首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Evidence from lake sediments and glacier forefields from two hydrologically isolated lake basins is used to reconstruct Holocene glacier and climate history at Hallet and Greyling Lakes in the central Chugach Mountains of south-central Alaska. Glacial landform mapping, lichenometry, and equilibrium-line altitude reconstructions, along with changes in sedimentary biogenic-silica content, bulk density, and grain-size distribution indicate a dynamic history of Holocene climate variability. The evidence suggests a warm early Holocene from 10 to 6 ka, followed by the onset of Neoglaciation in the two drainage basins, beginning between 4.5 and 4.0 ka. During the past 2 ka, the glacial landforms and lacustrine sediments from the two valleys record a remarkably similar history of glaciation, with two primary advances, one during the first millennium AD, from ~500 to 800 AD, and the second during the Little Ice Age (LIA) from ~1400 to 1900 AD. During the LIA, the reconstructed equilibrium-line altitude in the region was no more than 83 ± 44 m (n = 21) lower than the modern, which is based on the extent of glaciers during 1978. Differences between the summer temperature inferred from the biogenic-silica content and the evidence for glacial advances and retreats suggest a period of increased winter precipitation from 1300 to 1500 AD, and reduced winter precipitation from 1800 to 1900 AD, likely associated with variability in the strength of the Aleutian Low.
Darrell S. KaufmanEmail:
  相似文献   

2.
A tongue‐like, boulder‐dominated deposit in Tverrbytnede, upper Visdalen, Jotunheimen, southern Norway, is interpreted as the product of a rock avalanche (landslide) due to its angular to subangular boulders, surface morphology with longitudinal ridges, down‐feature coarsening, and cross‐cutting relationship to ‘Little Ice Age’ moraines. The rock avalanche fell onto glacier ice, probably channelled along a furrow between two glaciers, and stopped on the glacier foreland, resulting in its elongated shape and long runout distance. Its distal margin may have become remobilized as a rock glacier, but a rock glacier origin for the entire landform is discounted due to lack of source debris, presence of matrix, lack of transverse ridges, and sparcity of melt‐out collapse pits. Lichenometric dating of the deposit indicates an approximate emplacement age of ad 1900. Analysis highlights the interaction of rock‐slope failures and glaciers during deglacierization in a neoparaglacial setting, with reduced slope stability due to debuttressing and permafrost degradation, and enhanced landslide mobility due to flow over a glacier and topographic channelling. Implications for the differentiation of relict landslides, moraines and rock glaciers are discussed and interrelationships between these landforms are considered in terms of an ice‐debris process continuum.  相似文献   

3.
The empirical mode decomposition method is used for analyzing the paleoclimate proxy δ18O from Greenland GISP2 ice core.The results show that millennium climate change trends in Greenland record the Medieval Warm Period (MWP) from 860AD-1350AD lasting for about 490 years,and the Little Ice Age (LIA) from 1350AD-1920AD lasting about 570 years.During these events,sub cooling-warming variations occurred.Its multi-scale oscillations changed with quasi-period of 3-year,6.5-year,12-year,24-year,49-year,96-year,213-year and 468-year,and are not only affected by ENSO but also by solar activity.The oscillation of intrinsic mode function IMF7,IMF8 and their tendency obviously appear in 1350AD which is considered as the key stage of transformation between MWP and LIA.The results give more detailed changes and their stages of millennium climate change in high latitude areas of the Northern Hemisphere.  相似文献   

4.
1900-2007年横断山区部分海洋型冰川变化   总被引:12,自引:4,他引:8  
横断山区7条海洋型冰川近百年进退速度变化呈现出以退缩为总趋势的阶段性变化,具体表现为20世纪初至1930s的冰川稳定,1930s-1960s的冰川后退,1970s-1980s的冰川稳定或减速后退,20世纪80年代中期以来的冰川后退,这与我国、北半球及横断山区同期的气候变化呈明显对应,展现出冷干阶段冰川稳定或前进、暖湿阶段后退的态势,但各冰川的变化幅度因纬度位置、坡向、冰川规模、局地环境等而存在明显差异.1982/83年大、小贡巴冰川、海螺沟冰川冰舌段的消融水当量分别为2710mm、3139 mm和5281 mm,1990/91-97/98期间海螺沟冰川冰舌段的年均消融水当量为6157 mm,比1982/83年增加了876 mm.2002年夏季白水1号冰川的积雪消融量由于表碛覆盖较少表现出明显的随海拔升高而降低的特征,平均消融水当量为1086.25 mm,2008.9-19.10.13期间白水1号冰川物质平衡花竿的观测表明,花竿布设区域10月6号左右转入物质积累期.期间日均积累深为1cm,折合水当量5mm.  相似文献   

5.
中原地区晚全新世以来的环境变化   总被引:8,自引:0,他引:8  
施少华  杨怀仁 《地理学报》1992,47(2):119-129
本文利用丰富的历史资料和树木年轮资料,恢复了我国中原地区晚全新世2000余年以来的环境变化,建立了2200余年的降水变化序列。划分了晚全新世以来本地区的干湿和冷暖期。受晚全新世以来的季风环流的影响,本地区环境变化的基本模式是暖湿与冷干对应。然而,在小冰期时期特别是17世纪下半叶以后,这种模式有所改变,即冷湿对应。其主要原因作者认为有二:一是小冰期时期天气系统超常不稳定,这是由于地球气候系统的内外因素改变造成的;二是小冰期时夏季风锋面南移至中原一带,增加了本地区的降水。最后还讨论了晚全新世以来本地区季风变化的过程、机制以及它们所带来的环境变化。并提出了未来环境变化的可能趋向。  相似文献   

6.
Varved minerogenic sediments from glacial-fed Blue Lake, northern Alaska, are used to investigate late Holocene climate variability. Varve-thickness measurements track summer temperature recorded at Atigun Pass, located 41 km east at a similar elevation (r 2 = 0.31, P = 0.08). Results indicate that climate in the Brooks Range from 10 to 730 AD (varve year) was warm with precipitation inferred to be higher than during the twentieth century. The varve-temperature relationship for this period was likely compromised and not used in our temperature reconstruction because the glacier was greatly reduced, or absent, exposing sub-glacial sediments to erosion from enhanced precipitation. Varve-inferred summer temperatures and precipitation decreased after 730 AD, averaging 0.4°C above the last millennial average (LMA = 4.2°C) from 730 to 850 AD, and 0.1°C above the LMA from 850 to 980 AD. Cooling culminated between 980 and 1030 AD with temperatures 0.7°C below the LMA. Varve-inferred summer temperatures increased between 1030 and 1620 AD to the LMA, though the period between 1260 and 1350 AD was 0.2°C below the LMA. Although there is no equivalent to the European Medieval Warm Period in the Blue Lake record, two warm intervals occurred from 1350 to 1450 AD and 1500 to 1620 AD (0.4 and 0.3°C above the LMA, respectively). During the Little Ice Age (LIA; 1620 to 1880 AD), inferred summer temperature averaged 0.2°C below the LMA. After 1880 AD, inferred summer temperature increased to 0.8°C above the LMA, glaciers retreated, but aridity persisted based on a number of regional paleoclimate records. Despite warming and glacial retreat, varve thicknesses have not achieved pre-730 AD levels. This reflects limited sediment availability and transport due to a less extensive retreat compared to the first millennium, and continued relative aridity. Overall, the Blue Lake record is similar to varve records from the eastern Canadian Arctic that document a cool LIA and twentieth century warming. However, the occurrence and timing of events, such as the LIA and Medieval Warm Period, varies considerably among records, suggesting heterogeneous climatic patterns across the North American Arctic.
Broxton W. BirdEmail:
  相似文献   

7.
A new lichen dating method and new moraine observations enabled us to improve the chronology of glacier advances in the Cordillera Blanca (Peru) during the Little Ice Age (LIA). Our results reveal that an early LIA glacial advance occurred around AD 1330 ± 29. However, a second major glacial advance at the beginning of the 17th century overlapped the earlier stage for most glaciers. Hence, this second glacial stage, dated from AD 1630 ± 27, is considered as the LIA maximum glacial advance in the Cordillera Blanca. During the 17th–18th centuries, at least three glacial advances were recorded synchronously for the different glaciers (AD 1670 ± 24, 1730 ± 21, and 1760 ± 19). The moraines corresponding to the two first stages are close to the one in 1630 suggesting a slow recession of about 18% in the total length of the glacier. From the LIA maximum extent to the beginning of the 20th century, the 24 glaciers have retreated a distance of about 1000 m, corresponding to a reduction of 30% in their length. This rate is comparable to that observed during the 20th century. Estimates of palaeo-Equilibrium Line Altitudes show an increase in altitude of about 100 m from the LIA maximum glacial extension at the beginning of the 17th century to the beginning of the 20th century. Because long time series are not available for precipitation and temperature, this glacial retreat is difficult to explain by past climate changes. However, there is a fair correspondence between changes in glacier length and the δ18O recorded in the Quelccaya ice core at a century timescale. Our current knowledge of tropical glaciers and isotope variations leads us to suggest that this common tropical signal reflects a change from a wet LIA to the drier conditions of today. Finally, a remarkable synchronicity is observed with glacial variations in Bolivia, suggesting a common regional climatic pattern during the LIA.  相似文献   

8.
Fossil diatom assemblages in a sediment core from a small lake in Central Kamchatka (Russia) were used to reconstruct palaeoenvironmental conditions of the late Holocene. The waterbody may be a kettle lake that formed on a moraine of the Two-Yurts Lake Valley, located on the eastern slope of the Central Kamchatka Mountain Chain. At present, it is a seepage lake with no surficial outflow. Fossil diatom assemblages show an almost constant ratio between planktonic and periphytic forms throughout the record. Downcore variations in the relative abundances of diatom species enabled division of the core into four diatom assemblage zones, mainly related to changes in abundances of Aulacoseira subarctica, Stephanodiscus minutulus, and Discostella pseudostelligera and several benthic species. Associated variations in the composition and content of organic matter are consistent with the diatom stratigraphy. The oldest recovered sediments date to about 3220 BC. They lie below a sedimentation hiatus and likely include reworked deposits from nearby Two-Yurts Lake. The initial lake stage between 870 and 400 BC was characterized by acidic shallow-water conditions. Between 400 BC and AD 1400, lacustrine conditions were established, with highest contributions from planktonic diatoms. The interval between AD 1400 and 1900 might reflect summer cooling during the Little Ice Age, indicated by diatoms that prefer strong turbulence, nutrient recycling and cooler summer conditions. The timing of palaeolimnological changes generally fits the pattern of neoglacial cooling during the late Holocene on Kamchatka and in the neighbouring Sea of Okhotsk, mainly driven by the prevailing modes of regional atmospheric circulation.  相似文献   

9.
The retreat of 293 glaciers in the Tien Shan Mountains (Kyrgyz Republic) from their maximum extent during the Little Ice Age (LIA) is estimated using aerial photographs from 1980 to 1985 and maps at a scale of 1:25000, constructed during period 1956–1990. Two indices of changes are used: the linear distance from the glacier terminus to its Little Ice Age moraine and the difference in absolute elevation of the terminus and the moraine. Historical information about the front positions of glaciers in the 1880s to the 1930s was used as an indirect control of remote sensing data. The age of moraines in key regions was estimated by lichenometry. On average, Tien Shan glaciers have retreated by 989 ± 540 m since the LIA maximum. Their front elevations (dh) rose by 151 ± 105 m. These changes are similar to changes observed in the Alps and western Norway, Pamir‐Alay and Koryak plateau, but greater than in east Siberia over the same interval. Differences between four regions in Tien Shan (northern, western, inner, central) are generally small, though in the northern Tien Shan the glacier retreat and frontal rise are more prominent (1065 ± 479 m and 215 ± 140 m, respectively).  相似文献   

10.
Smaller glaciers (<0.5 km2) react quickly to environmental changes and typically show a large scatter in their individual response. Accounting for these ice bodies is essential for assessing regional glacier change, given their high number and contribution to the total loss of glacier area in mountain regions. However, studying small glaciers using traditional techniques may be difficult or not feasible, and assessing their current activity and dynamics may be problematic. In this paper, we present an integrated approach for characterizing the current behaviour of a small, avalanche‐fed glacier at low altitude in the Italian Alps, combining geomorphological, geophysical and high‐resolution geodetic surveying with a terrestrial laser scanner. The glacier is still active and shows a detectable mass transfer from the accumulation area to the lower ablation area, which is covered by a thick debris mantle. The glacier owes its existence to the local topo‐climatic conditions, ensured by high rock walls which enhance accumulation by delivering avalanche snow and reduce ablation by providing topographic shading and regulating the debris budget of the glacier catchment. In the last several years the glacier has displayed peculiar behaviour compared with most glaciers of the European Alps, being close to equilibrium conditions in spite of warm ablation seasons. Proportionally small relative changes have also occurred since the Little Ice Age maximum. Compared with the majority of other Alpine glaciers, we infer for this glacier a lower sensitivity to air temperature and a higher sensitivity to precipitation, associated with important feedback from increasing debris cover during unfavourable periods.  相似文献   

11.
Little Ice Age (LIA) moraines along the margins of Skálafellsjökull and Heinabergsjökull, two neighbouring outlet glaciers flowing from the Vatnajökull ice‐cap, have been re‐dated to test the reliability of different lichenometric approaches. During 2003, 12 000 lichens were measured on 40 moraine fragments at Skálafellsjökull and Heinabergsjökull to provide surface age proxies. The results are revealing. Depending on the chosen method of analysis, Skálafellsjökull either reached its LIA maximum in the early 19th century (population gradient) or the late 19th century (average of five largest lichens), whereas the LIA maximum of Heinabergsjökull occurred by the mid‐19th century (population gradient) or late‐19th century (average of 5 largest lichens). Discrepancies (c. 80 years for Skálafellsjökull and c. 40 years for Heinabergsjökull) suggest that the previously cited AD 1887 LIA maxima for both glaciers should be reassessed. Dates predicted by the lichen population gradient method appear to be the most appropriate, as mounting evidence from other geochronological reconstructions and sea‐ice records throughout Iceland tends to support an earlier LIA glacier maximum (late 18th to mid‐19th century) and probably reflects changes in the North Atlantic Oscillation. These revised chronologies shed further light on the precise timing of the Icelandic LIA glacier maximum, whilst improving our understanding of glacier‐climate interactions in the North Atlantic.  相似文献   

12.
Glacier activity at Russkaya Gavan', north-west Novaya Zemlya (Arctic Russia), is reconstructed by particle size analysis of three fjord sediment cores in combination with 14C and 210Pb dating. Down-core logging of particle size variation reveals at least two intervals with sediment coarsening during the past eight centuries. By comparing them with reconstructions of summer temperature and atmospheric circulation, these intervals are interpreted to represent two cycles of glacier advance and retreat sometime during ca. AD 1400–1700 and AD 1700–present. Sediment accumulation thus appears to be sensitive to century-scale fluctuations of the Barents Sea climate. The identification of two glacier cycles in the glaciomarine record from Russkaya Gavan' demonstrates that during the "Little Ice Age" major glacier fluctuations on Novaya Zemlya occurred in broad synchrony with those in other areas around the Barents Sea.  相似文献   

13.
Abstract The age of recent deposits can be determined using an intrinsic characteristic of the lichen ‘population’ growing on their surface. This paper presents a calibrated dating curve based on the gradient of the size‐frequency distribution of yellow‐green Rhizocarpon lichens. The dating potential of this new curve is tested on surfaces of known age in southeast Iceland. This particular size—frequency technique is also compared with the more traditional largest‐lichen approach. The results are very encouraging and suggest that the gradient can be used as an age indicator, at least on deposits formed within the last c. 150 years – and probably within the last c. 400 years – in the maritime subpolar climate of southeast Iceland. Using both lichenometric techniques, revised dates for moraines on two glacier forelands are presented which shed new light on the exact timing of the Little Ice Age glacier maximum in Iceland.  相似文献   

14.
This study aims to observe post‐Little Ice Age glacier retreat and the constitutive patterned ground development at two French Pyrenean glacier forelands (Taillon Glacier and Pays Baché Glacier). Periglacial feature observations are associated with periods of deglaciation using aerial photos and archive files. Four conclusions are drawn. (1) The two glaciers have lost respectively 68% and 92% of their surface since 1850, which corroborates observations on other Pyrenean glaciers. (2) Patterned ground can develop very rapidly, sometimes only 10 years after deglaciation. (3) Patterned ground size does not systematically increase as a function of the time elapsed since deglaciation. (4) All the forms, even those developing near the Little Ice Age moraines, are active. We propose that the location, activity and size of patterned ground are more probably linked to drift characteristics and local wetness conditions than to the time elapsed since deglaciation.  相似文献   

15.
北极斯瓦尔巴群岛冰川大多数属于亚极地型(sub-polar)或多热型(polythermal)。Austre Br(?)ggerbreen和Midre Lovénbreen冰川(<10km~2)长时间系列物质平衡研究显示,自小冰期结束以来几乎所有的观测年中夏季消融比冬季积累更大,导致冰体稳定地减小;而面积更大、海拔高度更高的冰川如Kongsvegen冰川(105km~2)则更加接近稳定态的平衡。斯瓦尔巴群岛冰川流动速率一般较低,但跃动相当频繁,控制跃动型冰川空间分布的因素包括冰川长度、基底岩性和多热场。可通过冰川水文特征、钻孔温度测量和无线电回波探测获取斯瓦尔巴群岛冰川热场的信息。斯瓦尔巴群岛冰川的低流速和多热性结构对冰川上的排水系统相当重要,整个群岛淡水径流的四个主要来源分别是冰川消融、雪融化、夏季降雨和冰崩解,经验回归方法和模式方法用于计算淡水径流量。因夏季融水渗浸作用、采样分辨率低和化学成分分析有限,早期斯瓦尔巴群岛冰芯的准确定年受到严重影响,但最近的研究显示,来自斯瓦尔巴群岛冰帽的冰芯数据仍然能够提供重要的气候和环境信息。通过我国北极黄河站2005年度科学考察,我们已初步建立了Austre Lovénbreen冰川和Pedersenbreen冰川监测系统,并计划在Austre Lovénbreen冰川进行钻孔温度测量、冰川气象要素观测、冰川前缘水文观测以及冰川厚度和内部结构测量,重点开展斯瓦尔巴群岛冰川基本特征和发育条件、冰川表面能量和物质平衡、冰川波动与气候变化关系、淡水径流年际和季节性变化和气/雪/冰界面过程等方面的研究。  相似文献   

16.
小冰期气候的研究进展   总被引:18,自引:5,他引:13  
李明启  靳鹤龄  张洪 《中国沙漠》2005,25(5):731-737
小冰期是近2ka来的一个重要气候事件,又是目前全球变暖的背景事件,已成为古气候和古环境研究的热点。对此,科学工作者已经做了大量的研究。本文广泛综合前人研究的成果,介绍了小冰期的概况,认为1450-1890年是小冰期的时限,在此期间有三次冷期和两次暖期。冷期发生在1450-1510年、1560-1690年和1790-1890年,其中第二次冷期表现最甚;暖期发生在1510-1560年和1690-1790年。太阳活动和火山活动是小冰期气候变化的主要因素。并重点从冰芯、树轮、湖泊沉积、历史文献和沙漠地层等方面综述了近年来国内外对小冰期气候变化的研究现状。  相似文献   

17.
Owing to increased winter balances especially since AD 1988/89, almost all valley outlet glaciers of Jostedalsbreen in western Norway are experiencing the largest advance since that of the early 18th century, the regional "Little Ice Age" maximum. Brigsdalsbreen advanced 441 m between 1987 and 1997. By the end of this period, the glacier had reached the outlet of the proglacial lake Brigsdalsvatnet, ploughing into unfrozen, fine-grained, water-soaked glaciolimnic sediments from the lake bottom and forming frontal moraines. These moraines are characterised by a lack of internal structures and preferred fabric. Owing to the strong advance, the moraine morphology is constantly changing, leaving only temporary moraine ridges.
Observations made along the glacier front suggest that the formation of these moraines can best be described as "bulldozed moraines", since the term push moraine, commonly associated with advancing glaciers, should be restricted to permafront environments. Different processes involved in moraine formation at frontal and lateral glacier margins result from variations in proglacial sediment properties, microrelief and glacier dynamics. Among these processes, large boulders left in the proglacial areas are pushed forward, forming pressure ridges on the distal side. Some of the largest boulders ( c . 80–120 m3) are overturned or rotated by the glacier.  相似文献   

18.
19.
Abstract Small, stagnating ice caps at high latitudes are particularly sensitive to climatic fluctuations, especially with regard to changes in ablation season temperature. We conducted mass balance measurements and GPS area surveys on four small High Arctic plateau ice caps from 1999–2002. We compared these measurements with topographic maps and aerial photography from 1959, and with previously published data. Net mass balance (bn) of Murray Ice Cap was ?0.49 (1999), ?0.29 (2000), ?0.47 (2001), and ?0.29 (2002), all in meters of water equivalent (m w.eq.). The mass balance of nearby Simmons Ice Cap was also negative in 2000 (bn=?0.40 m w.eq.) and in 2001 (bn=?0.52 m w.eq.). All four ice caps experienced substantial marginal recession and area reductions of between 30 and 47% since 1959. Overall, these icecaps lost considerable mass since at least 1959, except for a period between the mid‐1960s and mid‐1970s characterized regionally by reduced summer melt, positive mass balance, and ice cap advance. The regional equilibrium line altitude (ELA) is located, on average, above the summits of the ice caps, indicating that they are remnants of past climatic conditions and out of equilibrium with present climate. The ice caps reached a Holocene maximum and were several times larger during the Little Ice Age (LIA) and their current recession reflects an adjustment to post‐LIA climatic conditions. At current downwasting rates the ice masses on the Hazen Plateau will completely disappear by, or soon after, the mid‐21st century.  相似文献   

20.
中国典型山地温冰川水化学空间分布特征与近期冰川动态   总被引:14,自引:0,他引:14  
从我国玉龙雪玉典型温水王白水1号冰川不同区段表面融水,新近积雪和冰川初给河水采样分析结果表明,雪线以下降水中的稳定同位素的离子含量比雪线以下为高,低海拔河水比高海拨融水的氧同浓度为低,可能在来源上存在着差异,这种分布特征说明本温冰川区局部大气环流情况高度而不同,有可能存在季气候区所特有的“降水量效应”或“季节性效应”。冰川不同水体内离子浓度变化说明,冰川融水与地壳表面接触时间越久,其中的可融性离了  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号