首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The assumption of oxygen isotope and major element equilibrium during prograde metamorphism was tested using staurolite‐grade pelitic schists that have undergone sequential porphyroblast growth and multiple episodes of recrystallization of matrix minerals and foliation development. Textural relationships are used to infer a metamorphic history that involves garnet growth followed by staurolite growth, with each porphyroblast growth event followed by at least one period of recrystallization of matrix minerals. Conventional geothermobarometry using Qtz–Grt–Pl–Ms–Bt ± St equilibria yields peak P–T conditions of c. 625 °C at 9–11 kbar, consistent with KMnFMASH petrogenetic grid predictions for stability of the assemblage Grt + St + Bt. Qtz–Grt oxygen isotope fractionations yield apparent temperatures of c. 590 °C and Qtz–St fractionations yield an apparent temperature of c. 595 °C. Diffusional modelling indicates that quartz isotopic compositions were reset by c. 30 °C via retrograde isotopic diffusional exchange with micas. The isotopic temperatures appear to be in excellent agreement with one another, and suggest oxygen isotope equilibrium was attained between garnet and staurolite at c. 625 °C. However, the agreement of Qtz–Grt and Qtz–Str isotopic temperatures is not consistent with petrographic observations (garnet grew before staurolite) and petrogenetic grid constraints that predict that garnet grows over a temperature interval of c. 525–550 °C. Given that: (i) oxygen diffusion rates in staurolite and garnet are slow enough to render an individual porphyroblast effectively closed to exchange after it forms; and (ii) matrix minerals are able to exchange isotopes via recrystallization during each period of deformation; garnet and staurolite could not have simultaneously achieved oxygen isotope equilibrium with each other or with minerals in the recrystallized matrix. Thus, the Qtz–Grt fractionations, which yield apparent temperatures that are in apparent agreement with peak metamorphic temperature and apparent temperatures for Qtz–St fractionations, cannot be fractionations resulting from equilibrium isotopic exchange. Instead, they are apparent fractionations between porphyroblasts formed at different temperature and times in the prograde P–T–D path, and quartz that recrystallized and exchanged with micas and plagioclase during several phases of deformation.  相似文献   

2.
The Biwabik Iron Formation of Minnesota (1.9 Ga) underwent contact metamorphism by intrusion of the Duluth Complex (1.1 Ga). Apparent quartz–magnetite oxygen isotope temperatures decrease from ∼700°C at the contact to ∼375°C at 2.6 km distance (normal to the contact in 3D). Metamorphic pigeonite at the contact, however, indicates that peak temperatures were greater than 825°C. The apparent O isotope temperatures, therefore, reflect cooling, and not peak metamorphic conditions. Magnetite was reset in δ18O as a function of grain size, indicating that isotopic exchange was controlled by diffusion of oxygen in magnetite for samples from above the grunerite isograd. Apparent quartz–magnetite O isotope temperatures are similar to calculated closure temperatures for oxygen diffusion in magnetite at a cooling rate of ∼5.6°C/kyr, which suggests that the Biwabik Iron Formation cooled from ∼825 to 400°C in ∼75 kyr at the contact with the Duluth Complex. Isotopic exchange during metamorphism also occurred for Fe, where magnetite–Fe silicate fractionations decrease with increasing metamorphic grade. Correlations between quartz–magnetite O isotope fractionations and magnetite–iron silicate Fe isotope fractionations suggest that both reflect cooling, where the closure temperature for Fe was higher than for O. The net effect of metamorphism on δ18O–δ56Fe variations in magnetite is a strong increase in δ18OMt and a mild decrease in δ56Fe with increasing metamorphic grade, relative to the isotopic compositions that are expected at the low temperatures of initial magnetite formation. If metamorphism of Iron Formations occurs in a closed system, bulk O and Fe isotope compositions may be preserved, although re-equilibration among the minerals may occur for both O and Fe isotopes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
《Chemical Geology》2003,193(1-2):43-57
Oxygen isotope compositions and fractionations between calcite (Cc) and magnetite (Mt), diopside-rich clinopyroxene (Di), monticellite (Mnt), kimzeyite-rich garnet (Gt), and biotite (Bt) were measured for carbonatites from Oka (Canada), Magnet Cove (USA), Jacupiranga (Brazil), and Essonville (Canada), to obtain crystallization temperatures and explore the crystallization history of carbonatites. The highest isotopic temperatures are obtained from Cc–Mt fractionations from Oka (745–770 °C) and Cc–Mnt fractionations from Magnet Cove (700 and 760 °C). Cc–Mt temperatures for very coarse-grained, euhedral magnetite phenocrysts and calcite from Jacupiranga are 700 °C. In samples that contain diopside and magnetite, the Cc–Mt temperatures are always higher than Cc–Di temperatures. This difference is consistent with crystallization of magnetite before diopside, minor retrograde resetting of magnetite isotopic compositions, and the order of crystallization inferred from inclusions of Mt in Di. Cc–Mt, Cc–Di, and Cc–Mnt fractionations are thus interpreted to represent those established during crystallization at rapid cooling rates (103–104 °C/my). Diffusion model calculations indicate that at slower post-crystallization cooling rates (10–102 °C/my), magnetite compositions should experience significant isotopic resetting by diffusional exchange with Cc, Bt, and apatite, and yield lower temperatures than Cc–Di. Cc–Bt fractionations correspond to the lowest temperatures (440–560 °C). Although some of these are relatively high isotopic temperatures for biotite, they most likely represent those established during subsolidus retrograde exchange between biotite and calcite during rapid subsolidus cooling.  相似文献   

4.
This study presents calcite–graphite carbon isotope fractionations for 32 samples from marble in the northern Elzevir terrane of the Central Metasedimentary Belt, Grenville Province, southern Ontario, Canada. These results are compared with temperatures calculated by calcite–dolomite thermometry (15 samples), garnet–biotite thermometry (four samples) and garnet–hornblende thermometry (three samples). Δcal‐gr values vary regularly across the area from >6.5‰ in the south to 4.0‰ in the north, which corresponds to temperatures of 525 °C in the south to 650 °C in the north. Previous empirical calibration of the calcite–graphite thermometer agrees very well with calcite–dolomite, garnet–biotite and garnet–hornblende thermometry, whereas, theoretical calibrations compare less well with the independent thermometry. Isograds in marble based on the reactions rutile + calcite + quartz =titanite and tremolite + calcite + quartz = diopside, span temperatures of 525–600 °C and are consistent with calculated temperature–X(CO2) relations. Results of this study compare favourably with large‐scale regional isotherms, however, local variation is greater than that revealed by large‐scale sampling strategies. It remains unclear whether the temperature–Δcal‐gr relationship observed in natural materials below 650 °C represents equilibrium fractionations or not, but the regularity and consistency apparent in this study demonstrate its utility for thermometry in amphibolite facies marble.  相似文献   

5.
Quartz–garnet oxygen isotope thermometry of quartz‐rich metasedimentary rocks from the southern Adirondack Highlands (Grenville Province, New York) yields metamorphic temperatures of 700–800 °C, consistent with granulite facies mineral assemblages. Samples from the Irving Pond quartzite record Δ18O(Qtz–Grt) = 2.68 ± 0.21‰ (1 s.d. , n = 15), corresponding to peak metamorphic conditions of 734 ± 38 °C. This agrees well with the estimates from garnet–biotite exchange thermometry. Similar temperature estimates are obtained from Swede Pond (682 ± 47 °C, n = 3) and King's Station (c. 700 °C). The Whitehall area records higher temperatures (798 ± 25 °C, n = 3). All of these temperatures are higher than previous regional temperature estimates. The c. 800 °C temperatures near Whitehall are consistent with preservation of pre‐granulite contact temperatures adjacent to anorthosite. The preservation of peak metamorphic temperatures in garnet of all sizes is consistent with slow oxygen diffusion in garnet, and closure temperatures of at least 730 °C. Peak metamorphic fractionations are preserved in rocks with varying quartz:feldspar ratios, indicating that the modal percentage of feldspar does not affect retrograde oxygen exchange in these rocks. The lack of this correlation suggests slow rates of oxygen diffusion in quartz and feldspar, consistent with the results of anhydrous oxygen diffusion experiments.  相似文献   

6.
Granulite-Facies Metamorphism at Molodezhnaya Station, East Antarctica   总被引:1,自引:0,他引:1  
Granulite-facies quartzofeldpathic gneisses metamorphosed 1000m.y. ago are exposed around Molodezhnaya Station (67°40'S,46°E) in East Antarctica. In addition to quartz, K-feldspar,and plagioclase, the fourteen samples studied in detail consistof the assemblages biotite-orthopyroxene-magnetite, biotite-garnet-orthopyroxene-ilmenite±magnetite, biotite-garnet ± ilmenite ± magnetite,biotite-garnet-sillimanite-ilmenite ± rutile, and biotite-garnet-cordierite-ilmenite-(sillimanite-rutile).Garnets are pyrope-almandine (13 to 34 mol per cent pyrope).Biotite (XFe = 0.33 to 0.57) is rich in TiO2 (4 to 6.3 wt percent) and its Al2O3 content depends on the mineral assemblage.Orthopyroxene (XFe = 0.45 to 0.60) contains 1.5 to 3.0 weightper cent Al2O3. By and large, the minerals are chemically homogeneousand compositional variations are systematic, which indicatecrystallization under equilibrium conditions. On the basis ofthe compositions of coexisting garnet-biotite, garnet-cordierite,garnet-plagioclase (with sillimanite), and garnet-plagioclase-orthopyroxene,temperatures and pressures during the granulite-facies metamorphismare estimated to be 700°C ± 30°C and 5.5 ±1 kb. Water pressure apparently was significantly less thantotal pressure. Alteration during events following the granulite-facies metamorphismhas resulted in chemical zoning in garnet, in which grain edgesare more iron-rich than cores, heterogeneous biotite compositions,and anomalous trends involving MnO. Temperatures based on biotiteand garnet-edge compositions range from 410 to 580°C. Differences in the chemical potential (µ) of water andoxygen in the fluid phase can explain compositional variationsamong the three sillimanite-bearing samples and the relativelyiron-rich compositions of garnet and biotite associated withcordierite. Apparently, the water released by the formationof cordierite remained in the rock, forcing µH2O to increaseas cordierite formed. Buffering of fluid phase composition bythe mineral assemblage suggests that water was not removed fromthe Molodezhnaya rocks by flushing with CO2-rich fluids duringmetamorphism, a hypothesis evoked to explain ‘dry’mineral assemblages in other granulite-facies terrains.  相似文献   

7.
Pressure–temperature–time (P–T–t) pathsof orogenic granulites provide important information on thethermal and chemical structure of the lower continental crustthrough time, and constraints on tectonic processes. We presentthe first detailed petrological investigation of granulitesfrom the Variscan Schwarzwald. Pelitic granulites from the CentralSchwarzwald Gneiss Complex (CSGC) are characterized by the peakassemblage garnet + rutile + kyanite + antiperthite ±quartz. Felsic to intermediate granulites from the SouthernSchwarzwald Gneiss Complex (SSGC) exhibit different peak assemblageswith clinopyroxene, orthopyroxene, ternary feldspar, garnet,quartz and sillimanite, and manifold retrograde reaction textures.Peak P–T conditions were calculated by two-feldspar thermometry,garnet–orthopyroxene thermometry and various geobarometers.Minimum estimates for peak conditions are 950–1010°Cand 1·4–1·8 GPa for the granulites of theCSGC, which followed a clockwiseP–T path. The retrogradepath is characterized by initial isothermal decompression, associatedwith partial melting, followed by isobaric cooling. Peak conditionsfor the SSGC are 1015°C and 1·5 GPa (minimum temperature,maximum pressure). No prograde relics are preserved, and isothermaldecompression was less pronounced than in the CSGC. Other VariscanHP–HT granulites from Central Europe show similar lithologies,equilibration temperatures and ages (340–335 Ma). Theheat for widespread high-temperature metamorphism in the Variscanlower crust could have been supplied by repeated intrusion ofsubduction-related basic magmas. Rapid, near-isothermal decompressionof the granulites may have been facilitated by considerablevolumes of partial melt and by orogenic extension. KEY WORDS: granulites; near-isothermal decompression; two-feldspar thermometry; HT metamorphism; Variscan Schwarzwald  相似文献   

8.
Oxygen and hydrogen stable isotope ratios of eclogite-facies metagabbros and metabasalts from the Cycladic archipelago (Greece) document the scale and timing of fluid–rock interaction in subducted oceanic crust. Close similarities are found between the isotopic compositions of the high-pressure rocks and their ocean-floor equivalents. High-pressure minerals in metagabbros have low δ18O values: garnet 2.6 to 5.9‰, glaucophane 4.3 to 7.1‰; omphacite 3.5 to 6.2‰. Precursor actinolite that was formed during the hydrothermal alteration of the oceanic crust by seawater analyses at 3.7 to 6.3‰. These compositions are in the range of the δ18O values of unaltered igneous oceanic crust and high-temperature hydrothermally altered oceanic crust. In contrast, high-pressure metabasalts are characterised by 18O-enriched isotopic compositions (garnet 9.2 to 11.5‰, glaucophane 10.6 to 12.5‰, omphacite 10.2 to 12.8‰), which are consistent with the precursor basalts having undergone low-temperature alteration by seawater. D/H ratios of glaucophane and actinolite are also consistent with alteration by seawater. Remarkably constant oxygen isotope fractionations, compatible with isotopic equilibrium, are observed among high-pressure minerals, with Δglaucophane−garnet = 1.37 ± 0.24‰ and Δomphacite−garnet = 0.72 ± 0.24‰. For the estimated metamorphic temperature of 500 °C, these fractionations yield coefficients in the equation Δ = A * 106/T 2 (in Kelvin) of Aglaucophane−garnet = 0.87 ± 0.15 and Aomphacite−garnet = 0.72 ± 0.24. A fractionation of Δglaucophane–actinolite = 0.94 ± 0.21‰ is measured in metagabbros, and indicates that isotopic equilibrium was established during the metamorphic reaction in which glaucophane formed at the expense of actinolite. The preservation of the isotopic compositions of gabbroic and basaltic oceanic crust and the equilibrium fractionations among minerals shows that high-pressure metamorphism occurred at low water/rock ratios. The isotopic equilibrium is only observed at hand-specimen scale, at an outcrop scale isotopic compositional differences occur among adjacent rocks. This heterogeneity reflects metre-scale compositional variations that developed during hydrothermal alteration by seawater and were subsequently inherited by the high-pressure metamorphic rocks. Received: 4 January 1999 / Accepted: 7 July 1999  相似文献   

9.
Oxygen isotopic compositions of silicate inclusions in IVA iron meteorites have been measured with an in situ UV laser microprobe technique. The homogeneity of oxygen isotopic compositions within and among individual mineral grains has also been examined. Oxygen isotope fractionations between coexisting mineral pairs were utilized in oxygen isotope thermometry. Our measured Δ17O values, ranging from 0.97 to 1.25‰, are characteristic of a single reservoir and fully confirm the oxygen isotopic similarity between IVA irons and L/LL chondrites. Steinbach and São João Nepomuceno, containing inclusions of two silicate minerals in mutual contact, exhibit a mass-dependent fractionation of 18O/16O between tridymite and bronzite with apparent oxygen isotopic heterogeneity. The SiO2-bearing member, Gibeon, gives homogeneous oxygen isotopic compositions without detectable fractionation of 18O/16O between tridymite and quartz. Oxygen isotope equilibrium temperatures are estimated for coexisting tridymite and bronzite in the same sample slabs or clusters in Steinbach and São João Nepomuceno. The fractionations of 18O/16O between bronzite and tridymite range from 1.6 to 2.3‰ in different sample slabs or clusters. On the basis of the closure temperature concept, cooling rates are estimated at approximately 20 to 1000°C/Myr between 800 and 1000°C, a range of temperatures not accessible to other cooling rate methods. Using the Fast Grain Boundary diffusion model, we have demonstrated that significant oxygen heterogeneity both in tridymite and bronzite is probably due to isotope exchange during cooling between minerals with various grain sizes and mineral abundances in different regions of the samples. The new estimates of cooling rate by oxygen isotope thermometry refine previous cooling curves of IVA irons and support the breakup-reassembly model for the IVA parent body.  相似文献   

10.
Oxygen isotope ratios of quartz inclusions (QI) within garnet from granulite and amphibolite facies gneisses in the Adirondack Mountains, NY were analysed and used to determine metamorphic temperatures. Primary QI for eight of 12 samples have δ18O values significantly lower than matrix quartz (MQ). The primary QI retain δ18O values representative of thermal conditions during garnet crystallization, whereas the δ18O values of MQ were raised by diffusive exchange with other matrix minerals (e.g. mica and feldspar) during cooling. The δ18O differences between QI and MQ show that garnet (a mineral with slow diffusion of oxygen) can armour QI from isotopic exchange with surrounding matrix, even during slow cooling. These differences between δ18O in MQ and QI can further be used to test cooling rates by Fast Grain Boundary diffusion modelling. Criteria for identifying QI that preserve primary compositions and are suitable for thermometry were developed based on comparative tests. Relations between δ18O and inclusion size, distance of inclusion to host–garnet rim, core–rim zonation of individual inclusions, and presence or absence of petrological features (healed cracks in QI, inclusions in contact with garnet cracks lined by secondary minerals, and secondary minerals along the inclusion grain boundary) were investigated. In this study, 61% of QI preserve primary δ18O and 39% were associated with features that were linked to reset δ18O values. If δ18O in garnet is homogeneous and inclusions are removed, laser‐fluorination δ18O values of bulk garnet are more precise, more accurate, and best for thermometry. Intragrain δ18O(Grt) profiles measured in situ by ion microprobe show no δ18O zonation. Almandine–rich garnet (Alm60–75) from each sample was measured by laser‐fluorination mass‐spectrometry (LF‐MS) for δ18O and compared with ion microprobe measurements of δ18O in QI for thermometry. The Δ18O(Qz–Grt) values for Adirondack samples range from 2.66 to 3.24‰, corresponding to temperatures of 640–740 °C (A[Qz–Alm] = 2.71). Out of 12 samples that were used for thermometry, nine are consistent with previous estimates of peak temperature (625–800 °C) based on petrological and carbon–isotope thermometry for regional granulite and upper amphibolite facies metamorphism. The three samples that disagree with independent thermometry for peak metamorphism are from the anorthosite–mangerite–charnockite–granite suite in the central Adirondacks and yield temperatures of 640–665 °C, ~100 °C lower than previous estimates. These low temperatures could be interpreted as thermal conditions during late (post‐peak) crystallization of garnet on the retrograde path.  相似文献   

11.
The phosphate and sulfate-phosphate minerals in the sillimanite-bearing rocks of the Kyakhta deposit are considered. The mineral assemblages of the high-Al rocks were formed during prograde and retrograde stages of metamorphism. The first stage is characterized by the formation of sillimanite, corundum, muscovite, quartz, rutile, titanohematite, magnetite, feldspar, biotite, lazulite, and wagnerite. The muscovite composition showed that sillimanite paragenesis was formed at temperatures above 510–600°C. According to oxygen isotope thermometry, the minimum metamorphic temperature for quartz and titanohematite is 690°C. Andalusite, diaspore, quartz, pyrophyllite, muscovite, and a wide range of phosphates and sulfate-phosphates crystallized during the retrograde stage. The decrease in temperature and increase in the water content led to the following sequence of mineral formation: Mg-Fe-Al-Ca-REE-rich phosphates (lazulite, scorzalite, augelite, apatite, and monazite) → Ca-Sr sulfate-phosphates (woodhouseite and svanbergite) → sulfate (barite) → Sr-Ca-Ba aluminophosphates (goyazite, crandallite, and gorceixite). The chemical compositions of phosphates and sulfate-phosphates minerals and their formation conditions are discussed.  相似文献   

12.
Metapelitic gneisses from the Glenfinnan Group of the MoineSupergroup, Scotland, contain sparse large and numerous smallgarnets, associated with complex zoned epidote and plagioclasein a biotite matrix. The large garnets show four zones (AI–AIV),whereas the small garnets show three or fewer zones, indicatingsuccessive garnet nucleation with increasing nucleation densities.Garnet zones AI and AIV grew under static conditions, whereasthe formation of AII and AIII was accompanied by deformation.Garnet zones AI and AII were formed in the assemblage (all +biotite + epidote + plagioclase + quartz + fluid + apatite)garnet + chlorite + muscovite ± ilmenite ± sphene± magnetite; zone AIII in the assemblage garnet + muscovite+ sphene ± magnetite; and zone AIV in the assemblagegarnet + sphene ± ilmenite. The chemical zonation andmicrostructures of garnet A indicate two important discontinuities;one at the transition between garnet zones AI and AII, and asecond between zones AII and AIII, which correlate with complexzonation shown by epidote and plagioclase. These discontinuitiesmay result from polymetamorphic garnet growth during differentorogenic cycles affecting the Moine Supergroup. Geothermobarometriccalculations and Gibbs method modelling provide evidence thatgarnet zone AI grew rapidly during heating from about 550 to560°C at pressures of about 4–6 kbar. In contrast,the formation of zone AII was accompanied by nearly isothermalcompression from 6 to 8·5 kbar (560 575°C), indicatingcrustal stacking. After a certain period of cooling, garnetzone AIII grew during renewed heating at P–T conditionsof about 640°C and pressures between 5 and 9 kbar. Growthof garnet AIV was accompanied by further temperature rise, reachingmaximum conditions of about 670°C at 5 kbar. KEY WORDS: epidote; garnet; Gibbs method; Moine Supergroup; P–T path  相似文献   

13.
Himalayan inverted metamorphism constrained by oxygen isotope thermometry   总被引:3,自引:0,他引:3  
Inverted metamorphic field gradients are preserved in two amphibolite facies metapelitic sequences forming the crystalline core zone of the Himalayan orogen in the Sutlej valley (NW India). In the High Himalayan Crystalline Sequence (HHCS), metamorphic conditions increase upwards from the staurolite zone at the base, through the kyanite-in and sillimanite-in isograds, finally to reach partial melting conditions at the top. The structurally lower Lesser Himalayan Crystalline Sequence (LHCS) shows a gradual superposition of garnet-in, staurolite-in and kyanite + sillimanite-in isograds. Although phase equilibria constraints imply inverted temperature field gradients in both units, garnet-biotite (GARB) rim thermometry indicates final equilibration at a nearly uniform temperature around T ≈ 600 °C across these sequences. The P-T path and garnet zoning data show that this apparent lack of thermal field gradient is mainly the consequence of a resetting of the GARB equilibria during cooling. In order to constrain peak temperature conditions, 20 samples along the studied section have been analysed for oxygen isotope thermometry. The isotopic fractionations recorded by quartz-garnet and quartz-aluminosilicate mineral pairs indicate temperatures consistent with phase equilibria and P-T path constraints for metamorphic peak conditions. Together with barometry results, based on net transfer continuous reactions, the oxygen isotope thermometry indicates peak conditions characterized by: (1) a temperature increase from T ≈ 570 to 750 °C at a nearly constant pressure around P ≈ 800 MPa, from the base to the top of the HHCS unit; (2) a temperature increase from T ≈ 610 to 700 °C and a pressure decrease from P ≈ 900 to 700 MPa, from the base to the top of the LHCS metapelites. Oxygen isotope thermometry thus provides the first quantitative data demonstrating that the Himalayan inverted metamorphism can be associated with a complete inversion of the thermal field gradient across the crystalline core zone of this orogen. Received: 1 April 1999 / Accepted: 12 July 1999  相似文献   

14.
In the Sesia Zone, Western Alps, a large volume of orthogneissformed as a result of eclogite fades metamorphism and deformationof quartz diorite during early Alpine underthrusting and subduction.Rare lenses of undeformed metaquartz diorite, preserved withinthe orthogneiss, represent an early stage in the evolution ofthis latter rock type. The metamorphic and microstructural evolutionof the orthogneiss in the eclogite fades has been reconstructedfrom studies of gradational contacts between undeformed andstrongly deformed rocks. High pressure transformations of the original igneous plagioclase+ biotite + quartz assemblage to jadeitic pyroxene (Jd0.95 –0.85+ zoisite + quartz + garnet + 2 muscovites developed prior todeformation. Slow intergranular diffusion resulted in a stateof disequilibrium between small textural domains in the metaquartzdiorite. The compositions of the phases of the undeformed metaquartzdiorite do not reflect the bulk rock composition, but were controlledby their position relative to reactant phases. The jadeiticpyroxenes, for example, formed in localized domains which originallyconsisted of sodic plagioclase whereas omphacite was the equilibriumpyroxene for the bulk rock composition. Mineralogical changes which occurred during subsequent deformationof the metaquartz diorite are interpreted as resulting froma progressive enlargement of equilibrium domains and the partialequilibration of mineral compositions to the bulk rock compositionrather than from changes in pressure and temperature. Initiallyduring high-strain deformation, fine-grained aggregates of jadeiticpyroxene + quartz + zoisite (originally pseudomorphing plagioclase)are inferred to have deformed by a mechanism of grain boundarysliding accommodated by diffusive mass transfer. Muscovite andgarnet compositions homogenized during the deformation but dueto slow intracrystalline diffusion, pyroxene compositions (Jd0.95–0.80) remained metastable. The coarsening of pyroxeneeventually terminated deformation by grain boundary slidingand this mineral subsequently deformed by intracrystalline plastidty.This latter process was accompanied by and perhaps catalyseda change in pyroxene composition from metastable jadeite towardsomphacite by a reaction involving the resorption of garnet andthe nucleation and growth of paragonite. The resulting orthogneissconsists of quartz + omphadte + garnet + phengite + paragonite+ zoisite. The rock is characterized by a broad range of pyroxenecompositions (Jd0.8 –0.5) due to the incomplete equilibrationof this mineral to the bulk rock composition and a lack of Fe-Mgexchange equilibrium between pyroxene and garnet. However, incontrast to the undeformed metaquartz diorite, there are noobvious textural indications of disequilibrium between phasesin the orthogneiss  相似文献   

15.
The Fe-Mg thermometer widely used to infer the “equilibration” temperature of garnet-clinopyroxene assemblages of eclogites records the progressive blocking of diffusion-limited exchanges between coexisting mineral phases. It is argued that equilibrium is achieved through the fast grain boundary model in which Fe and Mg circulate in an interstitial medium fast enough for the rate-limiting step to be the volume diffusion in each mineral phase. A semi-analytic solution is found and the influence of the cooling history, grain size distribution, and rock composition on the temperature at which the Fe-Mg exchange between garnet and clinopyroxene is frozen in are quantitatively evaluated. In particular, the model simulates the temperatures that would be obtained from the concentration of Fe and Mg in the rim of adjacent garnet and clinopyroxene crystals such as those commonly obtained by electron probe. For eclogites, the simulations show that correct peak temperatures are retrieved as long as the temperature of the metamorphic climax does not exceed 650 °C. At higher climax temperatures, rim-rim temperatures underestimate the peak temperature and cluster around 650 °C. Fast cooling, however, strongly limits diffusive equilibration. In crustal-type eclogites, cooling rates of a few degrees per million years at 700 °C and of a few tens of degrees at 800 °C preserve the record of the peak temperature. It is shown that these results are largely independent of the chemical composition of the garnet and clinopyroxene. On the contrary, the mineral grain size and the respective proportions of garnet and clinopyroxene have a major effect on retrogressive diffusion. For eclogites formed at a temperature of 800 °C and under conditions of slow cooling, the record of the climax temperature is preserved by crystal rims as long as the volume of clinopyroxene is smaller than that of garnet and crystal size is at least millimetric. The choice of a particular set of experimental data for the diffusion coefficients is found to be immaterial. We suggest that the temperature of the metamorphic climax of eclogites is best estimated from the composition of clinopyroxene rims combined with that of the inner edge of the diffusion boundary layer fringing the coexisting garnet grains. Received: 15 January 1998 / Accepted: 6 November 1998  相似文献   

16.
The Priest pluton contact aureole in the Manzano Mountains, central New Mexico preserves evidence for upper amphibolite contact metamorphism and localized retrograde hydrothermal alteration associated with intrusion of the 1.42 Ga Priest pluton. Quartz–garnet and quartz–sillimanite oxygen isotope fractionations in pelitic schist document an increase in the temperatures of metamorphism from 540 °C, at a distance of 1 km from the pluton, to 690 °C at the contact with the pluton. Comparison of calculated temperature estimates with one‐dimensional thermal modelling suggests that background temperatures between 300 and 350 °C existed at the time of intrusion of the Priest pluton. Fibrolite is found within 300 m of the Priest pluton in pelitic and aluminous schist metamorphosed at temperatures >580 °C. Coexisting fibrolite and garnet in pelitic schist are in oxygen isotope equilibrium, suggesting these minerals were stable reaction products during peak metamorphism. The fibrolite‐in isograd is coincident with the staurolite‐out isograd in pelitic schist, and K‐feldspar is not observed with the first occurrence of fibrolite. This suggests that the breakdown of staurolite and not the second sillimanite reaction controls fibrolite growth in staurolite‐bearing pelitic schist. Muscovite‐rich aluminous schist locally preserves the Al2SiO5 polymorph triple‐point assemblage – kyanite, andalusite and fibrolite. Andalusite and fibrolite, but not kyanite, are in isotopic equilibrium in the aluminous schist. Co‐nucleation of fibrolite and andalusite at 580 °C in the presence of muscovite and absence of K‐feldspar suggests that univariant growth of andalusite and fibrolite occurred. Kyanite growth occurred during an earlier regional metamorphic event at a temperature nearly 80 °C lower than andalusite and fibrolite growth. Quartz–muscovite fractionations in hydrothermally altered pelitic schist and quartzite are small or negative, suggesting that late isotopic exchange between externally derived fluids and muscovite, but not quartz, occurred after peak contact metamorphism and that hydrothermal alteration in pelitic schist and quartzite occurred below the closure temperature of oxygen self diffusion in quartz (<500 °C).  相似文献   

17.
Diamonds and eclogites of the Jericho kimberlite (Northern Canada)   总被引:1,自引:1,他引:0  
We studied diamonds and barren and diamondiferous eclogite xenoliths from the Jericho kimberlite (Northern Slave craton). The majority of the diamonds are non-resorbed octahedral crystals, with moderately aggregated N (IaB < 50%, N < 300 ppm) and δ13C = −5 to −41‰. The diamonds belong to “eclogitic” (90% of the studied samples), “websteritic” (7%) and “peridotitic” (3%) assemblages. The Jericho diamonds differ from the majority of “eclogitic” diamonds worldwide in magnesian compositions of associated minerals and extremely light C isotopic compositions (δ13C = −24 to −41‰). We propose that metasomatism triggered by H2O fluids may have been involved in the diamond formation. Multiple episodes of the metasomatism and associated melt extraction of various ages are evident in Jericho eclogite xenoliths where primary garnet and clinopyroxene have been recrystallized to more magnesian minerals with higher contents of some incompatible trace elements and to hydrous secondary phases. The model is supported by the general similarity of mineral compositions in diamondiferous eclogites to those in diamond inclusions and to secondary magnesian garnet and clinopyroxene in recrystallized barren eclogites. The ultimate products of the metasomatism could be “websteritic” diamond assemblages sourced from magnesian eclogites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Granulite facies quartzites from the Ihouhaouene region, in the northern part of In Ouzzal, contain the assemblage corundum+quartz+magnetite together with hercynitic spinel+quartz+magnetite, sillimanite+quartz+magnetite and almandine-rich garnet+quartz+magnetite. Two types of corundum have been recognized: the first is primary and is found with quartz and magnetite only; the second type is found together with magnetite and chlorite rimming spinel as a fine-grained corona. The textures show that spinel-rich magnetite probably exsolved primary corundum, sillimanite, spinel and garnet during the cooling history. The secondary corundum formed later from the spinel already exsolved from magnetite. The secondary corundum is certainly metastable with respect to quartz. This may also apply for the primary corundum. However, given the high-temperature setting of this rock, it cannot be excluded that the stable contacts observed between primary corundum and quartz indicate equilibrium between the two phases. Taking into account the uncertainties in the thermodynamic data, the stability of this assemblage would imply that this part of In Ouzzal has recorded very high P–T conditions, above 1100°C at 12 kbar.  相似文献   

19.
Oxygen isotope ratios were determined for quartz, magnetite, ankerite, siderite, riebeckite, hematite and talc in samples of banded iron-formation from the Dales Gorge Member of the Brockman Iron Formation and for quartz, dolomite and calcite in samples of the Wittenoom Dolomite and Duck Creek Dolomite Formations, all from the Hamersley Range area of Western Australia. Additionally, in order to interpret the measured isotope ratios, isotopic fractionations for oxygen between quartz, siderite and magnetite and between these minerals and water as a function of temperature were calculated, using a combination of spectroscopic and thermodynamic data and constraints set by experimental determinations of the fractionations.The Dales Gorge Member was found to have undergone isotopic exchange between minerals at a temperature estimated on the basis of the isotopic fractionations to be above 270°C and probably less than 310°C, during burial metamorphism. At these temperatures quartz and the carbonates were almost completely equilibrated with one another, while hematite apparently underwent negligible exchange. Magnetite may have undergone exchange in some samples but not others, as a result of permeability variations, or it may have been as resistant to exchange as hematite. Riebeckite, and probably talc as well, were also subject to exchange, but to a lesser degree or on a smaller scale than quartz and the carbonates. Hematite formed at temperatures of 140°C or below. Magnetite appears to have formed at temperatures above 140°C, and possibly over a range of temperatures between about 180 and 300°C.The Wittenoom Dolomite and Duck Creek Dolomite samples show apparent lack of equilibrium, due to incomplete exchange or to retrograde effects. A chert from the Wittenoom Dolomite, along with two samples from the Marra Mamba Iron Formation, with δ18O values of + 24%. can be considered to set a lower limit of about ?11%. on the δ18O value of the ocean 2.2 × 109 yr ago. Internal fractionations in the Wittenoom Dolomite chert sample may be interpreted as yielding an upper limit on this oceanic δ18O value of ? 3.5%.  相似文献   

20.
The dominant flow mechanism in tectonic processes depends on the rheological properties of geological materials and the physical conditions prevailing during deformation. We have evaluated the relative importance of intercrystalline diffusion and intracrystalline creep in crustal deformation in terms of temperature and grain size.Oxygen isotope thermometry has been used to elucidate the thermal environment obtaining during deformation and contemporaneous metamorphism of Dalradian rocks from Southwest Scotland. The temperature and grain size data, applied in conjunction with microstructural criteria for evaluating independent mechanisms of steady-state flow, allow recognition of a low-temperature deformation regime dominated by intercrystalline diffusion, and a high-temperature regime dominated by dislocation processes.The transition between the fields of intercrystalline diffusion and dislocation creep for quartz and calcite of 100 Mm grain size occurs at about 450° C and about 300° C, respectively. These empirically derived results are consistent with the temperature intervals over which intercrystalline diffusion and dislocation creep, respectively, are predicted to be dominant at geologically reasonable strain rates, as derived from theoretically formulated deformation mechanism maps for quartz and calcite.Grain growth may play an important role in delimiting the higher-temperature boundary of the intercrystalline diffusion field. Intercrystalline diffusion is the only deformation mechanism that involves mass transfer over distances that are large in relation to the grain size. This result has important consequences for geochemical transport phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号