首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of a study on the north-south asymmetry of solar filaments at low(50°) and high(60°) latitudes using daily filament numbers from January 1998 to November 2008(solar cycle 23). It is found that the northern hemisphere is dominant at low latitudes for cycle 23. However, a similar asymmetry does not occur for solar filaments at high latitudes. The present study indicates that the hemispheric asymmetry of solar filaments at high latitudes in a cycle appears to have little connection with that at low latitudes. Our results support that the observed magnetic fields at high latitudes include two components: one comes from the emergence of the magnetic fields from the solar interior and the other comes from the drift of the magnetic activity at low latitudes.  相似文献   

2.
Wavelet Analysis of the Schwabe Cycle Properties in Solar Activity   总被引:2,自引:0,他引:2  
Properties of the Schwabe cycles in solar activity are investigated by using wavelet transform. We study the main range of the Schwabe cycles of the solar activity recorded by relative sunspot numbers, and find that the main range of the Schwabe cycles is the periodic span from 8-year to 14-year. We make the comparison of 11-year‘s phase between relative sunspot numbers and sunspot group numbers. The results show that there is some difference between two phases for the interval from 1710 to 1810, while the two phases are almost the same for the interval from 1810 to 1990.  相似文献   

3.
Some historical records, which have held since the beginning of modern solar activity cycles, are being broken by the present Sun: cycle 23 records the longest cycle length and fall time; latitudes of high-latitude sunspots belonging to a new cycle around the minimum time of the cycle are statistically the lowest at present, compared with those of other cycles; there are only one or no sunspots in a month appearing at high latitudes for 58 months, which is the first time that such a long duration has been observed. The solar dynamo is believed to be slowing down due to: (1) the minimum smoothed monthly mean sunspot number is the smallest since cycle 16 onwards, and even probably among all modern solar cycles; and (2) once the time interval between the first observations of two neighboring sunspot groups is larger than 14 d, it should be approximately regarded as an observation of no sunspots on the visible solar disk, called a spotless event. Spotless events occur with the highest frequency around the minimum time of cycle 24, and the longest spotless event also appears around the minimum time for observations of the Sun since cycle 16. Cycle 24 is expected to have the lowest level of sunspot activity from cycle 16 onwards and even probably for all of the modern solar cycles.  相似文献   

4.
The most powerful method to diagnose the velocity field in solar flare atmosphere isspectral analyses. That is to analyse the asymmetry and the Doppler shift of flare spectralline profiles. Recent observations indicated that at the impulsive phase of flares thereare obvious red asymmetry of Hα profiles and a downward velocity of 40-100km/s has  相似文献   

5.
Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and synoptic maps from Kitt Peak are used to analyze the polar coronal holes of solar activity cycles 22 and 23 (from 1990 to end of 2003). In the beginning of the declining phase of solar cycles 22 and 23, the north polar coronal holes (PCHs) appear about one year earlier than the ones in the south polar region. The solar wind velocity and the solar wind ionic charge composition exhibit a characteristic dependence on the solar wind source position within a PCH. From the center toward the boundary of a young PCH, the solar wind velocity decreases, coinciding with a shift of the ionic charge composition toward higher charge states. However, for an old PCH, the ionic charge composition does not show any obvious change, although the latitude evolution of the velocity is similar to that of a young PCH.  相似文献   

6.
The concept of degree of similarity(η),is proposed to quantitatively describe the similarity of a parameter(e.g.the maximum amplitude Rmax)of a solar cycle relative to a referenced one,and the prediction method of similar cycles is further developed.For two parameters,the solar minimum(Rmin)and rising rate(βa),which can be directly measured a few months after the minimum,a synthesis degree of similarity(ηs)is defined as the weighted-average of theηvalues around Rmin and βa,with the weights given by the coef...  相似文献   

7.
We use wavelet transform to analyze the daily relative sunspot number series over solar cycles 10-23. The characteristics of some of the periods shorter than - 600-day are discussed. The results exhibit not only the variation of some short periods in the 14 solar cycles but also the characteristics and differences around solar peaks and valley years. The short periodic components with larger amplitude such as ~27, ~ 150 and ~360-day are obvious in some solar cycles, all of them are time-variable, also their lengths and amplitudes are variable and intermittent in time. The variable characteristics of the periods are rather different in different solar cycles.  相似文献   

8.
The present investigation attempts to quantify the temporal variation of Solar Flare Index(SFI)with other activity indices during solar cycles 21-24 by using different techniques such as linear regression,correlation,cross-correlation with phase lag-lead,etc.Different Solar Activity Indices(SAI)considered in this present study are Sunspot Number(SSN),10.7 cm Solar Radio Flux(F10.7),Coronal Index(CI)and MgⅡCore-to-Wing Ratio(MgⅡ).The maximum cycle amplitude of SFI and considered SAI has a decreasing trend from solar cycle 22,and cycle 24 is the weakest solar cycle among all other cycles.The SFI with SSN,F10.7,CI and MgⅡshows hysteresis during all cycles except for solar cycle 22 where both paths for ascending and descending phases are intercepting each other,thereby representing a phase reversal.A positive hysteresis circulation exists between SFI and considered SAI during solar cycles 22 and 23,whereas a negative circulation exists in cycles 21 and 24.SFI has a high positive correlation with coefficient values of 0.92,0.94,0.84 and 0.81 for SSN,F10.7,CI and MgⅡrespectively.According to crosscorrelation analysis,SFI has a phase lag with considered SAI during an odd-number solar cycle(solar cycles21 and 23)but no phase lag/lead during an even-numbered solar cycle(solar cycles 22 and 24).However,the entire smoothed monthly average SFI data indicate an in-phase relationship with SSN,F10.7 and MgⅡ,and a one-month phase lag with CI.The presence of those above characteristics strongly confirms the outcomes of different research work with various solar indices and the highest correlation exists between SFI and SSN as well as F10.7 which establishes that SFI may be considered as one of the prime activity indices to interpret the characteristics of the Sun’s active region as well as for more accurate short-range or long-range forecasting of solar events.  相似文献   

9.
We use wavelet transform to analyze the daily relative sunspot number series over solar cycles 10-23. The characteristics of some of the periods shorter than ~ 600-day are discussed. The results exhibit not only the variation of some short periods in the 14 solar cy-cles but also the characteristics and differences around solar peaks and valley years. The short periodic components with larger amplitude such as ~27,~150 and ~360-day are obvious in some solar cycles,all of them are time-variable,also their lengths and amplitudes are vari-able and intermittent in time. The variable characteristics of the periods are rather different in different solar cycles.  相似文献   

10.
Predictions of the strength of solar cycles are important and are necessary for planning long-term missions.A new solar cycle 25 is coming soon,and the amplitude is needed for space weather operators.Some predictions have been made using different methods and the values are drastically different.However,since 2015 July 1,the original sunspot number data have been entirely replaced by the Version 2.0 data series,and the sunspot number values have changed greatly.In this paper,using Version 2 smoothed sunspot numbers and aa indices,we verify the predictions for cycles 18–24 based on Ohl’s Precursor Method.Then a similar-cycles method is used to evaluate the aa minimum of 9.7(±1.1)near the start of cycle 25 and based on the linear regression relationship between sunspot maxima and aa minima,our predicted Version 2maximum sunspot number for cycle 25 is 121.5(±32.9).  相似文献   

11.
This is a study designed to analyze the relationship between ground level enhancements(GLEs)and their associated solar active regions during solar cycles 22and 23.Results show that 90.3%of the GLE events that are investigated are accompanied by X-class flares,and that 77.4%of the GLE events originate from super active regions.It is found that the intensity of a GLE event is strongly associated with the specific position of an active region where the GLE event occurs.As a consequence,the GLE events having a peak increase rate exceeding 50%occur in a longitudinal range from W20 to W100.Moreover,the largest GLE events occur in a heliographic longitude at roughly W60.Additionally,an analysis is made to understand the distributional pattern of the Carrington longitude of the active regions that have generated the GLE events.  相似文献   

12.
It has been found for a long time, with analysing the variation of the relative number of sunspot, that there exist the periodicity of 11 years in solar activity. With the deepening research of the varied solar active phenomena, a series of periodicities with different periods have been also found in solar activity. For example, there is the periodicity of about 80 days for the occurrence, rate of proton flares for solar activity cycles 19 and 20 found by Ai and Fan ci:i at 1974. Recently a periodicity of about 152 days of the occurrence rate of solar flares has been proposed by some authors. a3'5>7:i The existence of this periodicity hsa been proved in the various solar flares. In this paper using the data of solar microwave bursts from January 1986 to December 1988, a Fourier analysis of the occurrence rate of solar microwave bursts has been made. There was no periodicity for the occurrence rate of solar microwave bursts of about 152 days found. This is a new result for solar cycle 22 in the first thr  相似文献   

13.
Reviews of long-term predictions of solar cycles have shown that a precise prediction with a lead time of 2 years or more of a solar cycle remains an unsolved problem. We used a simple method, the method of similar cycles, to make long-term predictions of not only the maximum amplitude but also the smoothed monthly mean sunspot number for every month of Solar Cycle 23. We verify and compare our prediction with the latest available observational results.  相似文献   

14.
We analyze long-term variations of several solar activity indices(AIs) that have been measured over the last 40 years. With this goal, we study the AIs that characterize the fluxes from different areas in the solar atmosphere. Our consideration of mutual correlations between the solar indices is based on the study of relationships between them in the period from 1950 to 1990. This period of time, covering activity cycles 19–22, is characterized by relatively stable relations between the indices. We investigate the normalized variations of these indices in recent time in relation to their values which were calculated by considering radiation from the Sun in the radio range at a wavelength of 10.7 cm(F10.7) in 1950–1990.The analysis of time series, representing variations of the normalized AI(AIFF) in solar cycles 23–24,shows different trends exist for different indices in terms of their long-term behavior. We assume that variations of normalized International Sunspot Number(SSN), F530.3 and Flare Index, which have shown sharp decreases in the last 40 years, are possibly associated with a decrease in the intensity of large-scale magnetic fields in the photosphere(SSN) and in the corona(the coronal index and the Flare Index).  相似文献   

15.
Based on a dynamic model for turbulent convection, we investigate the effects of dissipation and anisotropy of the turbulence on the convective energy transport. We introduce two time scales to describe the dissipation of the turbulence, and approximate the anisotropy of the turbulence by Rotta‘s proposal of “return to isotropy”. The improved turbulence model results in an equation to determine the temperature gradient in the convection zone, which is of similar from as that of the MLT. We apply the improved MLT to solar modes, and find that the increases of the anisotropy and decreases of the dissipation of the turbulence reduce the value of the convection parameter α, because these process enhance the convective energy transfer rate. Compared with the observed solar p-mode frequencies, it is plausible that the dissipation of the turbulence in the solar convection zone should be fairly strong, while the degree of anisotropy of the turbulence plays a less significant role on the structure of the solar convection zone.  相似文献   

16.
We present a brief review of predictions of solar cycle maximum amplitude with a lead time of 2 years or more. It is pointed out that a precise prediction of the maximum amplitude with such a lead-time is still an open question despite progress made since the 1960s. A method of prediction using statistical characteristics of solar cycles is developed: the solar cycles are divided into two groups, a high rising velocity (HRV) group and a low rising velocity (LRV) group, depending on the rising velocity in the ascending phase for a given duration of the ascending phase. The amplitude of Solar Cycle 24 can be predicted after the start of the cycle using the formula derived in this paper. Now, about 5 years before the start of the cycle, we can make a preliminary prediction of 83.2-119.4 for its maximum amplitude.  相似文献   

17.
The Relation between the Amplitude and the Period of Solar Cycles   总被引:3,自引:0,他引:3  
The maximum amplitudes of solar activity cycles are found to be well anti-correlated (r = -0.72) with the newly defined solar cycle lengths three cycles before (at lag -3) in 13-month running mean sunspot numbers during the past 190 years. This result could be used for predicting the maximum sunspot numbers. The amplitudes of Cycles 24 and 25 are estimated to be 149.5±27.6 and 144.3±27.6, respectively.  相似文献   

18.
We study the sunspot activity in relation to spotless days(SLDs) during the descending phase of solar cycles 11-24 to predict the amplitude of sunspot cycle 25.For this purpose,in addition to SLD,we also consider the geomagnetic activity(aa index) during the descending phase of a given cycle.A very strong correlation of the SLD(0.68) and aa index(0.86) during the descending phase of a given cycle with the maximum amplitude of next solar cycle has been estimated.The empirical relationship led us to deduce the amplitude of cycle 25 to be 99.13± 14.97 and 104.23± 17.35 using SLD and aa index,respectively as predictors.Both the predictors provide comparable amplitude for solar cycle 25 and reveal that solar cycle 25 will be weaker than cycle 24.Further,we predict that the maximum of cycle 25 is likely to occur between February and March 2024.While the aa index has been utilized extensively in the past,this work establishes SLDs as another potential candidate for predicting the characteristics of the next cycle.  相似文献   

19.
The three helioseismology instruments aboard SOHO observe solar p modes in velocity (GOLF and MDI) and in intensity (VIRGO and MDI). Time series of two months duration are compared and confirm that the instruments indeed observe the same Sun to a high degree of precision. Power spectra of 108 days are compared showing systematic differences between mode frequencies measured in intensity and in velocity. Data coverage exceeds 97% for all the instruments during this interval. The weighted mean differences (V-I) are −0.1 μHz for l=0, and −0.16 μHz for l=1. The source of this systematic difference may be due to an asymmetry effect that is stronger for modes seen in intensity. Wavelet analysis is also used to compare the shape of the forcing functions. In these data sets nearly all of the variations in mode amplitude are of solar origin. Some implications for structure inversions are discussed.  相似文献   

20.
It is widely believed that the evolution of solar active regions leads to solar flares. However, information about the evolution of solar active regions is not employed in most existing solar flare forecasting models. In the current work, a shortterm solar flare forecasting model is proposed, in which sequential sunspot data, including three days of information about evolution from active regions, are taken as one of the basic predictors. The sunspot area, the McIntosh classification, the magnetic classification and the radio flux are extracted and converted to a numerical format that is suitable for the current forecasting model. Based on these parameters, the sliding-window method is used to form the sequential data by adding three days of information about evolution. Then, multi-layer perceptron and learning vector quantization are employed to predict the flare level within 48 h. Experimental results indicate that the performance of the proposed flare forecasting model works better than previous models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号