首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Smartville Complex is a late Jurassic, rifted volcanic arc in the northern Sierra Nevada, California. Near Auburn, California, it consists of a lower volcanic unit, dominated by basaltic flows, and an upper volcanic unit of andesitic volcaniclastic rocks, both of which have been intruded by dykes and irregular bodies of diabase. These rocks contain relict igneous minerals, and the metamorphic minerals albite, chlorite, quartz, pumpellyite, prehnite, epidote, amphibole, titanite, garnet, biotite, K-feldspar, white mica, calcite, and sulphide and oxide minerals.
Prehnite–pumpellyite (PrP), prehnite–actinolite (PrA), and greenschist (GS) zones have been identified. The pumpellyite-out isograd separates the PrP and PrA zones, and the prehnite-out isograd separates the PrA and GS zones. The minerals Ab + Qtz + Mt + Tn are common to most assemblages in all three zones. The MgO/(MgO + FeO) ratio of the effective bulk composition has an important and systematic effect on the observed mineral assemblages in the PrP zone. Prehnite-bearing assemblages contain the additional minerals, Pmp + Amp + Ep + Chl in MgO-rich rocks, and either Pmp + Ep + Chl or Amp + Ep + Chl in less magnesian rocks. Subcalcic to calcic amphibole is common in the PrP zone. The mineral assemblage Prh + Act + Ep + Chl, without Pmp, characterizes the PrA zone, and the mineral assemblage Act + Ep + Chl, without Prh or Pmp, characterizes the GS zone. The disappearance of pumpellyite and prehnite occurred by continuous reactions.
The sequence of mineral assemblages was produced by burial metamorphism at P–T conditions of 300° 50°C at approximately 2.5 ± 0.5 kbar. During metamorphism, the composition of the fluid phase was nearly 100% H2O and the oxygen fugacity was between the hematite–magnetite and quartz–fayalite–magnetite buffers.  相似文献   

2.
The metamorphic evolution of micaschists in the north‐eastern part of the Saxothuringian Domain in the Central European Variscides is characterized by the early high‐pressure M1 assemblage with chloritoid in cores of large garnet porphyroblasts and a Grt–Chl–Phe–Qtz ± Pg M2 assemblage in the matrix. Minerals of the M1–M2 stage were overprinted by the low‐pressure M3 assemblage Ab–Chl–Ms–Qtz ± Ep. Samples with the best‐preserved M1–M2 mineralogy mostly appear in domains dominated by the earlier D1 deformation phase and are only weakly affected by subsequent D2 overprint. Thermodynamic modelling suggests that mineral assemblages record peak‐pressure conditions of ≥18–19 kbar at 460–520 °C (M1) followed by isothermal decompression 10.5–13.5 kbar (M2) and final decompression to <8.5 kbar and <480 °C (M3). The calculated peak P–T conditions indicate a high‐pressure/low‐temperature apparent thermal gradient of ~7–7.5 °C km?1. Laser ablation inductively coupled plasma mass spectrometry isotopic dating and electron microprobe chemical dating of monazite from the M1–M2 mineral assemblages give ages of 330 ± 10 and 328 ± 6 Ma, respectively, which are interpreted as the timing of a peak pressure to early decompression stage. The observed metamorphic record and timing of metamorphism in the studied metapelites show striking similarities with the evolution of the central and south‐western parts of the Saxothuringian Domain and suggest a common tectonic evolution along the entire eastern flank of the Saxothuringian Domain during the Devonian–Carboniferous periods.  相似文献   

3.
Local fluid migration through a serpentine melange caused successive carbonation of a metabasite block (about 80 meter in diameter) during the uplift stage of the glaucophanitic metamorphic rocks, the Nishisonogi metamorphics, southwest Japan. The block shows a zonal sequence as follows. Zone 1: original greenschist (Am+Ep+ Chl+Ab+Sph+Qtz). Zone 2: epidote disappears by the reaction Ep+Am+CO2+H2O=Chl+Cc+Qtz. Zone 3: balc appears by the reaction Am+CO2+H2O=Ta+Cc+ Qtz. Zone 4:sphene breakdowns by the reaction Sph+ CO2=Rt+Cc+Qtz. Zone 5: amphibole disappears by the two simultaneous reactions, Am+CO2=Do+Ta+Qtz and Ta+Cc+CO2=Do+Qtz+H2O. Zone 7: albite is replaced by chlorite, calcite, dolomite and quartz, and the assemblage of Do+Cc+Chl+Rt+Qtz is stable. Analyses of phase relations indicate an introduction of CO2-rich fluid into the greenschist body during regional metamorphism. The CO2-rich fluid may have formed by devolatilization reactions between serpentinite and graphite-bearing metasediments. The fluid migrated within the melange through a channelized pathway and into the greenschist body from a deeper part of the melange.  相似文献   

4.
An exceptionally well-exposed part of the Flin Flon Greenstone Belt (Manitoba/Saskatchewan) is used to characterize the mineral assemblage evolution associated with prehnite–pumpellyite through amphibolite facies metamorphism of basalts. Data from these rocks are combined with a large literature data set to assess the ability of current thermodynamic models to reproduce natural patterns, evaluate the use of metabasic rocks at these grades to estimate pressure–temperature (P–T) conditions of metamorphism, and to comment on the metamorphic devolatilization that occurs. At Flin Flon, five major isograds (actinolite-in, prehnite- and pumpellyite-out, hornblende-in, oligoclase-in, and actinolite-out) collectively represent passage from prehnite–pumpellyite to lower amphibolite facies conditions. The evolution in mineral assemblages occurs in two narrow (~1,000 m) zones: the prehnite–pumpellyite to greenschist facies (PP-GS) transition and greenschist to amphibolite facies (GS-AM) transition. Across the GS-AM transition, significant increases in the hornblende and oligoclase proportions occur at the expense of actinolite, albite, chlorite, and titanite, whereas there is little change in the proportions of epidote. The majority of this mineral transformation occurs above the oligoclase-in isograd within the hornblende–actinolite–oligoclase zone. Comparison with thermodynamic modelling results suggests data set 5 (DS5) of Holland and Powell (1998, Journal of Metamorphic Geology, 16 (3):309–343) and associated activity–composition (a–x) models is generally successful in reproducing natural observations, whereas data set 6 (DS6) (Holland & Powell, 2011, Journal of Metamorphic Geology, 29 (3):333–383) and associated a–x models fail to reproduce the observed mineral isograds and compositions. When the data from Flin Flon are combined with data from the literature, two main pressure-sensitive facies series for metabasites are revealed, based on prograde passage below or above a hornblende–albite bathograd at ~3.3 kbar: a low-pressure ‘actinolite–oligoclase type’ facies series, characterized by the appearance of oligoclase before hornblende, and a moderate- to high-pressure ‘hornblende–albite type’ facies series, characterized by the appearance of hornblende before oligoclase. Concerning the PP-GS transition, the mineral assemblage evolution in Flin Flon suggests it occurs over a small zone (<1,000 m), in which assemblages containing true transitional assemblages (prehnite and/or pumpellyite coexisting with actinolite) are rare. This contrasts with thermodynamic modelling, using either DS5 or DS6, which predicts a wide PP-GS transition involving the progressive appearance of epidote and actinolite and disappearance of pumpellyite and prehnite. Patterns of mineral assemblages and thermodynamic modelling suggest a useful bathograd (‘CHEPPAQ bathograd’), separating prehnite–pumpellyite-bearing assemblages at low pressures and pumpellyite–actinolite-bearing assemblages at higher pressures, occurs at ~2.3 to 2.6 kbar. Observations from the Flin Flon sequence suggests devolatilization across the GS-AM transition (average: ~1.8 wt% H2O) occurs over a very narrow interval within the actinolite–hornblende–oligoclase zone, associated with the loss of >75% of the total chlorite. By contrast, modelling of the GS-AM transition zone predicts more progressive dehydration of ~2 wt% H2O over a >50°C interval. Observations from the field suggest devolatilization across the PP-GS transition occurs over a very narrow interval given the rarity of transitional assemblages. Modelling suggests fluid release of 1.0–1.4 wt% resulting from prehnite breakdown over a ~10°C interval. This fluid may not be entirely lost from the rock package due to involvement in the hydration of igneous mineralogy across the PP-GS transition as observed in the Flin Flon sequence.  相似文献   

5.
Metamorphism in the late Permian to early Cretaceous North Island basement greywackes has been investigated using petrography and clay mineral crystallinity. Several terranes are represented in the North Island greywackes and the study area includes Murihiku, Manaia Hill, Bay of Islands and Omahuta terranes and the Mélange Zone. Very low-grade metamorphic events in the greywackes have produced mineral assemblages of zeolite to pumpellyite-actinolite greywacke facies. Zeolite facies greywackes are characterized by the assemblage Zeo (Lmt, Anl, Hul)+Qtz±Ab±Cal± Chl±I±I/S* observed in the entire Murihiku terrane and in the eastern part of the Bay of Islands terrane and the Mélange Zone. The entire Manaia Hill, most of the Bay of Islands, the eastern area of the Omahuta terranes and the central part of the Mélange Zone are at prehnite-pumpellyite facies with mineral assemblages of Prh+Qtz+Chl+Pmp+Ab+± Ill±Cal±Lmt. Pumpellyite-actinolite facies with the mineral assemblage of Pmp±Act+Qtz+Ab+Chl±Ep±Ill±Cal±Chl occurs in the western part of the Mélange Zone and the Omahuta terrane.

Illite (IC) and chlorite (ChC) crystallinity values of greywackes are very similar and range from diagenetic zone to anchizone. Metamorphic conditions indicated by the IC and ChC and mineral facies are in excellent agreement and correlate as follows: crystallinity diagenetic-zone with the zeolite mineral facies, crystallinity lower anchizone with prehnite-pumpellyite mineral facies and crystallinity upper anchizone with pumpellyite-actinolite mineral facies. The general increase in the metamorphic grade from east to west, except in Murihiku terrane, is compatible with the sequence of accretion expected in a subduction environment.  相似文献   


6.
Due to the retrograde cation exchange problems experienced by conventional geothermobarometers above their closure temperatures, petrogenetic grids are a potentially powerful alternative to unravelling the PT evolution of ultrahigh‐T granulite terranes. A new qualitative KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O) petrogenetic grid for Mg–Al rich metapelites containing K‐feldspar, sillimanite and quartzofeldspathic melt that successfully accounts for the majority of assemblages composed of variations of sapphirine, spinel, garnet, orthopyroxene, cordierite, biotite and quartz is developed. Univariant reactions are predicted utilizing a newly derived ‘melt projection’ and these reactions are entirely consistent with algebraically calculated reaction coefficients obtained using a set of standard phase compositions. Based upon observations of commonly associated mineral assemblages in natural lithologies the [Spr, Spl], [Qtz, Spl], [Bt, Spl], [Opx, Spr], [Opx, Qtz] and [Bt, Opx] invariant points are assumed to be stable, whilst the [Grt, Spr], [Grt, Qtz], [Spr, Qtz] and [Crd, Qtz] are assumed to be metastable. Biotite‐bearing assemblages are confined to the lowest temperatures, and sapphirine + quartz to the highest temperatures. Orthopyroxene + sillimanite ± quartz assemblages are confined to the highest pressures, whilst spinel‐bearing assemblages are stabilized by lower pressures. The alternative choice of invariant point stability leads to significant differences between this grid and previously proposed topologies. Spinel cannot be stable along with the orthopyroxene and sillimanite assemblage as previously proposed. Further, more subtle differences in topology result from the treatment of H2O in the chemographic projection used to deduce univariant reactions, and projecting from a water‐bearing quartzofeldspathic melt does not yield the same reaction coefficients as projection from H2O. The new grid allows reinterpretation of previously proposed evolutionary P–T paths for Mg–Al rich granulites from the Napier Complex and Rauer Group, East Antarctica, and In Ouzzal, Algeria.  相似文献   

7.
The P–T evolution of amphibolite facies gneisses and associated supracrustal rocks exposed along the northern margin of the Paleo to MesoArchean Barberton greenstone belt, South Africa, has been reconstructed via detailed structural analysis combined with calculated K(Mn)FMASH pseudosections of aluminous felsic schists. The granitoid‐greenstone contact is characterized by a contact‐parallel high‐strain zone that separates the generally low‐grade, greenschist facies greenstone belt from mid‐crustal basement gneisses. The supracrustal rocks in the hangingwall of this contact are metamorphosed to upper greenschist facies conditions. Supracrustal rocks and granitoid gneisses in the footwall of this contact are metamorphosed to sillimanite grade conditions (600–700 °C and 5 ± 1 kbar), corresponding to elevated geothermal gradients of ~30–40 °C km?1. The most likely setting for these conditions was a mid‐ or lower crust that was invaded and advectively heated by syntectonic granitoids at c. 3230 Ma. Combined structural and petrological data indicate the burial of the rocks to mid‐crustal levels, followed by crustal exhumation related to the late‐ to post‐collisional extension of the granitoid‐greenstone terrane during one progressive deformation event. Exhumation and decompression commenced under amphibolite facies conditions, as indicated by the synkinematic growth of peak metamorphic minerals during extensional shearing. Derived P–T paths indicate near‐isothermal decompression to conditions of ~500–650 °C and 1–3 kbar, followed by near‐isobaric cooling to temperatures below ~500 °C. In metabasic rock types, this retrograde P–T evolution resulted in the formation of coronitic Ep‐Qtz and Act‐Qtz symplectites that are interpreted to have replaced peak metamorphic plagioclase and clinopyroxene. The last stages of exhumation are characterized by solid‐state doming of the footwall gneisses and strain localization in contact‐parallel greenschist‐facies mylonites that overprint the decompressed basement rocks.  相似文献   

8.
The Nadezhda ore-controlling structure and related rocks of the Lukkulaisvaara layered intrusion from the Oulanka plutonic group have been studied. Tensile deformation arising at the cooling stage at interfaces of rocks dissimilar in composition with different compressibility coefficients controlled the intensity of secondary processes and the high concentration of sulfide and platinum group minerals (PGM) along the perimeter of the fine-grained gabbronorite body in contact zones with country rocks. These zones were specific geochemical barriers. Magmas of supplementary injections could have been one of the sources of fluid affecting the rocks. Fe-Ni-Cu sulfides and PGM crystallized within the temperature range T = 800-350°C. Regional metamorphism did not exceed conditions of greenschist facies. Results of modeling of metasomatic processes indicate that decompression played the leading role in formation of the major secondary mineral assemblages: Czo-An10-Chl-Tr(Act) and Qtz-An70-Amph-Bt. The decreasing pressure under isothermal conditions resulted in a rise in solubility of metals in chloride solution and their transport into dilatable zones. The cooling model leading to the enrichment of rocks in potassium and then to its leaching is realized more seldom, resulting in a Qtz-Ms-Chl-Act-Czo mineral assemblage and eventually in Qtz-Chl veins. The change of P and T during pluton cooling resulted in changing of the direction of metasomatic processes and telescoping of different superimposed mineral assemblages: Amph(±Act)-Bt ± Chl 1 ± Qtz as an early one and Qtz-Czo-Chl2-Ab-Ms as a late one. The model mineral assemblages that match natural counterparts are as follows: (1) Qtz-Pl-Amph-Bt and Qtz-Pl-Chl-Bt(Ms) and (2) Tr(Act)-Chl-An10-Czo, Qtz-An10-Chl-Ms(Bt), and Qtz-Czo-Chl-An10-Ms. At the same time, the An40–50-Amph-Bt, Qtz-An40–50-Amph-Bt, Qtz-An10–20-Chl-Bt(Ms), An30–40-Chl-Tr(Act)-Bt, An30-Chl-Tr(Act), and An30-Tr (Act)-Bt assemblages are suggested to be intermediate and reflect the direction of metasomatic processes.  相似文献   

9.
The Meatiq basement, which is exposed beneath late Proterozoic nappes of supracrustal rocks in the Central Eastern Desert of Egypt, was affected by three metamorphic events. The ophiolite cover nappes show only the last metamorphic overprint. The M1 metamorphic event (T ≥750 °C) is restricted to migmatized amphibolite xenoliths within the Um Ba′anib orthogneiss in the structurally lowest parts of the basement. Typical upper amphibolite facies M2 mineral assemblages include Grt–Zn-rich Spl–Qtz±Bt, Grt–Zn-rich Spl–Ms–Kfs–Bt–Sil–Qtz and locally kyanite in metasedimentary rocks. The mineral assemblages Ms–Qtz–Kfs–Sil in the matrix and Sil–Grt in garnet cores indicate that peak M2 P–T conditions exceeded muscovite and staurolite stabilities. Diffusional equilibration at M2 peak temperature conditions caused homogeneous chemical profiles across M2 garnets. Abundant staurolite in garnet rims and the matrix indicates a thorough equilibration during M2 at decreasing temperature conditions. M2 P–T conditions ranged from 610 to 690 °C at 6–8 kbar for the metamorphic peak and 530–600 °C at about 5.8 kbar for the retrograde stage. However, relic kyanite indicates pressures above 8 kbar, preceeding the temperature peak. A clockwise P–T path is indicated by abundant M2 sillimanite after relic kyanite and by andalusite after sillimanite. M2 fluid inclusions, trapped in quartz within garnet and in the quartz matrix show an array of isochores. Steepest isochores (water-rich H2O-CO2±CH4/N2 inclusions) pass through peak M2 P–T conditions and flatter isochores (CO2-rich H2O-CO2±CH4/N2 inclusions) are interpreted to represent retrograde fluids which is consistent with a clockwise P–T path for M2. The M3 assemblage Grt–Chl in the uppermost metasedimentary sequence of the basement limits temperature to 460 to 550 °C. M3 temperature conditions within the ophiolite cover nappes are limited by the assemblage Atg–Trem–Tlc to<540 °C and the absence of crysotile to >350 °C. The polymetamorphic evolution in the basement contrasts with the monometamorphic ophiolite nappes. The M1 metamorphic event in the basement occurred prior to the intrusion of the Um Ba′anib granitoid at about 780 Ma. The prograde phase of the M2 metamorphic event took place during the collision of an island arc with a continent. The break-off of the subducting slab increased the temperature and resulted in the peak M2 mineral assemblages. During the rise of the basement domain retrograde M2 mineral assemblages were formed. The final M3 metamorphic event is associated with the updoming of the basement domain at about 580 Ma along low-angle normal faults.  相似文献   

10.
Abstract Metagreywackes in the Eastern Belt of the Franciscan Complex contain the assemblage: Qtz + Ab + Lws + Chl + Ph + Pmp + Fgl + Hem ° Cal/Arg or compatible subassemblages. Blue amphibole first appears in the westernmost part of the belt and pumpellyite is absent in the eastern part. The compositions of the coexisting minerals and the nature of the continuous reactions in these low-grade blueschists suggest that the distribution of blue amphibole and pumpellyite in the Eastern Belt of the Franciscan Complex reflects differences of effective bulk composition rather than differences in physical conditions of metamorphism. In rocks lacking pumpellyite, white mica may be essential to the growth of blue amphibole, but carbonate plays only a limited role. The continuous reaction that limits the appearance of blue amphibole and the disappearance of coexisting pumpellyite has the general form: Pmp + Chl + Ab + Qtz + Hem + H2O + FeMg-1= Fgl + Lws. This reaction requires significant hydration as pressure increases in order to produce blue amphibole. Most of the Eastern Belt of the Franciscan Complex formed in limited ranges of temperature and pressure, which are estimated to be 240—280° C, 6.5-7.5 kbar. Pressures in the westernmost part of the area were about 1 kbar lower than in the east. Pressures of about 8.5-10 kbar are estimated for tectonic blocks that contain sodic clinopyroxene.  相似文献   

11.
Low‐pressure crystal‐liquid equilibria in pelitic compositions are important in the formation of low‐pressure, high‐temperature migmatites and in the crystallization of peraluminous leucogranites and S‐type granites and their volcanic equivalents. This paper provides data from vapour‐present melting of cordierite‐bearing pelitic assemblages and augments published data from vapour‐present and vapour‐absent melting of peraluminous compositions, much of which is at higher pressures. Starting material for the experiments was a pelitic rock from Morton Pass, Wyoming, with the major assemblage quartz‐K feldspar‐biotite‐cordierite, approximately in the system KFMASH. A greater range in starting materials was obtained by addition of quartz and sillimanite to aliquots of this rock. Sixty‐one experiments were carried out in cold‐seal apparatus at pressures of 1–3.5 kbar (particularly 2 kbar) and temperatures from 700 to 840 °C, with and without the addition of water. In the vapour‐present liquidus relations at 2 kbar near the beginning of melting, the sequence of reactions with increasing temperature is: Qtz + Kfs + Crd + Sil + Spl + V = L; Qtz + Kfs + Crd + Spl + Ilm + V = Bt + L; and Qtz + Bt + V = Crd + Opx + Ilm + L. Vapour‐absent melting starts at about 800 °C with a reaction of the form Qtz + Bt = Kfs + Crd + Opx + Ilm + L. Between approximately 1–3 kbar the congruent melting reaction is biotite‐absent, and biotite is produced by incongruent melting, in contrast to higher‐pressure equilibria. Low pressure melts from pelitic compositions are dominated by Qtz‐Kfs‐Crd. Glasses at 820–840 °C have calculated modes of approximately Qtz42Kfs46Crd12. Granites or granitic leucosomes with more than 10–15% cordierite should be suspected of containing residual cordierite. The low‐pressure glasses are quite similar to the higher‐pressure glasses from the literature. However, XMg increases from about 0.1–0.3 with increasing pressure from 1 to 10 kbar, and the low‐temperature low‐pressure glasses are the most Fe‐rich of all the experimental glasses from pelitic compositions.  相似文献   

12.
Eclogites in the Tromsø area, northern Norway, are intimately associated with meta-supracrustals within the Uppermost Allochthon of the Scandinavian Caledonides (the Tromsø Nappe Complex). The whole sequence, which includes pelitic to semipelitic schists and gneisses, marbles and calc-silicate rocks, quartzofeldspathic gneisses, metabasites and ultramafites, has undergone three main deformational/metamorphic events (D1/M1, D2/M2 and D3/M3). Detailed structural, microtextural and mineral chemical studies have made it possible to construct separate P–T paths for these three events. Chemically zoned late syn- to post-D1 garnets with inclusions of Bt, Pl and Qtz in Ky-bearing metapelites indicate a prograde evolution from 636°C, 12.48 kbar to c. 720°C, 14–15 kbar. This latter result is in agreement with Grt–Cpx geothermometry and Grt–Cpx–Pl–Qtz geobarometry on eclogites and trondhjemitic to dioritic gneisses. Maximum pressures at c. 675°C probably reached 17–18 kbar based on Cpx–Pl–Qtz inclusions in eclogitic garnets, and Grt–Ky–Pl–Qtz and Jd–Ab–Qtz in trondhjemitic gneisses. Post-D1/pre-D2 decompressional breakdown of the high-P assemblages indicates a substantial drop in pressure at this stage. Inclusions and chemical zoning in syn- to post-D2 garnets from metapelites record a second episode of prograde metamorphism, from 552°C, 7.95 kbar, passing through a maximum pressure of 10.64 kbar at 644°C, with final equilibration at c. 665°C, 9–10 kbar. The corresponding apparently co-facial paragenesis Grt + Cpx + Pl + Qtz in metabasites yields c. 635°C, 8–10 kbar. In the metapelites post-D3, Grt in apparent equilibrium with Bt, Phe and Pl yield c. 630°C, 9 kbar. The D1/M1 and D2/M2 episodes are exclusively recorded in the Tromsø Nappe Complex and must thus pre-date the emplacement of this allochthonous unit on top of the underlying Lyngen Nappe, while the D3/M3 episode is common for the two units. A previously published Sm–Nd mineral isochron (Grt–Cpx–Am) on a partly retrograded and recrystallized ecologite of 598 ± 107 Ma represents either the timing of formation of the eclogites or the post-eclogite/pre-D2 decompression stage, while a Rb–Sr whole rock isochron of an apparently post-D1/pre-D2 granite of 433 ± 11 Ma is consistent with a K–Ar age of post-D1/pre-D2 amphiboles from a retrograded eclogite of 437 ± 16 Ma which most likely record cooling below the 475–500°C isotherm after the M3 metamorphism.  相似文献   

13.
The exceptional andalusite–kyanite–andalusite sequence occurs in Al‐rich graphitic slates in a narrow pelite belt on the hangingwall of a ductile normal fault in NW Variscan Iberia. Early chiastolite is replaced by Ky–Ms–Pg aggregates, which are overgrown by pleochroic andalusite near granites intruded along the fault. Slates plot in AKFM above the chloritoid‐chlorite tie‐line. Their P–T grids are modelled with Thermocalc v2.7 and the 1998 databases in the NaKFMASH and KFMASH systems. The univariant reaction Ctd + And/Ky = St + Chl + Qtz + H2O ends at progressively lower pressure as F/FM increases and A/AFM decreases, shrinking the assemblage Cld–Ky–Chl, and opening a chlorite‐free Cld–Ky trivariant field on the low temperature reaction side. This modelling matches the observed absence of chlorite in high F/FM rocks, which is restricted to low pressure in the andalusite stability field. The P–T path deduced from modelling shows a first prograde event in the andalusite field followed by retrogression into the kyanite field, most likely coupled with a slight pressure increase. The final prograde evolution into the andalusite field can be explained by two different prograde paths. Granite intrusion caused the first prograde part of the path with andalusite growth. The subsequent thermal relaxation, together with aH2O decrease, generated the retrograde andalusite–kyanite transformation, plus chlorite consumption and chloritoid growth. This transformation could have been related to folding in the beginning, and aided later by downthrowing due to normal faulting. Heat supplied by syntectonic granite intrusion explains the isobaric part of the path in the late stages of evolution, causing the prograde andalusite growth after the assemblage St–Ky–Chl. Near postectonic granites, a prograde path with pressure decrease originated the assemblage St–And–Chl.  相似文献   

14.
An ultra-high-pressure (UHP) metamorphic slab at Yangkou Beach near Qingdao in the Sulu region of China consists of blocks of eclogite facies metagabbro, metagranitoid, ultramafic rock and mylonitic orthogneisses enclosed in granitic gneiss. A gradational sequence from incipiently metamorphosed gabbro to completely recrystallized coesite eclogite formed at ultra-high-pressures was identified in a single 30 m block; metagabbro is preserved in the core whereas coesite eclogite occurs along the block margins. The metagabbro contains an igneous assemblage of Pl+Aug+Opx+Qtz+Bt+Ilm/Ti-Mag; it shows relict magmatic textures and reaction coronas. Fine-grained garnet developed along boundaries between plagioclase and other phases; primary plagioclase broke down to Ab+Ky+Ms+Zo±Grt±Amp. Augite is rimmed by sodic augite or omphacite, whereas orthopyroxene is rimmed by a corona of Cum±Act and Omp+Qtz layers or only Omp+Qtz. In transitional rocks, augite and orthopyroxene are totally replaced by omphacite, and the lower-pressure assemblage Ab+Ky+Phn+Zo+Grt coexists with domains of Omp (Jd70–73)+Ky±Phn in pseudomorphs after plagioclase. Both massive and weakly deformed coesite-bearing eclogites contain Omp+Ky+Grt+Phn+Coe/Qtz+Rt, and preserve a faint gabbroic texture. Coesite inclusions in garnet and omphacite exhibit limited conversion to palisade quartz; some intergranular coesite and quartz pseudomorphs after coesite also occur. Assemblages of the coronal stage, transitional and UHP peak occurred at about 540±50 °C at c. 13 kbar, 600–800 °C at ≥15–25 kbar and 800–850 °C at >30 kbar, respectively. Garnet from the coronal- through the transitional- to the eclogite-stage rocks show a decrease in almandine and an increase in grossular±pyrope components; garnet in low-grade rocks contains higher MnO and lower pyrope components. The growth textures of garnet within pseudomorphs after plagioclase or along grain boundaries between plagioclase and other phases are complex; the application of garnet zoning to estimate P–T should be carried out with caution. Some garnet enclosing quartz aggregates as inclusions shows radial growth boundaries; these quartz aggregates, as well as other primary and low-P phases, persisted metastably at UHP conditions due to sluggish reactions resulting from the lack of fluid during prograde and retrograde P–T evolution.  相似文献   

15.
Metapelites, migmatites and granites from the c. 2 Ga Mahalapye Complex have been studied for determining the PT–fluid influence on mineral assemblages and local equilibrium compositions in the rocks from the extreme southwestern part of the Central Zone of the Limpopo high‐grade terrane in Botswana. It was found that fluid infiltration played a leading role in the formation of the rocks. This conclusion is based on both well‐developed textures inferred to record metasomatic reactions, such as Bt ? And + Qtz + (K2O) and Bt ± Qtz ? Sil + Kfs + Ms ± Pl, and zonation of Ms | Bt + Qtz | And + Qtz and Grt | Crd | Pl | Kfs + Qtz reflecting a perfect mobility (Korzhinskii terminology) of some chemical components. The conclusion is also supported by the results of a fluid inclusion study. CO2 and H2O ( = 0.6) are the major components of the fluid. The fluid has been trapped synchronously along the retrograde PT path. The PT path was derived using mineral thermobarometry and a combination of mineral thermometry and fluid inclusion density data. The Mahalapye Complex experienced low‐pressure granulite facies metamorphism with a retrograde evolution from 770 °C and 5.5 kbar to 560 °C and 2 kbar, presumably at c. 2 Ga.  相似文献   

16.
Abstract The garnet blueschists from the Ile de Groix (Armorican Massif, France) contain millimetre‐ to centimetre‐sized pseudomorphs consisting of an aggregate of chlorite, epidote and paragonite. The pseudomorphed phase developed at a late stage of the deformation history, because it overgrows a glaucophane–epidote–titanite foliation. Garnet growth occurred earlier than the beginning of the ductile deformation, and thus garnet is also included in the pseudomorphs. Microprobe analyses show that garnet is strongly zoned, with decreasing spessartine and increasing almandine and pyrope contents from core to rim. Grossular content is higher in garnet cores (about 35 mole%) compared to garnet rims (about 30 mole%). Blue amphibole has glaucophane compositions with a low Fe3+ content and become more magnesian when inclusions in garnet (XMg = 0.62–0.65) are compared with matrix grains (XMg = 0.67–0.70). Matrix epidote has a pistacite content of about 50 mole%. On the basis of their shape and the nature of the breakdown products, the pseudomorphs are attributed to lawsonite. A numerical model (using Thermocalc ) has been developed in order to understand the reactions controlling both the growth and the breakdown of lawsonite. Lawsonite growth could have taken place through the continuous hydration reaction Chl + Ep + Pg + Qtz + Vap = Gln + Lws, followed by the fluid‐absent reaction Chl + Ep + Pg = Grt + Gln + Lws. Peak P–T conditions are estimated at about 18–20 kbar, 450 °C. This indicates that lawsonite growth took place at increasing P and T, hence can be used as a geobarometer in the buffering assemblage garnet–glaucophane–epidote. The final part of the history is recorded by lawsonite breakdown, after cessation of the ductile deformation, and recording the earliest stages of the exhumation.  相似文献   

17.
Sapphirine granulites from a new locality in the Palni Hill Ranges, southern India, occur in a small enclave of migmatitic, highly magnesian metapelites (mg=85–72) within massive enderbitic orthogneiss. They show a variety of multiphase reaction textures that partially overprint a coarse-grained high-pressure assemblage of Bt+Opx+Ky+Grt+Pl+Qtz. The sequence of reactions as deduced from the corona and symplectite assemblages, together with petrogenetic grid considerations, records a clockwise P–T evolution with four distinct stages. (1) Equilibration of the initial high-P assemblage in deep overthickened crust (12 kbar/800–900 °C) was followed by a stage of near-isobaric heating, presumably as a consequence of input of extra heat provided by the voluminous enderbitic intrusives. During heating, kyanite was converted to sillimanite, and biotite was involved in a series of vapour-phase-absent melting reactions, which resulted in the ultra-high-temperature assemblage Opx+Crd+Kfs+Spr±Sil, Grt, Qtz, Bt, coexisting with melt (equilibration at c. 950–1000° C/11–10 kbar). (2) Subsequently, as a result of decompression of the order of 4 kbar at ultra-high temperature, a sequence of symplectite assemblages (Opx+Sil+Spr/Spr+Crd→Opx+Spr+Crd→Opx+Crd→Opx+Crd+Spl/Crd+Spl) developed at the expense of garnet, orthopyroxene and sillimanite. This stage of near-isothermal decompression implies rapid ascent of the granulites into mid-crustal levels, possibly due to extensional collapse and erosion of the overthickened crust. (3) Development of late biotite through back-reaction of melt with residual garnet indicates a stage of near-isobaric cooling to c. 875 °C at 7–8 kbar, i.e. relaxation of the rapidly ascended crust to the stable geotherm. (4) A second period of near-isothermal exhumation up to c. 6–5 kbar/850 °C is indicated by the partial breakdown of late biotite through volatile phase-absent melting reactions. Available isotope data suggest that the early part of the evolutionary history (stages 1–3) is presumably coeval with the early Proterozoic metamorphism in the extended granulite terrane of the Nilgiri, Biligirirangan and Shevaroy Hills to the north, while the exhumation of the granulites from mid-crustal levels (stage 4) occurred only during the Pan-African thermotectonic event, which led to the accretion of the Kerala Khondalite Belt to the south.  相似文献   

18.
A variety of uncommon garnet-grade assemblages have been foundin rocks from three outcrops in the western part of centralNew Hampshire, and include the associations Grt+MrgCld, Grt+Bt+CldMrg,and Mrg+Cld+HblGrt (all rocks contain Ms, Chl, Ilm, and Qtz).These unusual rocks coexist with more typical Grt+Bt+Chl+Plmetapelites and amphibolites. Rim P–T conditions are {smalltilde}49035C and 5•751•25 kbar. Projection of the assemblages from Qtz, H2O, and Ilm into theCa–Al'–Na–(Fe+Mg) tetrahedron, and from Qtz,Ilm, H2O, and Chl into the Ca–Al'–Fe'–Mn tetrahedronindicates that Ca/(Ca+Na) and Mn differ among the assemblagesin a systematic fashion. Common Grt+Bt+Chl+Pl assemblages arerestricted to relatively high Mn and low Ca/(Ca+Na) values,whereas Cld+Bt+Mrg and Cld+Hbl+Mrg assemblages are stable atlow Mn and high Ca/(Ca+Na). These data suggest that at thisgrade Cld+Bt is more stable than Grt+Chl in the KFMASH system,whereas in the Ca—KFMASH system, Hbl+Cld assemblages arestable. Composition space analysis using the singular value decompositionmethod indicates that compositions of minerals from individualsamples are consistent with local equilibrium, but that differentoutcrops may not have all equilibrated at the same P–T–aH2Oconditions. Thermodynamic analysis suggests that a garnet-zoneprograde sequence of ferromagnesian associations for these bulkcompositions would be Hbl+Cld+Grt+ChlBt+Cld+Grt+ChlBt+Grt+Chl. Staurolite-grade rocks from the same stratigraphic units areexposed across strike, and contain the assemblage Grt+StBtPl(all rocks contain Ms, Qtz, Chl, and Ilm). Margarite is commonlypresent as inclusions in the cores of garnets, but is absentas inclusions near garnet rims and from the matrix; conversely,staurolite inclusions are present towards the rims of the garnets,but are absent from the cores. These inclusion relations suggestthat margarite may react to form staurolite and garnet withincreasing grade via a reaction such as chlorite+margarite=staurolite+garnet+H2O. Biotite is common in the matrix but is not typically abundant,and appears to have been the last phase to join the assemblage.Biotite is inferred to have joined the Grt+St+Chl assemblagesafter margarite breakdown through the reaction Grt+Chl+Ms=St+Bt+H2O. Thus, uncommon margarite assemblages may evolve into commonGrt+Bt+St+Chl assemblages. * Present address: Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, Wisconsin 53706.  相似文献   

19.
ABSTRACT The high-grade rocks (metapelite, quartzite, metagabbro) of the Hisøy-Torungen area represent the south-westernmost exposures of granulites in the Proterozoic Bamble sector, south Norway. The area is isoclinally folded and a metamorphic P–T–t path through four successive stages (M1-M4) is recognized. Petrological evidence for a prograde metamorphic event (M1) is obtained from relict staurolite + chlorite + albite, staurolite + hercynite + ilmenite, cordierite + sillimanite, fine-grained felsic material + quartz and hercynite + biotite ± sillimanite within metapelitic garnet. The phase relations are consistent with a pressure of 3.6 ± 0.5 kbar and temperatures up to 750–850°C. M1 is connected to the thermal effect of the gabbroic intrusions prior to the main (M2) Sveconorwegian granulite facies metamorphism. The main M2 granulite facies mineral assemblages (quartz+ plagioclase + K-feldspar + garnet + biotite ± sillimanite) are best preserved in the several-metre-wide Al-rich metapelites, which represent conditions of 5.9–9.1 kbar and 790–884°C. These P–T conditions are consistent with a temperature increase of 80–100°C relative to the adjacent amphibolite facies terranes. No accompanying pressure variations are recorded. Up to 1-mm-wide fine-grained felsic veinlets appear in several units and represent remnants of a former melt formed by the reaction: Bt + Sil + Qtz→Grt + lq. This dehydration reaction, together with the absence of large-scale migmatites in the area, suggests a very reduced water activity in the rocks and XH2O = 0.25 in the C–O–H fluid system was calculated for a metapelitic unit. A low but variable water activity can best explain the presence or absence of fine-grained felsic material representing a former melt in the different granulitic metapelites. The strongly peraluminous composition of the felsic veinlets is due to the reaction: Grt +former melt ± Sil→Crd + Bt ± Qtz + H2O, which has given poorly crystalline cordierite aggregates intergrown with well-crystalline biotite. The cordierite- and biotite-producing reaction constrains a steep first-stage retrograde (relative to M2) uplift path. Decimetre- to metre-wide, strongly banded metapelites (quartz + plagioclase + biotite + garnet ± sillimanite) inter-layered with quartzites are retrograded to (M3) amphibolite facies assemblages. A P–T estimate of 1.7–5.6 kbar, 516–581°C is obtained from geothermobarometry based on rim-rim analyses of garnet–biotite–plagioclase–sillimanite–quartz assemblages, and can be related to the isoclinal folding of the rocks. M4 greenschist facies conditions are most extensively developed in millimetre-wide chlorite-rich, calcite-bearing veins cutting the foliation.  相似文献   

20.
We discuss upper-amphibolite to granulite facies, early Palaeozoic metamorphism and partial melting of aluminous greywackes from the Sierra de Comechingones, SE Sierras Pampeanas of Central Argentina. Consistent P–T estimates, obtained from equilibria involving Al and Ti exchange components in biotite and from more traditional thermobarometric equilibria, suggest that peak metamorphism of the exposed section took place at an essentially constant pressure of 7–8 kbar, and at temperatures ranging from 650 to 950 °C. Mineral compositions record an initial decompression, after peak metamorphism, of c. 1.5 kbar, which was accompanied by a cooling of c. 100 °C. Upper-amphibolite facies gneisses consist of the assemblage Qtz+Pl+Bt+Grt+Rt/Ilm. The transition to the granulite facies is marked by the simultaneous appearance of the assemblage Kfs+Sil and of migmatitic structures, suggesting that the amphibolite to granulite transition in the Sierra de Comechingones corresponds to the beginning of melting. Rocks with structural and/or chemical manifestations of partial melting range from metatexites, to diatexites, to melt-depleted granulites, consisting of the assemblage Grt+Crd+Pl+Qtz+Ilm±Ath. The melting stage overlapped at least partially with decompression, as suggested by the occurrence of cordierite, in both the migmatites and the residual granulites, of two distinct textural types: idiomorphic porphyroblasts (probably representing peritectic cordierite) and garnet-rimming coronas. Metapelitic rocks are unknown in the Sierra de Comechingones. Therefore, it appears most likely that the Al-rich residual assemblages found in the migmatites and residual granulites were formed by partial melting of muscovite- and sillimanite-undersaturated metagreywackes. We propose a mechanism for this that relies on the sub-solidus stabilization of garnet and the ensuing changes in the octahedral Al content of biotite with pressure and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号