首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
This paper presents age and geochemical data of a recently identified Late Paleozoic volcanic sequence in central Jilin Province, with aims to discuss the petrogenesis and to constrain the tectonic evolution of the Central Asian Orogenic Belt in this area. Firstly, the volcanic rocks have zircon U-Pb ages of 290–270 Ma. Secondly, they are characterized by(a) ranging in composition from the low-K tholeiite series to high-K calc-alkaline series;(b) enrichment in light rare earth elements and depletion of heavy rare earth elements, with negative Eu anomalies; and(c) negative Nb, Ta, and Ti anomalies. Finally, the volcanic rocks yield εHf(t) values of +7.1 to +17. These data suggest that the central Jilin volcanic rocks were possibly derived from predominant partial melting of a depleted lithospheric mantle that might have been modified by subducted slab–derived fluids. Combined with previous studies, the Late Paleozoic–Early Mesozoic magmatism in Central Jilin can be divided into two stages:(a) a volcanic arc stage(290–270 Ma) represented by low-K to high–K, tholeiite to calc–alkaline plutons and(b) a syn–collisional stage(260–240 Ma) represented by high-K calc–alkaline I-type granites. Furthermore, the timing and the tectonic setting of the above magmatic rocks show that the arc was probably produced by the northward subduction of the Paleo-Asian Ocean and that the final closure of the Paleo-Asian Ocean occurred prior to the Early Triassic.  相似文献   

2.
The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3±1.8 Ma and 229.9±1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene(47–52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features(A/CNK1.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive εHf(t) values ranging from +13.91 to +15.54(mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg~# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma(mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic(~230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous subterranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet.  相似文献   

3.
The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt. In this study, we present SHRIMP zircon U-Pb ages, Hf isotopic and geochemical data on the Xingxingxia biotite granite, amazonite granite and granitic pegmatite in Central Tianshan, NW China. Zircon U-Pb dating yielded formation ages of 242 Ma for the biotite granite and 240 Ma for the amazonite granite. These granitoid rocks have high K2O with low MgO and CaO contents. They are enriched in Nb, Ta, Hf and Y, while being depleted in Ba and Sr, showing flat HREE patterns and negative Eu anomalies. They have typical A-type granite geochemical signatures with high Ga/Al (8–13) and TFeO/(TFeO + MgO) ratios, showing an A2 affinity for biotite granite and an A1 affinity for amazonite granite and granitic pegmatite. Zircon εHf(t) values of the granitoids are 0.45–2.66, with Hf model ages of 0.99–1.17 Ga. This suggests that these A-type granites originated from partial melting of the lower crust. We propose that Xingxingxia Triassic A-type granites formed under lithospheric extension from post-orogenic to anorogenic intraplate settings and NE-trending regional strike-slip fault-controlled magma emplacement in the upper crust.  相似文献   

4.
In the western Yangtze Block, widespread Mesoproterozoic to Neoproterozoic rocks are the key to understanding the Precambrian tectonic-magmatic evolution of the region. However, their petrogenesis and tectonic setting are still controversial. In this paper, zircon U-Pb ages, Sm-Nd isotopic and whole-rock geochemical data are reported from selected fresh samples in the southern Dechang county, southwestern China, in order to constrain their emplacement age and magma source, as well as their petrogenesis and tectonic setting. They are mainly composed of biotite monzogranite, monzonitic granite, biotite granodiorites, and quartz diorite. Two ages of 1055 ± 43 Ma and 837.6 ± 3.8 Ma were obtained through zircon U-Pb dating by LA-ICP-MS and LA-MC-ICP-MS, respectively. According to their major element compositions, the Grenville-age granites are peraluminous calc-alkaline series calcic S-type granite. In contrast, the mid-Neoproterozoic granites are metaluminous calc-alkaline series alkalic I-type granite. Furthermore, the S-type granites are enriched in LREEs relative to HREEs with(La/Yb)_N ratios of 3.85–18.56 and underwent major fractionation with strongly negative Eu anomalies(Eu/Eu~* = 0.38–0.66). In the MORB-normalized trace element variation diagram, all the samples are enriched in Ce and large ion lithophile elements such as Rb, Th, and K, and depleted in high field strength elements such as Nb, and Ti, with negative Sr and Ti anomalies. The I-type granites are enriched in LREEs with slight negative Eu anomalies(Eu/Eu~* = 0.83–0.93). They are characterized by the enrichment of highly incompatible elements(such as K, Rb, Ba, Th) and LREEs, relative to MORB. Neodymium isotopic data show that the S-type granites display ~(143)Nd/(~(144) Nd) values of 0.51241–0.51256, and have ε_(Nd)(t = 1055 Ma) values of(-3.29) to(-3.81). Calculated t_(DM) ages yield values from 1.87 to 1.91 Ga with the t_(DM).2 stg ages of 1.86 to 1.9 Ga. The I-type granites have ~(143)Nd/(~(144) Nd) ratios between 0.51192 and 0.51195, corresponding to initial ε_(Nd)(t = 837 Ma) values of 1.22 to 5.63. Calculated t_(DM) ages yield values from 1.0 to 1.38 Ga and the t_(DM).2 stg ages yield values from 0.99 to 1.06 Ga. The S-type granites are distinguished as syn-collision granite, whereas the I-type granites were formed as arc magmas according to the Rb-(Yb+Ta) and R_1-R_2 tectonic discrimination diagrams. To conclude, there are two types of spatially associated granite, the Mesoproterozoic S-type granite which were derived from remelting of upper crustal mudstone and/or clastics and resulted from the convergence of two continental plates, and the mid-Neoproterozoic I-type granite which formed in continental arc and resulted from mantle-derived magma mixed crust material, in the western Yangtze Block. Furthermore, we suggest that collision between the Yangtze and Cathaysia blocks occurred at about 1055 Ma, and caused the Stype granite. The I-type granite related to the subduction of oceanic lithosphere eastward underneath the Yangtze Block in the mid-Neoproterozoic.  相似文献   

5.
The central part of South Mongolia, located to the north of the Solonker Suture, is a key region for studying the late Paleozoic tectonic evolution of the Central Asian Orogenic Belt(CAOB). Voluminous late Paleozoic granitic rocks,especially of Carboniferous age, were intruded in this area. However, these granitoids have not been well studied and there is a lack of precise ages and isotopic data. This has hampered our understanding of the tectonic evolution of southeastern Mongolia, and even the entire CAOB. In this paper, we provide new U-Pb isotopic ages and geochemical analyses for these Carboniferous granites. One granite from the Ulaanbadrakh pluton yielded a zircon U-Pb age of 326 Ma, which indicates emplacement in the Early Carboniferous, and three other granites from the Khatanbulag region gave zircon U-Pb ages of316 Ma, 315 Ma, and 311 Ma, which indicate emplacement in the Late Carboniferous. The Early Carboniferous granite has SiO2 contents of 70.04–70.39 wt% and K2 O + Na2 O contents of 6.48–6.63 wt%, whereas the Late Carboniferous granites have more variable compositions(SiO2 = 65.29–77.91 wt% and K2 O + Na2 O = 5.30–7.27 wt%). All the granites are weakly-peraluminous I-types that are relatively enriched in U, Th, K, Zr, Hf, and LREEs. The whole rock Sr-Nd and zircon in situ Lu-Hf isotope analyses for the Early Carboniferous granite gave positive values of εNd(t)(2.87) and εHf(t)(4.31–12.37) with young Nd(TDM = 860 Ma) and Hf(TDMc = 1367–637 Ma) two-stage model ages, indicating derivation from juvenile crustal material. In contrast, the Late Carboniferous granites had more diverse values of εNd(t)(–4.03 to 2.18) and εHf(t)(–12.69 to5.04) with old Nd(TDM = 1358–1225 Ma) and Hf(TDMc = 2881–1294 Ma) depleted mantle two-stage model ages,suggesting derivation from remelting of Precambrian basement. Based on the existing results, the tectonic setting of the Late Carboniferous granites in the central part of South Mongolia is known for its diversity, and this paper believes that the tectonic background of the carboniferous granite records the tectonic transition from a continental-margin-arc to a postcollisional extensional setting during the Late Carboniferous–Permian.  相似文献   

6.
The timing and mechanisms of lithospheric thinning and destruction of the North China Craton (NCC) remain controversial, and the overall geodynamics of the process are poorly understood. This paper documents Late Triassic igneous rocks including monzogranite, gabbro, and diorite from the Xiuyan District on the Liaodong Peninsula in the eastern NCC, which have LA-ICP-MS zircon U-Pb ages of 229.0 ± 0.4 Ma, 216.2 ± 0.9 Ma, and 210.6 ± 2.0 Ma, respectively. Monzogranite shows high-SiO2 adakite affinity, negative εHf(t) values (?20.6 to ?17.9), and old TDM2 ages (3.53–3.29 Ga), suggesting that their parental magma was derived from thickened Paleoarchean mafic lower crust and minor mantle materials that were also involved their generation. Gabbro is ultrapotassic, strongly enriched in LREEs and LILEs, depleted in HFSEs, and has evolved zircon Hf isotopes with negative εHf of ?10.04 to ?5.85 and old TDM2 ages (2.59–2.22 Ga). These are diagnostic signatures of a crustal component, but their high contents of MgO, Cr, Co, Ni indicate that the primary magma originated from enriched mantle. Diorite is enriched in LILEs and LREEs, depleted in HFSEs (with negative Nb, Ta, and Ti anomalies), and contains negative εHf(t) values (?13.64 to ?11.01). Compared with the gabbro, the diorite is relatively enriched in Nb, Ta and HREEs, and also contains younger TDM2 ages (2.11–1.94 Ga), suggesting that the diorite was formed by mixing between ancient lower crust-derived felsic magmas and asthenospheric mantle-derived magmas. Field observations, geochronology, geochemistry, and zircon Lu-Hf isotopes indicate that Late Triassic magmatism and tectonic activity resulted from deep subduction of the Yangtze Craton beneath the NCC in the Xiuyan area. This phase of tectonic activity was completed in the eastern NCC by the Late Triassic (216 Ma), and was subsequently followed by lithospheric thinning that began in the Late Triassic.  相似文献   

7.
The granitic dykes in the Badu Group,Zhejiang Province,South China provide important insights on tectonic setting and crustal evolution of the South China Block(SCB) and the Indochina Block during Triassic.Here we report LA-ICP-MS U-Pb data of granitic rocks from the Hucun and Kengkou which show early Triassic ages of 242 ± 2 and 232 ± 3 Ma,respectively,representing their timing of emplacement.The dyke rocks are enriched in K,Al,LREE,Rb,Th.U,and Pb.and are depleted in Nb,Ta,Sr,and Ti.The rocks are characterized by highly fractionated REE patterns with(La/Yb)N ratios of 28.46-38.07 with strong negative Eu anomalies(Eu/Eu* = 0.65-0.73).In situ Hf isotopic analyses of zircons from the Hucun granite yielded ε_(Hf)(t) values of-13.9 to-6.4 and two-stage depleted mantle Hf model ages of 1.68-2.15 Ga,which indicate that the magma was formed by partial melting of the Paleoproterozoic metasedimentary protoliths in the Cathaysia Block.The zircons from the Kengkou granite have ε_(Hf)(t) values ranging from 40.7 to 31.5 and yield two-stage depleted mantle Hf model ages of 0.99-2.49 Ga,indicating magma origin from a mixed source.The Hucun and Kengkou dykes,together with the Triassic A-type granites in SE China were probably generated during magmatism associated with crust-mantle decoupling along the convergent plate boundary between SCB and the Indochina Block.  相似文献   

8.
The southern Great Xing’an Range is the most critical Sn-polymetallic metallogenic belt in northeast China. However, the tectonic setting of the Early Cretaceous magmatic-metallogenic ”flare-up“ event remains uncertain. This paper presents an integrated study on the occurrence, petrology, zircon U-Pb ages, whole-rock geochemistry, and in situ zircon Hf isotopes for Wenduerchagan granites of Xi Ujimqin Banner, central-eastern Inner Mongolia. These granites consist primarily of granite porphyry(wi...  相似文献   

9.
Many igneous rocks distribute in Gejiu tin polymetallic ore-field at Yunnan province, rocks including basalt, gabbro, mafic microgranular enclaves, granites (porphyritic granite and equigranular granite) and akaline rocks. The ages of the granites and akaline rocks which are considered to have genetic connecting with the mineralization have been comfirmed, but the gabbro-mafic microgranular enclaves-granite assemblage’s ages are still unknown. By means of LA-ICP-MS zircon U-Pb dating, the data of Shenxianshui equigranular granite, the mafic microgranular enclave in Jiasha area, the host rock of the mafic microgranular enclaves and the Jiasha gabbro are around ~80 Ma. Besides the above mentioned data, a group of new ages at ~30 Ma were discovered in this study, which is from gabbro and mafic microgranular enclaves. Based on the previous data and the new data gained this time, we suggest the major geochronology framework of the magmatism and mineralization events in Gejiu area is ~80 Ma, which is consistent with the Late Cretaceous magmatism and mineralization events in the whole southeast Yunnan and west Guangxi area and they were suggested to belong to the same geotectonic setting in late Yenshannian. And the new ages of the ~30 Ma obtained in this study is considered to represent a responding to the complicate tectonic evolution history of the Tibetan orogenic events in Cenozoic.  相似文献   

10.
In this paper we present new zircon U–Pb ages, whole-rock major and trace element analyses, and zircon Hf isotopic data for magmatic rocks in the Tuotuohe region of the western segment of the Jinshajiang suture. Our aim is to constrain the Early Permian–Late Triassic tectonic evolution of the region. Zircons from the magmatic rocks of the Tuotuohe region are euhedral–subhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios(0.4–4.6), indicating a magmatic origin. The zircon U–Pb ages obtained using LA–ICP–MS are 281 ± 1 Ma, 258 ± 1 Ma, 244 ± 1 Ma, and 216 ± 1 Ma, which indicate magmatism in the Early Permian–Late Triassic. A diorite from Bashihubei(BSHN) has SiO2 = 57.18–59.97 wt%, Al2O3 = 15.70–16.53 wt%, and total alkalis(Na2O + K2O) = 4.46–6.34 wt%, typical of calc-alkaline and metaluminous series. A gabbro from Bashibadaoban(BSBDB) belongs to the alkaline series, and is poor in SiO2(45.46–54.03 wt%) but rich in Al2O3(16.19–17.39 wt%) and total alkalis(Na2O + K2O = 5.48–6.26 wt%). The BSHN diorite and the BSBDB gabbro both display an enrichment of LREEs and LILEs and depletion of HFSEs, and they have no obvious Eu anomaly; they have relatively low MgO contents(2.54–4.93 wt%), Mg# values of 43 to 52, and low Cr and Ni contents(8.07–33.6 ppm and 4.41–14.2 ppm, respectively), indicating they differentiated from primitive mantle magmas. They have low Nb/U, Ta/U, and Ce/Pb ratios(1.3–9.6, 0.2–0.8, and 0.1–18.1, respectively), and their initial Hf isotopic ratios range from +9.6 to +16.9(BSHN diorite) and +6.5 to +12.6(BSBDB gabbro), suggesting their primary magmas were derived mainly from the partial melting of a mantle wedge that had been metasomatized by subduction fluids. Taking all the new data together, we conclude that the western and eastern segment of the Jinshajiang suture regions underwent identical processes of evolution in the Early Permian–Late Triassic: oceanic crust subduction before the Early Permian, continental collision during the Early–Middle Triassic, and post-collisional extension from the Late Triassic.  相似文献   

11.
Triassic A-type granites in eastern South China Block (SCB) are abundant in the Wuyi–Yunkai tectonic domain and provide an important opportunity to explore the early Mesozoic evolution of continental crust of the SE part of the SCB. We carried out U–Pb zircon dating, Lu–Hf isotope analyses of zircon, and whole-rock geochemical analyses for two granitic plutons, the Guiyantou (GYT) and Luoguyan (LGY) granites, from northwestern Fujian Province. LA–ICP–MS U–Pb zircon analyses yielded ages of 232 ± 4 to 231 ± 7 Ma and 221 ± 5 Ma (Middle-Late Triassic) for the GYT and LGY granites. These two granites belong to metaluminous to weakly peraluminous high K calc-alkaline A-type granite that are enriched in K, Al, light rare earth element and Rb, Th, U, and Pb, and depleted in Nb, Ta, P, and Ti. Their rare earth element patterns are highly fractionated with (La/Yb)N ratios of 2–21 and strong negative Eu anomalies (Eu/Eu* = 0.02–0.31). In situ Hf isotopic analysis of zircon from the GYT and LGY granites yielded εHf(t) values ranging from –11.5 to –1.1, with corresponding two-stage Hf model ages from 1.98 to 1.33 Ga, from which it is inferred that the GYT and LGY magmas formed by partial melting of Proterozoic metasedimentary rock in the Cathaysia block. The two granites were emplaced at 232 and 221 Ma and together with Triassic A-type granites in coastal region of the SCB, which is in agreement with an extensional tectonic setting in the Middle-Late Triassic. We suggest that the Middle-Late Triassic A-type granites in eastern SCB were probably formed in an intracontinental, post-orogenic extensional regime that collision was between the SCB and an ‘unknown block’ or the eastern extension of Indochina block.  相似文献   

12.
The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geochemical features of the granites in the Jinduicheng area can provide essential information for the exploration and development of the porphyry molybdenum deposit. In this study, we report LA–ICP–MS zircon U–Pb age and zircon Hf isotopic compositions of granite porphyries from the Jinduicheng area, and provide insights on the petrogensis and source characteristics of the granites. The results show that the zircon U–Pb ages of the Jinduicheng granite porphyry (143±1 Ma) and the Balipo granite (154±1 Ma), agree well with the Re–Os ages of molybdenite in the Jinduicheng molybdenum polymetallic deposit (139±3 Ma) and the Balipo molybdenum polymetallic deposit (156±2 Ma), indicating that the emplacement of granite porphyries occurred between Late Jurassic and Early Cretaceous. Zircons granite from the Jinduicheng area give the εHf(t) values mainly ranging from ?10 to ?16, and ?20 to ?24, respectively, corresponding to two–stage model ages (tDM2: mainly focused on 1.86–2.0 Ga, and 2.2–2.6 Ga, respectively) of zircons of the granite from the Jinduicheng values. The ore–forming materials are mainly derived from crust, with minor mantle substances. Zircons of the granite from the Balipo area give εHf(t) values ranging from ?18 to ?20, ?28 to ?38, and ?42 to ?44, respectively, corresponding to two–stage model ages (tDM2: mainly focused on 1.88–3.0 Ga, and 3.2–3.90 Ga, respectively). the εHf(t) values of the Jinduicheng porphyry more than that of the Balipo porphyry, and two–stage model ages (tDM2) less than that of the Balipo porphyry, shows that he source of the porphyries originated from ancient lower crustal materials in the Jinduicheng area, and mixed younger components, more younger components contributed for the source of the Jinduicheng porphyry.  相似文献   

13.
The Changning–Menglian orogenic belt (CMOB) in the southeastern Tibetan Plateau, is considered as the main suture zone marking the closure of the Palaeo‐Tethys Ocean between the Indochina and Sibumasu blocks. Here, we investigate the recently discovered retrograded eclogites from this suture zone in terms of their petrological, geochemical and geochronological features, with the aim of constraining the metamorphic evolution and protolith signature. Two types of metabasites are identified: retrograded eclogites and mafic schists. The igneous precursors of the retrograded eclogites exhibit rare earth element distribution patterns and trace element abundance similar to those of ocean island basalts, and are inferred to have been derived from a basaltic seamount in an intra‐oceanic tectonic setting. In contrast, the mafic schists show geochemical affinity to arc‐related volcanics with the enrichment of Rb, Th and U, and depletion of Nb, Ta, Zr, Hf and Ti, and their protoliths possibly formed at an active continental margin tectonic setting. Retrograded eclogites are characterized by peak metamorphic mineral assemblages of garnet, omphacite, white mica, lawsonite and rutile, and underwent five‐stage metamorphic evolution, including pre‐peak prograde stage (M1) at 18–19 kbar and 400–420°C, peak lawsonite‐eclogite facies (M2) at 24–26 kbar and 520–530°C, post‐peak epidote–eclogite facies decompression stage (M3) at 13–18 kbar and 530–560°C, subsequent amphibolite facies retrogressive stage (M4) at 8–10 kbar and 530–600°C, and late greenschist facies cooling stage (M5) at 5–8 kbar and 480–490°C. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb spot analyses of zircon show two distinct age groups. The magmatic zircon from both the retrograded eclogite and mafic schist yielded protolith ages of 451 ± 3 Ma, which is consistent with the ages of Early Palaeozoic ophiolitic complexes and ocean island sequences in the CMOB reported in previous studies. In contrast, metamorphic zircon from the retrograded eclogite samples yielded consistent Triassic metamorphic ages of 246 ± 2 and 245 ± 2 Ma, which can be interpreted as the timing of closure of the Palaeo‐Tethys Ocean. The compatible peak metamorphic mineral assemblages, P–T–t paths and metamorphic ages, as well as the similar protolith signatures for the eclogites in the CMOB and Longmu Co–Shuanghu suture (LCSS) suggest that the two belts formed part of a cold oceanic subduction system in the Triassic. The main suture zone of the Palaeo‐Tethyan domain extends at least 1,500 km in length from the CMOB to the LCSS in the Tibetan Plateau. The identification of lawsonite‐bearing retrograded eclogites in the CMOB provides important insights into the tectonic framework and complex geological evolution of the Palaeo‐Tethys.  相似文献   

14.
ABSTRACT

The magmatic generation for the Late Triassic–Early Jurassic (~215–200 Ma) and Early Cretaceous–Late Cretaceous (~108–79 Ma) post-collisional granites in the Sanjiang Tethys orogeny remain enigmatic. The Xiuwacu complex, located in the southern Yidun Terrane, consists of biotite granite with a weight mean 206Pb/238U age of 199.8 ± 2.5 Ma, aplite granite of 108.2 ± 2.3 Ma, monzogranite porphyry of 80.8 ± 1.0 Ma, and diorite enclaves of 79.2 ± 0.9 Ma and 77.9 ± 0.8 Ma. The Late Triassic biotite granites show I-type granite affinities, with high SiO2 contents, high Mg# values, high zircon δ18O values, and negative whole-rock ?Nd(t) values, indicating a predominant ancient crustal source with the input of juvenile materials. Their fractionated REE patterns and concave-upward middle-to-heavy REE patterns require garnet-bearing amphibolite as the melt source. The Cretaceous highly fractionated aplite granites and monzogranite porphyries have relatively high SiO2 contents, high (Na2O + K2O)/CaO ratios, high zircon δ18O values, and enriched whole-rock Sr–Nd isotopic signatures, suggesting that their parent magmas were likely originated from the ancient middle- to lower crust. Their significant negative Eu anomalies and obvious depletions in Nb, Sr, and Ti demonstrate that the Cretaceous granitic magmas had experienced more fractionation than the Late Triassic felsic magmas. The Late Cretaceous diorite enclaves show low SiO2 contents, high Mg# values, and high zircon δ18O values, suggesting that they were probably derived from the partial melting of subcontinental lithospheric mantle enriched by the Late Triassic subduction. The Late Triassic–Early Jurassic and Early Cretaceous–Late Cretaceous magmatism witnessed the post-collisional setting and intraplate extensional setting in response to the slab break-off and lithospheric-scale transtensional faulting, respectively. The partial melting of subduction-modified lithospheric mantle or/and residual sulphide cumulates within the lower crust during the origination of Late Cretaceous magmas could have provided metals for the formation of Xiuwacu deposit.  相似文献   

15.
Mesozoic granitic intrusions are widely distributed in the Nanling region,South China.Yanshanian granites are closely connected with the formation of tungsten deposits.The Xihuashan granite is a typica...  相似文献   

16.
《Resource Geology》2018,68(4):337-351
The Bayinsukhtu tungsten deposit is a newly discovered quartz‐vein tungsten deposit in the Xing'an–Mongolia Orogenic Belt (XMOB) in southern Mongolia, hosted by the Bayinsukhtu granite porphyry. The granite porphyry is located mainly south of the study area, over 3 km2. The rock consists of quartz and feldspar phenocrysts in a fine‐grained matrix, also mainly composed of feldspar and quartz. The granite porphyry samples demonstrate high SiO2 and high alkalinity. All samples also straddle the high‐potassium calc‐alkaline series. In a plot of the molar ratios of A/NK versus A/CNK, the granites are metaluminous. The chondrite‐normalized REE patterns are characterized by large negative Eu anomalies and fractionated LREEs. The U–Pb age of zircons from the granite porphyry is 298.8 ± 1.8 Ma, and the Sm–Nd age of the five wolframite samples from the tungsten deposit is 303 ± 19 Ma. The cooling age of the granite porphyry and tungsten mineralization is within the error of measurement and is of the Late Carboniferous age. Geological and geochronological evidence shows that the tungsten mineralization and the granite porphyry at Bayinsukhtu are genetically closely related and that they are results of Carboniferous magmatism. Their tectonic setting is related to the accretion of the Central Asian Orogenic Belt during the late Paleozoic era.  相似文献   

17.
The Baleigong granites, located in the western part of the southwestern Tianshan Orogen(Kokshanyan region, China), records late Paleozoic magmatism during the late stages of convergence between the Tarim Block and the Central Tianshan Arc Terrane. We performed a detailed geochronological and geochemical study of the Baleigong granites to better constrain the nature of collisional processes in the Southwest Tianshan Orogen. The LA-ICP-MS U-Pb zircon isotopic analyses indicate that magmatism commenced in the early Permian(~282 Ma). The granite samples, which are characterized by high contents of SiO_2(67.68–69.77 wt%) and Al_2O_3(13.93–14.76 wt%), are alkali-rich and Mg-poor, corresponding to the high-K calc-alkaline series. The aluminum saturation index(A/CNK) ranges from 0.93 to 1.02, indicating a metaluminous to slightly peraluminous composition. Trace element geochemistry shows depletions in Nb, Ta, and Ti, a moderately negative Eu anomaly(δEu=0.40–0.56), enrichment in LREE, and depletion in HREE((La/Yb)_N=7.46–11.78). These geochemical signatures are characteristic of an I-type granite generated from partial melting of a magmatic arc. The I-type nature of the Baleigong granites is also supported by the main mafic minerals being Fe-rich calcic hornblende and biotite. We suggest that the high-K, calc-alkaline I-type granitic magmatism was generated by partial melting of the continental crust, possibly triggered by underplating by basaltic magma. These conditions were likely achieved in a collisional tectonic setting, thus supporting the suggestion that closure of the South Tianshan Ocean was completed prior to the Permian and was followed(in the late Paleozoic) by collision between the Tarim Block and the Central Tianshan Arc Terrane.  相似文献   

18.
The Hongtoushan copper–zinc deposit is the only large Archean volcanogenic massive sulfide (VMS) deposit in China. This paper presents new information on the timing of metallogenesis and metamorphism of the deposit, including new cathodoluminescence (CL) images, and Th U?1 and LA–ICP–MS U–Pb dating on zircons of the biotite–plagioclase gneiss and plagioclase–amphibole gneiss that host the deposit. The CL images and Th U?1 ratios indicate that the zircons within the gneiss are of metamorphic origin. LA–ICP–MS dating of the plagioclase–amphibole gneiss yielded the upper intercept ages of 2549 Ma, and the biotite–plagioclase gneiss yielded the upper intercept ages of 2552 Ma and 2550 Ma correspondingly, indicating that the mineralization of the deposit occurred at around 2550 Ma. The rims of zircons within these host rocks yielded younger U–Pb ages at 2529, 2520 and 2515 Ma, identical to the age of felsic intrusive rocks in the study area. This suggests that the Hongtoushan VMS deposit underwent initial metamorphism and deformation at around 2520 Ma by the intrusion of granite magmas.  相似文献   

19.
A granite‐related scheelite deposit has been recently discovered in the Wuyi metallogenic belt of southeast China. The veinlet–disseminated scheelite occurs mainly in the inner and outer contact zones of the porphyritic biotite granite, spatially associated with potassic feldspathization and silicification. Re–Os dating of molybdenite intergrowths with scheelite yield a well‐constrained isochron age of 170.4 ± 1.2 Ma, coeval with the LA–MC–ICP–MS concordant zircon age of porphyritic biotite granite (167.6 ± 2.2 Ma), indicating that the Lunwei W deposit was formed in the Middle Jurassic (~170 Ma). We identify three stages of ore formation (from early to late): (I) the quartz–K‐feldspar–scheelite stage; (II) the quartz–polymetallic sulfide stage; and (III) the quartz–carbonate stage. Based on petrographic observations and microthermometric criteria, the fluid inclusions in the scheelite and quartz are determined to be mainly aqueous two‐phase (liquid‐rich and gas‐rich) fluid inclusions, with minor gas‐pure and CO2‐bearing fluid inclusions. Ore‐forming fluids in the Lunwei W deposit show a successive decrease in temperature and salinity from Stage I to Stage III. The homogenization temperature decreases from an average of 299 °C in Stage I, through 251 °C in Stage II, to 212 °C in Stage III, with a corresponding change in salinity from an average of 5.8 wt.%, through 5.2 wt.%, to 3.4 wt.%. The ore‐forming fluids have intermediate to low temperatures and low salinities, belonging to the H2O–NaCl ± CO2 system. The δ18OH2O values vary from 1.8‰ to 3.3‰, and the δDV‐SMOW values vary from –66‰ to –76‰, suggesting that the ore‐forming fluid was primarily of magmatic water mixed with various amounts of meteoric water. Sulfur isotope compositions of sulfides (δ34S ranging from –1.1‰ to +2.4‰) and Re contents in molybdenite (1.45–19.25 µg/g, mean of 8.97 µg/g) indicate that the ore‐forming materials originated mainly in the crust. The primary mechanism for mineral deposition in the Lunwei W deposit was a decrease in temperature and the mixing of magmatic and meteoric water. The Lunwei deposit can be classified as a porphyry‐type scheelite deposit and is a product of widespread tungsten mineralization in South China. We summarize the geological characteristics of typical W deposits (the Xingluokeng, Shangfang, and Lunwei deposits) in the Wuyi metallogenic belt and suggest that porphyry and skarn scheelite deposits should be considered the principal exploration targets in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号