首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
疏散星团是探究银河系结构与演化的良好示踪体,一直以来颇受关注.之前关于疏散星团的研究中,仅有一小部分疏散星团有金属丰度参数,而且,金属丰度的测量,是基于不同质量的观测数据,采用了不同的方法.收集了一个年龄大于2 Gyr的老年疏散星团样本,通过整理这些星团成员星的金属丰度数据,一方面,以星团NGC 2682为例,对比了不同光谱巡天项目给出的星团成员星金属丰度的系统差异;另一方面,计算了星团成员星金属丰度的平均值和中位值,作为该疏散星团的金属丰度推荐值.此外,还利用该样本探究了银盘径向金属丰度梯度随时间的演化,结果表明,早期银盘有着更加陡峭的径向金属丰度梯度,随着演化时间的增加,银盘径向金属丰度梯度逐渐趋于平缓,为银盘化学演化模型提供了更加严格的观测约束.  相似文献   

2.
A comparison is made between the age–metallicity relations obtained from four different types of studies: F and G stars in the solar neighbourhood, analysis of open clusters, galactic structure studies with the stellar population synthesis technique and chemical evolution models. Metallicities of open clusters are corrected for the effects of the radial gradient, which we find to be −0.09 dex kpc−1 and most likely constant in time. We do not correct for the vertical gradient, because its existence and value are not firmly established.
Stars and clusters trace a similar age–metallicity relation, showing an excess of rather metal-rich objects in the age range 5–9 Gyr. Galactic structure studies tend to give a more metal-poor relation than chemical evolution models. Neither relation explains the presence of old, relatively metal-rich stars and clusters. This might be caused by uncertainties in the ages of the local stars, or pre-enrichment of the disc with material from the bulge, possibly as a result of a merger event in the early phases of the formation of our Galaxy.  相似文献   

3.
History of Star Formation and Chemical Enrichment in the Milky Way Disk   总被引:2,自引:0,他引:2  
Based on a physical treatment of the star formation law similar to that given by Efstathiou, we have improved our two-component chemical evolution model for the Milky Way disk. Two gas infall rates are compared, one exponential, one Gaussian. It is shown that the star formation law adopted in this paper depends more strongly on the gas surface density than that in Chang et al. It has large effects on the history of star formation and gas evolution of the whole disk. In the solar neighborhood, the history of chemical evolution and star formation is not sensitive to whether the infall rate is Gaussian or exponential. For the same infall time scale, both forms predict the same behavior for the current properties of the Galactic disk. The model predictions do depend on whether or not the infall time scale varies with the radius, but current available observations cannot decide which case is the more realistic. Our results also show that it would be inadequate to describe the gradient evolution along the Gala  相似文献   

4.
Using a large (14 857), homogenously selected sample of cluster galaxies identified in the Sloan Digital Sky Survey Data Release 4, we investigate the impact of cluster membership and local density on the stellar mass–gas phase metallicity relation (MZR). We show that stellar metallicities are not suitable for this work, being relatively insensitive to subtle changes in the MZR. Accurate nebular abundances can be obtained for 1318 cluster galaxies in our sample and we show that these galaxies are drawn from clusters that are fully representative of the parent sample in terms of mass, size, velocity dispersion and richness. By comparing the MZR of the cluster galaxies with a sample of control galaxies matched in mass, redshift, fibre covering fraction and rest-frame   g − r   colour cluster galaxies are found to have, on average, higher metallicities by up to 0.04 dex. The magnitude of this offset does not depend strongly on galactic half-light radius or cluster properties such as velocity dispersion or cluster mass. The effect of local density on the MZR is investigated, using the presence of a near neighbour and both two- and three-dimensional density estimators. For all three metrics, it is found that the cluster galaxies in locally rich environments have higher median metallicities by up to ∼0.05 dex than those in locally poor environments (or without a near neighbour). Control (non-cluster) galaxies at locally high densities exhibit similar metal enhancements. Taken together, these results show that galaxies in clusters are, on average, slightly more metal rich than the field, but that this effect is driven by local overdensity and not simply cluster membership.  相似文献   

5.
银盘的径向金融丰度梯度   总被引:5,自引:0,他引:5  
详细综棕了银盘(包括HII区,早B型星,行星状星云和疏散星团)径向元素丰度梯度的观测结果,分析了丰度梯度的空间和时间变化的情况,指出根据目前的观测结果,还很难确定在银盘的演化历史中径向元素丰度梯度是逐渐变平缓还是逐渐变陡,比较了目前各种化学演化模型对径向丰度梯度演化的预测结果,初步探讨了丰度梯度可能的产生机制及影响其演化的各种重要物理过程。  相似文献   

6.
We have collected nearly all the available observed data of the elements from Ba to Dy in halo and disk stars in the metallicity range -4.0 <[Fe/H]< 0.5. Based on the observed data of Ba and Eu, we evaluated the least-squares regressions of [Ba/Fe] on [Fe/H], and [Eu/H] on [Ba/H]. Assuming that the heavy elements (heavier than Ba) are produced by a combination of the main components of s- and r-processes in metal-poor stars, and choosing Ba and Eu as respective representative elements of the main s- and the main r-processes, a statistical model for predicting the Galactic chemical evolution of the heavy elements is presented. With this model, we calculate the mean abundance trends of the heavy elements La, Ce, Pr, Nd, Sm, and Dy with the metallicity. We compare our results with the observed data at various metallicities, showing that the predicted trends are in good agreement with the observed trends, at least for the metallicity range [Fe/H]> -2.5. Finally, we discuss our results and deduce some importa  相似文献   

7.
Using metallicities from the literature, combined with the Revised Bologna Catalogue of photometric data for M31 clusters and cluster candidates [the latter of which is the most comprehensive catalogue of M31 clusters currently available, including 337 confirmed globular clusters (GCs) and 688 GC candidates], we determine 443 reddening values and intrinsic colours, and 209 metallicities for individual clusters without spectroscopic observations. This, the largest sample of M31 GCs presently available, is then used to analyse the metallicity distribution of M31 GCs, which is bimodal with peaks at [Fe/H]≈−1.7 and −0.7 dex. An exploration of metallicities as a function of radius from the M31 centre shows a metallicity gradient for the metal-poor GCs, but no such gradient for the metal-rich GCs. Our results show that the metal-rich clusters appear as a centrally concentrated spatial distribution; however, the metal-poor clusters tend to be less spatially concentrated. There is no correlation between luminosity and metallicity among the M31 sample clusters, which indicates that self-enrichment is indeed unimportant for cluster formation in M31.
The reddening distribution shows that slightly more than half of the GCs are affected by a reddening of E ( B − V ) ≲ 0.2 mag; the mean reddening value is   E ( B − V ) = 0.28+0.23−0.14 mag  . The spatial distribution of the reddening values indicates that the reddening on the north-western side of the M31 disc is more significant than that on the south-eastern side, which is consistent with the conclusion that the north-western side is nearer to us.  相似文献   

8.
We have derived ages and metallicities from co-added spectra of 131 globular clusters associated with the giant elliptical galaxy NGC 4472. Based upon a calibration with Galactic globular clusters, we find that our sample of globular clusters in NGC 4472 span a metallicity range of approximately −1.6≤[Fe/H]≤0 dex. There is evidence of a radial metallicity gradient in the globular cluster system which is steeper than that seen in the underlying starlight. Determination of the absolute ages of the globular clusters is uncertain, but formally, the metal-poor population of globular clusters has an age of 14.5±4 Gyr and the metal-rich population is 13.8±6 Gyr old. Monte Carlo simulations indicate that the globular cluster populations present in these data are older than 6 Gyr at the 95 per cent confidence level. We find that within the uncertainties, the globular clusters are old and coeval, implying that the bimodality seen in the broadband colours primarily reflects metallicity and not age differences.  相似文献   

9.
It is textbook knowledge that open clusters are conspicuous members of the thin disk of our Galaxy, but their role as contributors to the stellar population of the disk was regarded as minor. Starting from a homogenous stellar sky survey, the ASCC‐2.5, we revisited the population of open clusters in the solar neighbourhood from scratch. In the course of this enterprise we detected 130 formerly unknown open clusters, constructed volume‐ and magnitude‐limited samples of clusters, re‐determined distances, motions, sizes, ages, luminosities and masses of 650 open clusters. We derived the present‐day luminosity and mass functions of open clusters (not the stellar mass function in open clusters), the cluster initial mass function CIMF and the formation rate of open clusters. We find that open clusters contributed around 40 percent to the stellar content of the disk during the history of our Galaxy. Hence, open clusters are important building blocks of the Galactic disk (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We have calculated the orbital parameters for 90 stars in Chen et al. and updated the kinematic data for stars in Edvardsson et al. by using the accurate Hipparcos parallaxes and proper motions, and recalculated the \\\\\\\\\\\\-element abundances in Edvardsson et al. in a way consistent with Chen et al. The two sets of data are combined in a study of stellar populations and characteristics of F & G stars in the solar neighborhood. We confirm the result of Chen et al. that a distinguishable group of stars may belong to the thick disk rather than the thin disk. The ages for the stars are determined using the theoretical isochrones of VandenBerg et al. The age-metallicity relation is investigated for different subgroups according to distance from the sun and galactic orbital parameters. It is found that a mixing of stars with different orbital parameters significantly affect the age-metallicity relation for the disk. Stars with orbits confined to the solar circle all have metallicities [Fe/H] > -0.3 irresp  相似文献   

11.
From photometric observations and star counts, the existence of a bar in the cen-tral few kpc of the Galaxy is suggested. It is generally thought that our Galaxy is surrounded by a massive invisible halo. The gravitational potential of the Galaxy is therefore made non-axisymmetric generated by the central tfiaxial bar, by the outer triaxial halo, and/or by the spiral structures. Selecting nearly 300 open clusters with complete spatial velocity measure-ments and ages, we were able to construct the rotation curve of the Milky Way within a range of 3 kpc of the Sun. Using a dynamic model for an assumed elliptical disk, a clear weak el-liptical potential of the disk with ellipticity of ε(R0) = 0.060 ± 0.012 is detected, the Sun is found to be near the minor axis, displaced by 30°± 3°. The motion of the clusters is suggested to be on an oval orbit rather than on a circular one.  相似文献   

12.
Colour–magnitude diagrams (CMDs) are presented for the first time for 10 star clusters projected on to the Small Magellanic Cloud (SMC). The photometry was carried out in the Washington system C and T 1 filters allowing the determination of ages by means of the magnitude difference between the red giant clump and the main-sequence turnoff (MSTO), and metallicities from the red giant branch (RGB) locus. The clusters all have ages in the range 1.5–4 Gyr and metallicities between  −1.3 < [Fe/H] < −0.6  , with respective errors of ∼0.5 Gyr and 0.3 dex. This increases substantially the sample of intermediate-age clusters in the SMC with well-derived parameters. We combine our results with those for other clusters in the literature to derive as large and homogeneous a data base as possible (totalling 26 clusters) in order to study global effects. We find evidence for two peaks in the age distribution of SMC clusters, at ∼6.5 and 2.5 Gyr, in good agreement with previous hints involving smaller samples. The most recent peak occurs at a time that corresponds to a very close encounter between the Large Magellanic Cloud (LMC) and the SMC according to the recent dynamical models of Bekki et al. that they used to explain the enhancement of LMC clusters with this age. It appears cluster formation may have been similarly stimulated in the SMC by this encounter as well. We also find very good agreement between cluster ages and metallicities and the prediction from a bursting model from Pagel and Tautvaišienė with a burst that occurred 3 Gyr ago. These two lines of evidence together favour a bursting cluster formation history as opposed to a continuous one for the SMC.  相似文献   

13.
Studies of globular cluster systems play a critical role in our understanding of galaxy formation. Imaging with the Hubble Space Telescope has revealed that young star clusters are formed copiously in galaxy mergers, strengthening theories in which giant elliptical galaxies are formed by the merger of spirals [e.g. Whitmore, B.C., Schweizer, F., Leitherer, C., Borne, K., Robert, C., 1993. Astronomical Journal. 106, 1354; Miller, B.W., Whitmore, B.C., Schweizer, F., Fall, S.M., 1997. Astronomical Journal. 114, 2381; Zepf, S.E., Ashman, K.M., English, J., Freeman, K.C., Sharples, R.M., 1999. Astronomical Journal. 118, 752; Ashman, K.M., Zepf, S.E., 1992. Astrophysical Journal. 384, 50]. However, the formation and evolution of globular cluster systems is still not well understood. Ages and metallicities of the clusters are uncertain either because of degeneracy in the broad-band colors or due to variable reddening. Also, the luminosity function of the young clusters, which depends critically on the metallicities and ages of the clusters, appears to be single power-laws while the luminosity function of old clusters has a well-defined break. Either there is significant dynamical evolution of the cluster systems or metallicity affects the mass function of forming clusters. Spectroscopy of these clusters are needed to improve the metallicity and age measurements and to study the kinematics of young cluster systems. Therefore, we have obtained GMOS IFU data of 4 clusters in NGC1275. We will present preliminary results like metallicities, ages, and velocities of the star clusters from IFU spectroscopy.  相似文献   

14.
We present a revised metallicity distribution of dwarfs in the solar neighbourhood. This distribution is centred on solar metallicity. We show that previous metallicity distributions, selected on the basis of spectral type, are biased against stars with solar metallicity or higher. A selection of G-dwarf stars is inherently biased against metal-rich stars and is not representative of the solar neighbourhood metallicity distribution. Using a sample selected on colour, we obtain a distribution where approximately half the stars in the solar neighbourhood have metallicities higher than [Fe/H]=0 . The percentage of mid-metal-poor stars ([Fe/H]<−0.5) is approximately 4 per cent, in agreement with present estimates of the thick disc.
In order to have a metallicity distribution comparable to chemical evolution model predictions, we convert the star fraction to mass fraction, and show that another bias against metal-rich stars affects dwarf metallicity distributions, due to the colour (or spectral type) limits of the samples. Reconsidering the corrections resulting from the increasing thickness of the stellar disc with age, we show that the simple closed-box model with no instantaneous recycling approximation gives a reasonable fit to the observed distribution. Comparisons with the age–metallicity relation and abundance ratios suggest that the simple closed-box model may be a viable model of the chemical evolution of the Galaxy at solar radius.  相似文献   

15.
In this paper we construct and analyze the uniform non-LTE distributions of the aluminium ([Al/Fe]-[Fe/H]) and sodium ([Na/Fe]-[Fe/H]) abundances in the sample of 160 stars of the disk and halo of our Galaxy with metallicities within ?4.07 ≤ [Fe/H] ≤ 0.28. The values of metallicity [Fe/H] and microturbulence velocity ξ turb indices are determined from the equivalent widths of the Fe II and Fe I lines. We estimated the sodium and aluminium abundances using a 21-level model of the Na I atom and a 39-level model of the Al I atom. The resulting LTE distributions of [Na/Fe]-[Fe/H] and [Al/Fe]-[Fe/H] do not correspond to the theoretical predictions of their evolution, suggesting that a non-LTE approach has to be applied to determine the abundances of these elements. The account of non-LTE corrections reduces by 0.05–0.15 dex the abundances of sodium, determined from the subordinate lines in the stars of the disk with [Fe/H] ≥ ?2.0, and by 0.05–0.70 dex (with a strong dependence on metallicity) the abundances of [Na/Fe], determined by the resonance lines in the stars of the halo with [Fe/H] ≤ ?2.0. The non-LTE corrections of the aluminium abundances are strictly positive and increase from 0.0–0.1 dex for the stars of the thin disk (?0.7 ≤ [Fe/H] ≤ 0.28) to 0.03–0.3 dex for the stars of the thick disk (?1.5 ≤ [Fe/H] ≤ ?0.7) and 0.06–1.2 dex for the stars of the halo ([Fe/H] ≤ ?2.0). The resulting non-LTE abundances of [Na/Fe] reveal a scatter of individual values up to Δ[Na/Fe] = 0.4 dex for the stars of close metallicities. The observed non-LTE distribution of [Na/Fe]-[Fe/H] within 0.15 dex coincides with the theoretical distributions of Samland and Kobayashi et al. The non-LTE aluminium abundances are characterized by a weak scatter of values (up to Δ[Al/Fe] = 0.2 dex) for the stars of all metallicities. The constructed non-LTE distribution of [Al/Fe]-[Fe/H] is in a satisfactory agreement to 0.2 dex with the theoretical data of Kobayashi et al., but strongly differs (up to 0.4 dex) from the predictions of Samland.  相似文献   

16.
The distribution of galaxy properties in groups and clusters holds important information on galaxy evolution and growth of structure in the Universe. While clusters have received appreciable attention in this regard, the role of groups as fundamental to formation of the present-day galaxy population has remained relatively unaddressed. Here, we present stellar ages, metallicities and α-element abundances derived using Lick indices for 67 spectroscopically confirmed members of the NGC 5044 galaxy group with the aim of shedding light on galaxy evolution in the context of the group environment.
We find that galaxies in the NGC 5044 group show evidence for a strong relationship between stellar mass and metallicity, consistent with their counterparts in both higher and lower mass groups and clusters. Galaxies show no clear trend of age or α-element abundance with mass, but these data form a tight sequence when fitted simultaneously in age, metallicity and stellar mass. In the context of the group environment, our data support the tidal disruption of low-mass galaxies at small group-centric radii, as evident from an apparent lack of galaxies below  ∼109 M  within ∼100 kpc of the brightest group galaxy. Using a joint analysis of absorption- and emission-line metallicities, we are able to show that the star-forming galaxy population in the NGC 5044 group appears to require gas removal to explain the ∼1.5 dex offset between absorption- and emission-line metallicities observed in some cases. A comparison with other stellar population properties suggests that this gas removal is dominated by galaxy interactions with the hot intragroup medium.  相似文献   

17.
The colour–magnitude diagrams of resolved single stellar populations, such as open and globular clusters, have provided the best natural laboratories to test stellar evolution theory. Whilst a variety of techniques have been used to infer the basic properties of these simple populations, systematic uncertainties arise from the purely geometrical degeneracy produced by the similar shape of isochrones of different ages and metallicities. Here we present an objective and robust statistical technique which lifts this degeneracy to a great extent through the use of a key observable: the number of stars along the isochrone. Through extensive Monte Carlo simulations we show that, for instance, we can infer the four main parameters (age, metallicity, distance and reddening) in an objective way, along with robust confidence intervals and their full covariance matrix. We show that systematic uncertainties due to field contamination, unresolved binaries, initial or present-day stellar mass function are either negligible or well under control. This technique provides, for the first time, a proper way to infer with unprecedented accuracy the fundamental properties of simple stellar populations, in an easy-to-implement algorithm.  相似文献   

18.
We consider the age distributions of open star clusters attributed to three segments of Galactic spiral arms. The smoothed distributions of clusters on the age-Galactocentric angle plane show a great nonuniformity. The time dependence of the formation rate of Galactic disk clusters recovered by taking into account selection effects and dynamical evolution of clusters shows that, on average, the formation rate of open star clusters decreases with time. This is in agreement with the increase in star formation rate into the past, as follows from the study of this process by the method of stellar population synthesis. The present time is the epoch of a current maximum of the cluster formation rate. In addition to the current maximum, there have been at least three more maxima with a period of 300–400 Myr and a duration of no more than 300 Myr. The age distributions are consistent with the pattern of star formation governed by the successive passages of density waves through each examined volume of the Galactic disk. The spiral structure becomes more complex when passing from the inner regions of the Galaxy to its outer regions.  相似文献   

19.
As part of a long‐term project to determine abundances and astrophysical properties of evolved red stars in open clusters, we present high‐precision DDO photoelectric observations for a sample of 33 red giant candidates projected in the fields of nine Galactic open clusters. These data are supplemented with UBV photoelectric photometry of 24 of these stars as well as with CORAVEL radial‐velocity observations for 13 red giant candidates in four of the clusters. We also present Washington photoelectric photometry of a small sample of red giant candidates of the open cluster Ruprecht 97. The likelihood of cluster membership for each star photometrically observed and for 23 additional red giant candidates with UBV and DDO data available in the literature, is evaluated by using two independent photometric criteria. Nearly 82% of the analysed stars are found to have a high probability of being cluster giants. Photometric membership probabilities show very good agreement with those obtained from CORAVEL radial velocities. While E (BV) colour excesses were determined from combined BV and DDO colours, calibrations of the DDO system were used to derive MK spectral types, effective temperatures and metallicities. The derived DDO metallicities range between values typical of moderately metal‐poor clusters ([Fe/H] = –0.19) to moderately metal‐rich ([Fe/H] = 0.25) ones. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We interpret the de‐reddened UBV data for the field SA 133 to deduce the stellar density and metallicity distribution functions. The logarithmic local space density for giants, D*(0) = 6.40, and the agreement of the luminosity function for dwarfs and sub‐giants with the one of Hipparcos confirms the empirical method used for their separation. The metallicity distribution for dwarfs gives a narrow peak at [Fe/H] = +0.13 dex, due to apparently bright limiting magnitude, Vo = 16.5, whereas late‐type giants extending up to z ∼ 4.5 kpc from the galactic plane have a multimodal distribution. The metallicity distribution for giants gives a steep gradient d[Fe/H]/dz = –0.75 dex kpc–1 for thin disk and thick disk whereas a smaller value for the halo, i.e. d[Fe/H]/dz = –0.45 dex kpc–1. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号