reconstruction of the monthly average fluxes of integral solar radiation and the radiation budget over the ice-free surface of the oceans according to the data of satellite measurements of albedo (Nimbus NOAA satellite, 1974–1983) for arbitrary conditions of transparency of the atmosphere and cloudiness. We determine the current and climatic monthly average values and the characteristics of interannual variability of all components of the radiation mode of the ocean-atmosphere system with a spatial resolution of 500×500 km. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

15.
ObservationofcloudsandsolarradiationoverthePacificOceanasrelationtoglobalclimate¥FarnParungo;ClarenceNagamoto;CeciliaM.I.R.Gi...  相似文献   

16.
The results of a numerical simulation of the action of hygroscopic particles on a warm convective cloud with the purpose of obtaining additional precipitation are presented. The one-dimensional numerical model considered in this work describes the evolution of the cloud medium in the central part of an axisymmetric convective cloud at the specified height-variable velocity of the upward air flow which forms the cloud. Our model comprehensively describes microphysical processes in the cloud medium with the use of the kinetic equation for the size distribution of cloud droplets. This model makes it possible to obtain the spatiotemporal pattern of the cloud formation and development and to analyze regular features in the cloud evolution under the action of hygroscopic reagents. The cloud characteristics calculated with the use of this model correspond to the cloud parameters observed in natural conditions of the atmosphere. The process of precipitation stimulation by hygroscopic particles in convective clouds with vertical thicknesses of 2.5–4.5 km was analyzed on the basis of the results of numerical calculations. The results of calculations of the dependence of the intensity and total amount of precipitation on the vertical cloud thickness and parameters of particles introduced into the cloud are presented. It is shown that hygroscopic particles with root-mean-cube radii of 1–1.5 μm are the most effective for acting on warm convective clouds with the purpose of obtaining additional precipitation. In this case, the required reagent expenditure is 100–200 kg/km2. The conditions necessary for obtaining the maximal positive effect of the action are elucidated.  相似文献   

17.
The paper considers a relation between equilibrium global warming at doubled carbon dioxide (climate sensitivity) and the distribution of clouds and relative humidity in 18 state-of-the-art climate models. There is a strong correlation among three indices: (1) model climate sensitivity, (2) mean cloud amount change due to global warming, and (3) the difference in cloud amount between the tropics and midlatitudes. In the simulation of the present-day current, models with high sensitivity produce smaller clouds amounts in the tropics and larger cloud amounts over midlatitude oceans than models with low sensitivity. The relative humidity in the tropics is smaller in models with high sensitivity than in models with low sensitivity. There is a similarity between vertical profiles of cloud amount and relative humidity under global warming and vertical profiles of the difference in these quantities averaged over the tropics and midlatitudes. Based on the correlations obtained and observations of cloud amount and relative humidity, an estimate is made of the sensitivity of a real climate system.  相似文献   

18.
Direct observation of radiative flux in the southern yellow sea   总被引:2,自引:0,他引:2  
Direct measurements of four radiative components at air-sea boundary layer were conducted in the southern Yellow Sea during three cruises (seasons) in 2007. Simultaneous observations of meteorological (cloud cover, air temperature and humidity) and oceanographic (sea surface temperature) parameters were carried out. Observational results of radiative fluxes and meteorological and oceanographic parameters are presented. Mean diurnal cycles of four radiative components, net radiation, and sea surface albedo are calculated to achieve averages in different seasons. Net radiative fluxes in three seasons (winter, spring, autumn) are 8, 146, 60 W/m2, respectively. Comparisons between the observed radiative fluxes and those estimated with formulas are taken.  相似文献   

19.
Modeling of Motion of Particle Clouds Formed by Dumping Dredged Material   总被引:7,自引:0,他引:7  
The motion of particle clouds formed by dumping dredged material into quiescent waters is experimentally and numerically studied. In the numerical model, the particle phase is modeled by the dispersion model, and turbulence is calculated by the large eddy simulation. The governing equations, including the filtered Navier-Stokes equations and mass transport equation, are solved based on the operator-splitting algorithm and an implicit cubic spline interpolation scheme. The eddy viscosity is evaluated by the modified Smagorinsky model including the buoyancy term. Comparisons of main flow characteristics, including shape, size, average density excess, moving speed and the amount of particles deposited on the bed, between experimental and computational results show that the numerical model well predicts the motion of the cloud from the falling to spreading stage. The effects of silt-fence on the motion of the particle cloud are also investigated.  相似文献   

20.
Convective cloudiness in the Atlantic sector of the Arctic is considered as an atmospheric spatially self-organized convective field. Convective cloud development is usually studied as a local process reflecting the convective instability of the turbulent planetary boundary layer over a heated surface. The convective cloudiness has a different dynamical structure in high latitudes. Cloud development follows cold-air outbreaks into the areas with a relatively warm surface. As a result, the physical and morphological characteristics of clouds, such as the type of convective cloud, and their geographical localization are interrelated. It has been shown that marginal sea ice and coastal zones are the most frequently occupied by Cu hum, Cu med convective clouds, which are organized in convective rolls. Simultaneously, the open water marine areas are occupied by Cu cong, Cb, which are organized in convective cells. An intercomparison of cloud statistics using satellite data ISCCP and ground-based observations has revealed an inconsistency in the cloudiness trends in these data sources: convective cloudiness decreases in ISCCP data and increases in the groundbased observation data. In general, according to the stated hypothesis, the retreat of the sea-ice boundary may lead to an increase in the amount of convective clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号