首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The magnetic behaviour of hydrothermally synthesized greigite was analysed in the temperature range from 4 K to 700 °C. Below room temperature, hysteresis parameters were determined as a function of temperature, with emphasis on the temperature range below 50 K. Saturation magnetization and initial susceptibility were studied above room temperature, along with X-ray diffraction analysis of material heated to various temperatures. The magnetic behaviour of synthetic greigite on heating is determined by chemical alteration rather than by magnetic unblocking. Heating in air yields more discriminative behaviour than heating in argon. When heated in air, the amount of oxygen available for reaction with greigite determines the products and magnetic behaviour. In systems open to contact with air, haematite is the final reaction product. When the contact with air is restricted, magnetite is the final reaction product. When air is excluded, pyrrhotite and magnetite are the final reaction products; the amount of magnetite formed is determined by the purity of the starting greigite and the degree of its surficial oxidation. The saturation magnetization of synthetic greigite is virtually independent of temperature from room temperature down to 4 K. The saturation remanent magnetization increases slowly by 20–30 per cent on cooling from room temperature to 4 K. A broad maximum is observed at ~10 K which may be diagnostic of greigite. The coercive and remanent coercive force both increase smoothly with decreasing temperature to 4 K. The coercive force increases from ~50 mT at room temperature to approximately 100–120 mT at 4 K, and the remanent coercive force increases from approximately 50–80 mT at room temperature to approximately 110–180 mT at 4 K.  相似文献   

2.
Rock magnetic parameters are often used to recognize variations in the original magnetic mineralogy and for normalizing purposes in palaeointensity studies. Incipient weathering, however, is shown to have a profound but partly reversible influence on the rock magnetic properties of the marls of the Early Pliocene Trubi formation in southern Sicily (Italy). The remanence in the marls resides in single-domain (SD) magnetite grains, but the remanent coercive force (Hcr) shows a strong variation and most values observed are anomalously high ( Hcr) range 36–188 mT).
The enhanced coercivities are attributed to stress in the magnetite grains induced by surface oxidation at low temperature. Upon heating to 150 °C a reduction of coercivities occurs that can be explained by a stress reduction as a result of a reduction of Fe2- gradient due to a higher diffusion rate at elevated temperature. After heating to 150 °C, coercivities are quite uniform throughout the outcrop and the values are characteristic of SD magnetite (Hcr range 30–38 mT). The bulk susceptibility increases by 4–24 per cent, and the isothermal remanent magnetization (IRM) decreases by 5–11 per cent. The increase in anhysteretic remanent magnetization (ARM) is large: 20–242 per cent. The magnitude of the changes is related to the degree of weathering.
Another effect of heating the marl samples to 150 °C is a substantial reduction of the coercivities of the secondary overprint in the natural remanent magnetization. After heating. separation of the secondary and primary components by alternating-field demagnetization is more efficient. The usual difficulties of thermal demagnetization above 300 °C may thus be avoided by a combination of moderate heating to 150 °C and subsequent alternating-field demagnetization.  相似文献   

3.
The acquisition of a gyroremanent magnetization (GRM) by single-domain (SD) greigite particles during alternating-field (AF) demagnetization is demonstrated. Previous palaeomagnetic studies failed to identify the presence of authigenic greigite in the glacio-marine clays studied. These clays formed the subject of an earlier debate about the validity of a Late Weichselian geomagnetic excursion (the Gothenburg Flip) in southern Sweden. The greigite carries a stable chemical remanent magnetization (CRM), which coexists with a detrital remanent magnetization (DRM) carried by magnetite. AF demagnetization could not isolate the primary remanence in the sediments where magnetite and greigite coexist, due to the overlapping coercivity spectra of the two minerals and the inability to determine the time lag between sediment deposition and CRM formation. Thermal demagnetization removed the CRM at temperatures below 400 C, but this method was hindered by the unconsolidated nature of the sediments and the formation of secondary magnetic minerals at higher temperatures. The results suggest that the low-coercivity DRM carried by magnetite was mistaken for a 'viscous' component in the earlier studies. Hence the former debate about the record of the Gothenburg Flip may have been based on erroneous palaeomagnetic interpretations or non-reproducible results. AF demagnetization procedures applied to samples suspected of bearing SD magnetic particles (such as greigite) should be carefully selected to recognize and account for GRM acquisition.  相似文献   

4.
Summary. Remanent acquisition curves, remanent hysteresis curves and alternating field demagnetization curves were determined for a number of artificial rock specimens containing well-defined grain-size fractions between 5 and 250 μm of natural magnetite, titanomagnetite and hematite. From these curves, the remanent acquisition coercive force H 'cr, the remanent coercive force H cr and the median destructive field of IRM H ½I were determined. Theoretically these parameters should be the same for an assembly of non-interacting, homogeneously distributed, randomly oriented single-domain grains. For a given hematite specimen H 'cr, H cr and H ½I have about the same value in spite of the strong grain-size dependence of these parameters. For each specimen of magnetite and titanomagnetite the value of H 'cr is larger than H cr which again is larger than H ½I. However, the ratios H 'cr/ H cr and H ½I/ H cr appear to have a (different) constant value. An interesting relationship which appears to hold for dispersed magnetite, titanomagnetite or hematite grains between 5 and 250 μm, independently of grain-size, quantity and packing density of the magnetic material, is:   相似文献   

5.
Coercive force of single crystals of magnetite at low temperatures   总被引:1,自引:0,他引:1  
The temperature dependence of coercive force H c was studied on well-characterized and stoichiometric millimetre-sized single crystals of magnetite at a series of 16 temperatures from 300 to 10 K using a SQUID magnetometer. H c decreases gradually with cooling to the isotropic temperature, T i = 130 K, where the first magnetocrystalline anisotropy constant K 1 becomes zero. H c exhibits a sharp increase at the Verwey transition, T v = 120 K, where the structure changes from cubic to monoclinic. In crossing the Verwey transition, H c increases by more than two orders of magnitude, from 20 μT to 2.4 mT, and the shape of the hysteresis loops becomes wasp-waisted.
Observed coercivity between 300 K and 170 K varies with temperature as λ s / M s , where λ s is the magnetostriction constant and M s is the saturation magnetization, indicating that the coercivity in MD magnetite is controlled mainly by internal stress associated with dislocations or other crystal defects. It seems likely that the stable single-domain-like magnetic memory observed in large MD magnetite crystals is due to magnetoelastically pinned domain walls. The discontinuous change in H c at the Verwey transition is controlled by abrupt changes in magnetocrystalline and magnetostriction constants due to crystal deformation from cubic to monoclinic structure.  相似文献   

6.
The time and temperature stability of various types of magnetic remanence has been measured in pottery samples containing magnetite and in a clay sample containing manganese ferrite. The time decay of rotational remanent magnetization (RRM), anhysteretic remanent magnetization (ARM) and a low-field isothermal remanent magnetization (IRM) has been measured. While the decay of the last two remanences is easily measurable at about 2 and 19 per cent per decade of time, respectively, the decay of RRM is too small to be measured, being less than about 0.1 per cent per decade of time. Thermal demagnetization of thermoremanent magnetization (TRM), ARM and RRM indicates that RRM is also the most thermally stable. The implications of these experiments are that rocks which exhibit gyromagnetic effects such as RRM contain highly stable particles and therefore are likely to be most suitable for palaeomagnetism.  相似文献   

7.
Summary. Rotational remanent magnetizations and partial rotational remanent magnetizations have been induced in four specimens using alternating magnetic fields of 55 mT maximum peak strength and 128 Hz, and speeds of rotation between 0.0016 and 0.4 rev s−1. Each partial rotational remanent magnetization ( PRRM ), was produced by rotating the specimen only at the maximum setting of the alternating field. The variation of PRRM with (a) speed of rotation, ω, and (b) total angle of rotation, θ, was investigated. In (a), PRRM fell slowly but steadily as ω increased; for (b) it rose sharply as θ increased up to 60° and reached a maximum for θ between 90° and 120°. Alternating field demagnetizations of PRRMs were performed with the specimen (a) at rest, and (b) rotating about an axis perpendicular to the field. Rotation significantly enhanced the demagnetization process. Variation of the time T , taken to remove the inducing alternating field produced no detectable effect in the case of PRRM , but affected the value of ω at which a given feature of the RRM —ω curve appeared, and the product θF(=ω T ) appears to be more important than either ω or T separately. Current theories on RRM can be used to explain some of the new experimental data on PRRM .  相似文献   

8.
Summary An extension of the Love-Larmor theory to a low-loss unelastic earth model, leads to the surprisingly simple approximation
   
where τs= 447.4 sidereal day is the static wobble period, τR= 306 sidereal day is the rigid-earth wobble period and τw= 433 sidereal day is the observed Chandler period. Q W, Q μ are the respective average Q values of the wobble and the Earth's mantle at τW. The known numerical factor F is only slightly dependent on the Earth structure.  相似文献   

9.
Mineral and isothermal magnetic properties of Al-, Mn- and Ni-substituted haematites were characterized and their relationships evaluated in order to interpret better the results of magnetic analyses of soils and recent sediments. Aluminium, manganese and nickel haematites generally behaved as single-domain (SD) particles. The influence of incorporated Al on the magnetic behaviour of haematite was consistent with Al acting as a paramagnetic dilutent. Mass magnetic susceptibility ( χ ) and SIRM800 decreased as the level of Al substitution increased. Incorporation of Mn and Ni increased χ , which could be associated with enhancement of the spin canting effect of haematite. The stability of SIRM800 to demagnetization for Al-haematite appears to be related to a defect mechanism associated with the development of smaller crystallites arising from Al substitution. Magnetic domain rotation or flipping was probably inhibited, being blocked by structural defects during magnetization and demagnetization, and resulted in a low but stable partial SIRM (SIRM800 ). %IRM/SIRM800 demagnetization curves and estimated ( B o )CR values of ≤100  mT for Mn-haematite indicate pseudo-single-domain/multidomain-like behaviour despite Mn-haematite having particle and crystallite dimensions similar to Ni-haematite, which did not show this behaviour. Data indicate that parameters involving unsaturated, partial SIRM should be used with caution in magnetic studies of soils and sediments.  相似文献   

10.
Summary. Using an air turbine at rotation frequencies of between 1.5 and 275 revolutions per second (rps), the dependence of rotational remanent magnetization (RRM) on rotation frequency has been investigated for two igneous samples in and alternating field of 51 mT peak at 50 Hz. The same experimental arrangement has also been used to measure the dependence on rotation frequency of the torque exerted by the alternating field on the rock samples. The dependence of torque and RRM on peak field has also been measured at a rotation frequency of 112 rps and a linear relationship between RRM and torque has been demonstrated.
In an attempt to elucidate the way in which RRM arises, analytical and numerical models of the rock have been developed in order to calculate the torque curves and these agree quite closely with those observed experimentally. While the precise factor responsible for RRM has not yet been identified from the numerical model it is suggested that RRM may arise as a result of particle moments suddenly flipping into the field direction, and thus by virtue of their intrinsic angular momentum acquiring a transient component of magnetic moment antiparallel to the rotation vector describing the flip. This component, due to the hysteresis of the assembly of particles, will not then entirely disappear when the alternating field is removed. An estimate of the transient axial field which can be considered to deflect each moment towards the rotation axis during the flip yields a value of the order of 1 mT.  相似文献   

11.
Summary. Using nine IDA records for the Indonesian earthquake of 1977 August 19, we have formed an optimal linear combination of the records and have measured the frequency and Q of 0 S 0 and 1 S 0. The frequency was measured using the moment ratio method. The attenuation was measured by the minimum width method and by the time-lapse method. The frequency and attenuation were measured simultaneously by varying them to obtain a best fit to the data. A 2000-hr stack, the sum of nine individual records, for 0 S 0 gave a frequency of 0.814664 mHz±4 ppm. The values for the Q of 0 S 0 for the three different methods of measurement were 5600,5833 and 5700, respectively. The error in the estimates of Q -1 is about 5 per cent for the minimum power method. For 1 S 0 a 300-hr stack yielded a frequency of 1.63151 mHz±30 ppm. The values of Q for this mode were 1960, 1800 and 1850, respectively, with an error in Q -1 of about 12 per cent for the minimum power method.  相似文献   

12.
A magnetic study was carried out on lacustrine sediments from the Zoigê basin, Tibetan Plateau, in order to obtain a better understanding of palaeoclimatic changes there. Gyromagnetic remanence (GRM) acquisition is unexpectedly observed during static three-axis alternating field (AF) demagnetization in about 20 per cent of a large number of samples. X-ray diffraction (XRD) analysis on a magnetic extract clearly shows that greigite is the dominant magnetic mineral carrier. Scanning electron microscopy (SEM) reveals that the greigite particles are in the grain size range of 200–300  nm, possibly in the single-domain state. Greigite clumps of about 3  μm size are sealed by silicates. Fitting of XRD peaks yields a crystalline coherence length of about 15  nm, indicating that the particles seen in the SEM are polycrystalline.
  GRM intensities of most samples are of the same order as the NRM, while others show much stronger GRM although their magnetic properties are similar. Variation of the demagnetization sequence confirms that GRM is mainly produced perpendicular to the AF direction. The anisotropy direction can be derived from GRM, but more systematic studies are needed for detailed conclusions. An attempt to correct for GRM failed due to high GRM intensities and because smaller GRM acquisition was also found along the demagnetization axis. Behaviours of acquisition and AF demagnetization of GRM are comparable with those of NRM, ARM, IRM, indicating fine grain sizes of remanence carriers.  相似文献   

13.
3-D images of P velocity and P - to S -velocity ratio have been produced for the upper crust of the Friuli area (northeastern Italy) using local earthquake tomography. The data consist of 2565 P and 930 S arrival times of high quality. The best-fitting V P and V P / V S 1-D models were computed before the 3-D inversion. V P was measured on two rock samples representative of the investigated upper layers of the Friuli crust. The tomographic V P model was used for modelling the gravity anomalies, by converting the velocity values into densities along three vertical cross-sections. The computed gravity anomalies were optimized with respect to the observed gravity anomalies. The crust investigated is characterized by sharp lateral and deep V P and V P / V S anomalies that are associated with the complex geological structure. High V P / V S values are associated with highly fractured zones related to the main faulting pattern. The relocated seismicity is generally associated with sharp variations in the V P / V S anomalies. The V P images show a high-velocity body below 6 km depth in the central part of the Friuli area, marked also by strong V P / V S heterogeneities, and this is interpreted as a tectonic wedge. Comparison with the distribution of earthquakes supports the hypothesis that the tectonic wedge controls most of the seismicity and can be considered to be the main seismogenic zone in the Friuli area.  相似文献   

14.
Low-temperature rock magnetic measurements have distinct diagnostic value. However, in most bulk marine sediments the concentration of ferrimagnetic and antiferromagnetic minerals is extremely low, so even sensitive instrumentation often responds to the paramagnetic contribution of the silicate matrix in the residual field of the magnetometer. Analysis of magnetic extracts is usually performed to solve the problems raised by low magnetic concentrations. Additionally magnetic extracts can be used for several other analyses, for example electron microscopy or X-ray diffraction. The magnetic extraction technique is generally sufficient for sediments dominated by magnetite. In this study however, we show that high-coercivity components are rather underrepresented in magnetic extracts of sediments with a more complex magnetic mineralogy. We test heavy liquid separation, using hydrophilic sodium polytungstenate solution Na6[H2W12O40], to demonstrate the efficiencies of both concentration techniques. Low-temperature cycling of zero-field-cooled, field-cooled and saturation isothermal remanent magnetization acquired at room temperature was performed on dry bulk sediments, magnetic extracts, and heavy liquid separates of clay-rich pelagic sediments originating from the Equatorial Atlantic. The results of the thermomagnetic measurements clarify that magnetic extraction favours components with high spontaneous magnetization, such as magnetite and titanomagnetite. The heavy liquid separation is unbiased with respect to high- and low-coercive minerals, thus it represents the entire magnetic assemblage.  相似文献   

15.
Summary. Susceptibility, thermo-remanent magnetization (TRM) and isothermal remanent magnetization (IRM) anisotropy ellipsoids have been determined for several rock samples. The results indicate that the ellipsoid of initial susceptibility is less anisotropic than the TRM and low field IRM ellipsoids which are found experimentally to be of identical shape. This suggests that palaeomagnetic data for anisotropic rocks may be corrected by using the anisotropy ellipsoid determined from magnetically non-destructive low field IRM measurements. Such IRM measurements can also be used to obtain anisotropy axes of samples which are inherently anisotropic but which have a susceptibility which is too weak to be accurately measured. The results for a series of artificial anisotropic samples containing magnetite particles of different sizes (in the range 0.2–90 μm) were very similar to those for the rocks. In contrast, a comparison of the susceptibility and IRM ellipsoids for anisotropic samples containing particles from a magnetic tape gave very different results in accordance with theory. Such results imply that susceptibility and IRM ellipsoids could be used to determine whether anisotropic rocks contain uniaxial single-domain particles (magnetization confined to the easy axis) or whether the particles are essentially multidomain.  相似文献   

16.
Summary. Recent experimental work by Edwards has demonstrated that rotational remanent magnetization (RRM) is not a maximum when the alternating field is normal to the rotation axis of the sample (a rock) but is greatest when the angle is about 75°. Experiments involving the production of ARM during sample rotation gave a similar result with a maximum at about 60°. These results are explained here in terms of the response of an isotropic assembly of identical single-domain particles to a strong alternating magnetic field.  相似文献   

17.
Magnetic properties of sediments from a core (10 m long) in the southern basin of the Caspian Sea have been investigated. Varying concentrations of greigite (Fe3S4) dominate the magnetic fraction in Late Pleistocene sediments. The synsedimentary formation of greigite indicates that the Late Pleistocene Caspian Sea was a brackish or fresh-water, poorly ventilated basin and suggests a water level higher than at the present. The variation in magnetic parameters, with the detrital magnetite-bearing fraction remaining constant, is interpreted in terms of greigite grain-size variation and related to the slight variation in water salinity. The Holocene sediments are characterized by detrital magnetite. This indicates better ventilation of the basin and suggests lower water levels than in the Late Pleistocene. The gradual change in magnetic properties of the sediments between 90 and ≈60 cm depth, with decreasing quantities of greigite, indicates stepwise establishment of oxic conditions in the Holocene.  相似文献   

18.
It is extremely valuable to study historic lava flows where the geomagnetic field at their time of extrusion is well known. In this study, two vertical sections, 16 m apart, have been sampled from the approximately 1 m thick 1960 Kilauea lava flow, Hawaii. Variations are seen in the rock-magnetic and palaeomagnetic properties between and within the two sections, indicating that there are small-scale lateral and vertical variations in the lava flow. The two sections showed different responses to microwave palaeointensity analysis. Section H6001 generally gave ideal linear behaviour on plots of natural remanent magnetization (NRM) lost against microwave-induced thermoremanent magnetization (TM RM) gained, whilst the majority of samples from H6002 showed anomalous two-slope behaviour. When all plots were interpreted by taking the best-fitting line through all points, the flow mean intensity for H6001 was 31.6 ± 3.6 μT and that for H6002 was 37.1 ± 6.4 μT, compared with the expected intensity of 36 μT. Additional historic flows need to be studied in order to ascertain whether this behaviour is typical of all lava, and whether it is best to always interpret NRM lost/TM RM gained plots by taking the line of best fit regardless of shape.  相似文献   

19.
TRM deviations in anisotropic assemblages of multidomain magnetite   总被引:2,自引:0,他引:2  
Anisotropic assemblages of multidomain magnetite particles develop an anisotropy of magnetic susceptibility (AMS), which in turn induces deviations of thermo-remanent magnetization (TRM) from the field direction. From the theories of multidomain TRM acquisition, it is shown that the TRM anisotropy tensor has its eigenvalue ratios ( T i) related to the principal weak-field susceptibility ratios ( P i) by the order of magnitude T i≃ P 2i. This relation has been experimentally verified on two sets of highly anisotropic rock samples. The exponent has been determined to be 1.94 in the samples from a Peruvian gabbro, and 1.81 in those from the granite of Flamanville (NW France). Accounting for experimental difficulties in determining the TRM anisotropy tensors, these exponents are judged to agree well with the expected one. It is therefore stressed that AMS measurements provide a good means of evaluating the magnetic field direction from deviated TRM directions, providing magnetic carriers are mainly multidomain magnetites.  相似文献   

20.
The Middle and Upper Jurassic Bathonian-Oxfordian shallow-water carbonate rocks from the Paris Basin, France, consist mainly of oolitic and bioclastic limestones that are hydrocarbon reservoirs in the subsurface. Despite a preliminary positive study, these deposits have been considered to be largely remagnetized (Rochette, private communication), and hence not amenable to palaeomagnetic dating. To establish their magnetic mineralogy and test this remagnetization hypothesis, we have used an integrated investigation combining petrographic, geochemical, rock-magnetic and palaeomagnetic measurements on samples extracted from five cores from the Paris Basin and from outcrops in Burgundy. Magnetic minerals in the Bathonian-Oxfordian carbonates include: (1) primary biogenic single-domain magnetite and detrital multi-domain Ti-magnetite and their oxidized form, maghemite; (2) authigenic spheres of magnetite probably related to hydrocarbons; and (3) goethite, either restricted to ferruginous ooid layers or resulting from surficial alteration, notably replacement of pyrite framboids. Rock-magnetic experiments carried out on 68 samples reveal H cr/ H c and M rs/ M s ratios ranging from 1.88 to 5.58 and 0.017 to 0.314, respectively. These values are clearly distinct from diagnostic values for a chemical remagnetization. Pyrrhotite was not identified within these sediments. Moreover, the average H cr/ H c ratio of 3.14 is significantly different from the value of 1.333 for natural pyrrhotite (Dekkers 1988). These results have a direct implication for the preservation of the primary magnetization; consequently, these deposits are selectively amenable for magnetostratigraphic dating and possible regional correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号