首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 'plasmon' solution of De Young & Axford describes the interaction between a high-velocity clump and the surrounding medium. Even though this solution is probably too simplistic, it has proven to be most useful in the study of diverse astrophysical flows. In the present paper, we discuss a more detailed solution of the plasmon problem, which includes the centrifugal effects of the environmental material flowing around the plasmon. We derive both numerical and approximate analytic solutions of this problem, and compare them with the analytic solution of De Young & Axford.  相似文献   

2.
In this paper an exact solution of the Brans-Dicke field equations in the presence of stiff matter is obtained for the Bianchi type-I cosmological space-time. The new solution represents an anisotropic homogeneous cosmological model which tends to anisotropic expansion. The behaviour of the solution near the singularities and late stages of the expansion is discussed.  相似文献   

3.
Evolution of a homogeneous, isotropic Universe with flat geometry filled with a viscous fluid is investigated in presence of a variable cosmological Λ. A non-singular solution leading to a variable deceleration parameter is obtained which reduces to the solution of Murphy in the ‘no Λ limit’ and to the recent solution of Vishwakarma in the context of ‘a Machian model of dark energy’ in the ‘no viscosity’ limit.  相似文献   

4.
In the framework of the direct photometric problem for spotted stars we obtained an analytic solution adopting gradually changing of the spot temperature from the center to the outskirts of the spots. The results are intended for the solution of the corresponding inverse problem that could give information for the mechanisms leading to spot creating.  相似文献   

5.
《Astroparticle Physics》2011,34(5-6):307-311
We present here a semi-analytical solution of the problem of particle acceleration at non-linear shock waves with a free-escape boundary at some location upstream. This solution, besides allowing us to determine the spectrum of particles accelerated at the shock front, including the shape of the cutoff at some maximum momentum, also allows us to determine the spectrum of particles escaping the system from upstream. This latter aspect of the problem is crucial for establishing a connection between the accelerated particles in astrophysical sources, such as supernova remnants, and the cosmic rays observed at the Earth. An excellent approximate solution, which leads to a computationally fast calculation of the structure of shocks with an arbitrary level of cosmic ray modification, is also obtained.  相似文献   

6.
A method is given, based on the pseudoinverse of the equations of condition, to obtain error estimates for the solution in the normL 1 of an over-determined linear system. The computational labor to obtain the errors, while not trivial, is less than that for various competing methods, particularly if there are many more equations of condition than unknowns. The error estimates for anL 1 solution are substantially larger than those for a least squares solution of the some data. It is suggested that a complete discussion of a linear system include at least bothL 1 and least squares solutions with their respective errors and the condition number of the linear system.  相似文献   

7.
The problem of the attitude dynamics of a triaxial gyrostat under no external torques and one constant internal rotor, is a three degrees-of-freedom system, although thanks to the existence of integrals of motion it can be reduced to only one degree-of-freedom problem. We introduce coordinates to represent the orbits of constant angular momentum as a flow on a sphere. This representation shows that the problem is equivalent to a quadratic Hamiltonian depending on two parameters. We find the exact solution of the orbits in terms of elliptic functions. By making use of properties of elliptic functions we find the solution at each region of the parametric partition from the solution of one region. We also prove that heteroclinic orbits are planar curves.  相似文献   

8.
We study a perfect fluid Bianchi II models with time varying constants under the self-similarity approach. In the first of the studied model, we consider that only vary G and Λ. The obtained solution is more general that the obtained one for the classical solution since it is valid for an equation of state ω∈(−1,∞) while in the classical solution ω∈(−1/3,1). Taking into account the current observations, we conclude that G must be a growing time function while Λ is a positive decreasing function. In the second of the studied models we consider a variable speed of light (VSL). We obtain a similar solution as in the first model arriving to the conclusions that c must be a growing time function if Λ is a positive decreasing function.  相似文献   

9.
In order to derive the stellar population of a galaxy or a star cluster, it is a common practice to fit its spectrum by a combination of spectra extracted from a data base (e.g. a library of stellar spectra). If the data to be fitted are equivalent widths, the combination is a non-linear one and the problem of finding the 'best' combination of stars that fits the data becomes complex. It is probably because of this complexity that the mathematical aspects of the problem did not receive a satisfying treatment; the question of the uniqueness of the solution , for example, was left in uncertainty. In this paper we complete the solution of the problem by considering the underdetermined case where there are fewer equivalent widths to fit than stars in the data base (the overdetermined case was treated previously). The underdetermined case is interesting to consider because it leaves space for the addition of supplementary astrophysical constraints. In fact, it is shown in this paper that when a solution exists it is generally not unique. There are infinitely many solutions, all of them contained within a convex polyhedron in the solutions vector space. The vertices of this polyhedron are extremal solutions of the stellar population synthesis. If no exact solution exists, an approximate solution can be found using the method described for the overdetermined case. Also provided is an algorithm able to solve the problem numerically; in particular all the vertices of the polyhedron are found.  相似文献   

10.
An analytic solution to the two-body problem with a specific drag model is obtained. The model treats drag as a force proportional to the vector velocity and inversely proportional to the square of the distance to the center of attraction. The solution is expressed in terms of known functions and is of a simple and compact form. The time-of-flight is expressed as a quadrature in the ‘true anomaly’.  相似文献   

11.
In the present paper we study some new aspects of the Bianchi type-V space time. The Electric and Magnetic parts of Weyl tensors are calculated in terms of tilted congruence and discussed the purely magnetic Weyl tensor. Einstein field equations for purely magnetic space time are obtained and solution of such field equations called purely magnetic solution. To get deterministic solutions of the field equations we consider a new law of variation of average scale factor which yields time dependent deceleration parameter. Certain physical and geometrical properties of the model are also discussed.  相似文献   

12.
We present an exact solution of the Brans-Dicke equations for cosmological models of Bianchi type VI0 with stiff matter. The solution represents anisotropic universe which has its analogy in Einstein's theory. The corresponding result for a plane symmetry Bianchi type I model is obtained as a special case.  相似文献   

13.
We derive a simple analytical solution for the evolution of a close binary with nuclear time-scale driven mass transfer from a giant. This solution is based on the well-known fact that the luminosity and the radius of a giant scale to a good approximation as simple power laws of the mass M c of the degenerate helium core. Comparison with results of numerical calculations by Webbink, Rappaport & Savonije show the analytical solution and the power-law approximation to be quite accurate. The analytical solution presented does also allow (in parametrized form) for non-conservative mass transfer. Furthermore, it is shown that the near constancy of the mass-transfer rate over most of the mass-transfer phase seen in the results by Webbink, Rappaport & Savonije is not a generic feature of this type of evolution but rather a consequence of a particular choice of parameters. The analytical solution also demonstrates that the level of mass transfer is largely set by the core mass of the giant at the onset of mass transfer. Finally, we show that the model is self-consistent and discuss its applicability to low-mass X-ray binaries.  相似文献   

14.
The existence of homographic solutions of the N-body problem with a geneva attraction is verified, and the way which leads to obtaining certain types of homographic solutions is indicated. Basic properties of the solutions, such as the relations between the dynamical quantities and the initial conditions are presented. Furthermore, we proved that, for k is not equal to 3, if a homographic solution is not planar, it must be homothetic. And in this case, another important conclusion is that the configurations corresponding to any homographic solution are central configurations. Finally, we showed that along each homographic solution, motion of any individual mass point observes the same rules as the ones observed by mass points of a certain two-body system.  相似文献   

15.
An exact solution is obtained for the electromagnetic field surrounding an infinitely long, conducting cylinder with a periodic axial electric current. The solution simultaneously gives the field near the cylinder and in the transition to the wave zone. The flux of electromagnetic radiation emitted by the cylinder is calculated for oscillations with long wavelengths greatly exceeding the radius of the cylinder. This solution can be used to describe the electromagnetic field around narrowly collimated jets from active galactic nuclei and quasars.  相似文献   

16.
The Hori-Lie transformation for a non-conservative system is applied to the Lindstedt's equation with constant coefficients. A second-order solution when the right hand is a quartic polynomial is derived explicity. We made two applications of our solution. We obtained a new form of the trajectorv of a test particle moving in a Schwarzschild field. The radius of the particle is a periodic funciton of the polar angle with a period slightly different from 2π. The deviation is the relativistic precession. We also considered the solution of the coordinates ρ and η in Vinti's problem containing J3. They are expressed as periodic functions of O'Mathuna's regularization argument.  相似文献   

17.
On the planar motion in the full two-body problem with inertial symmetry   总被引:1,自引:0,他引:1  
Relative motion of binary asteroids, modeled as the full two-body planar problem, is studied, taking into account the shape and mass distribution of the bodies. Using the Lagrangian approach, the equations governing the motion are derived. The resulting system of four equations is nonlinear and coupled. These equations are solved numerically. In the particular case where the bodies have inertial symmetry, these equations can be reduced to a single equation, with small nonlinearity. The method of multiple scales is used to obtain a first-order solution for the reduced nonlinear equation. The solution is shown to be sufficient when compared with the numerical solution. Numerical results are provided for different example cases, including truncated-cone-shaped and peanut-shaped bodies.  相似文献   

18.
An analytical solution of the two body problem perturbed by a constant tangential acceleration is derived with the aid of perturbation theory. The solution, which is valid for circular and elliptic orbits with generic eccentricity, describes the instantaneous time variation of all orbital elements. A comparison with high-accuracy numerical results shows that the analytical method can be effectively applied to multiple-revolution low-thrust orbit transfer around planets and in interplanetary space with negligible error.  相似文献   

19.
The solution to the motion of a satellite in an eccentric orbit and in resonance with the second-degree sectorial harmonic of the potential field is developed. The method of solution used parallels the well known von Zeipel method of general perturbations. The solution consists of expressions for the variations of the Delaunay variables. These expressions are composed of the perturbations developed by Brouwer in 1959 for the motion of an artificial satellite plus first-order perturbations due to the second-degree sectorial harmonic (in terms of the Legendre normal elliptic integrals of the first and second kind).This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.  相似文献   

20.
An analytic solution, in terms of expansion of a small parameter, for the classical two-body tethered satellite with a specific drag model is obtained. The time of flight as well as the solution regarding the state variable of the system are expressed in terms of quadratures of the anomaly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号