首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Greenhouse gases and greenhouse effect   总被引:1,自引:0,他引:1  
Conventional theory of global warming states that heating of atmosphere occurs as a result of accumulation of CO2 and CH4 in atmosphere. The writers show that rising concentration of CO2 should result in the cooling of climate. The methane accumulation has no essential effect on the Earth’s climate. Even significant releases of the anthropogenic carbon dioxide into the atmosphere do not change average parameters of the Earth’s heat regime and the atmospheric greenhouse effect. Moreover, CO2 concentration increase in the atmosphere results in rising agricultural productivity and improves the conditions for reforestation. Thus, accumulation of small additional amounts of carbon dioxide and methane in the atmosphere as a result of anthropogenic activities has practically no effect on the Earth’s climate.  相似文献   

2.
On the basis of the analysis of published data and in the course of the authors’ long-term geochemical and acoustic surveys performed in 1995–2011 on the East Siberian shelf (ESS) and aimed to research the role of the Arctic shelf in the processes of massive methane outbursts into the Earth’s atmosphere, some crucially new results were obtained. A number of hypotheses were proposed concerning the qualitative and quantitative characterization of the scale of this phenomenon. The ESS is a powerful supplier of methane to the atmosphere owing to the continued degradation of the submarine permafrost, which causes the destruction of gas hydrates. The emission of methane in several areas of the ESS is massive to the extent that growth in the methane concentrations in the atmosphere to values capable of causing a considerable and even catastrophic warning on the Earth is possible. The seismic data were compared to those of the drilling from ice performed first by the authors in 2011 in the southeastern part of the Laptev Sea to a depth of 65 m from the ice surface. This made it possible to reveal some new factors explaining the observed massive methane bursts out of the bottom sediments.  相似文献   

3.
土壤甲烷吸收汇研究进展   总被引:12,自引:0,他引:12  
人类活动导致大气中温室气体浓度增加,是全球气候变暖的主要原因之一。由于陆地生态系统中通气状况良好的土壤是甲烷最大的吸收汇,研究吸收汇强度及其影响因素对估算大气中甲烷储存增量、采取措施增强土壤吸收汇的强度是很有意义的。综述了全球透气土壤吸收甲烷总量及土地利用变化、农业措施对甲烷吸收汇的影响。  相似文献   

4.
Hydrochemistry of groundwater is largely determined by both natural processes, such as dissolution, cation exchange, mixing, evaporation; and anthropogenic activities, which can affect the aquifer systems by contaminating them or by modifying their hydrological cycle. Both natural and anthropogenic processes vary in time and space; which is reflected in groundwater hydrochemistry variation. The objective of this study is the determination of the main hydrogeochemical processes that affect the quality of shallow groundwaters in the Grombalia basin, located in the Cap Bon Peninsula, north-eastern Tunisia. In this area, the chemical composition of groundwater is mostly characterized by Na–Cl–NO3–Ca water type which reveals the implication of natural and anthropogenic major factors. Natural factors are dissolution of evaporatic minerals, i.e. halite and gypsum and cation exchange with clays, while anthropogenic factors are pollution with industrial Sr-rich waste water and return flow of irrigation water, highly contaminated by MgSO4 and methyl-bromide fertilizers.  相似文献   

5.
1INTRODUCTION SHALLOW(MOSTLYBIOGENIC)GASACCOUNTSFOROVER20%OFTHEWORLD’SDISCOVEREDGASRESERVES(RICEAND CLAYPOOL,1981;CLAYPOOLANDKAPLAN,1974),AND REPRESENTSONEOFTHEUNCONVENTIONALENERGYSOURCES THATINCREASINGLYATTRACTTHEATTENTIONOFPETROLEUMGEOL OGISTS.NUMEROUS…  相似文献   

6.
The atmospheric concentration of methane is steadily increasin.Lacking of precise estimates of source and sink strengths for the atmospheric methane severely limits the current understanding of the global methane cycle.Agood budget of atmospheric methane can enhance our understanding of the global carbon cycle and global climate change,The known estimates of the main source and sink strengths are gresented in this paper,In terms of carbon isotopic studies,it is evidenced that the earth‘s primodial methane,which was trapped in the earth during its formation,may be another source of methane,with extensive,earth‘s degassing which is calleld the “breathing“ process of the earth and played an important role in the formation of the promitive atmosphere,large amounts of methane were carried from the deep interior to the surface and then found its way into the atmosphere.  相似文献   

7.
It has been shown that the maximum of climate variations in the northern subpolar zone observable over the last three decades conforms to the maximal methane and carbonic acid content in the atmosphere of the north latitudes. Statistical analysis of long-term variations of ground air temperature, gas composition of atmosphere, depth of seasonal melting, temperature, and distribution area of permafrost ground in the subpolar zone of the north hemisphere testifies to significant directional changes of basic cryolitozone characteristics. Analysis of the latitudinal distribution of flux density of anthropogenic and natural methane showed that the greatest methane emission is in the subpolar zone of the northern hemisphere, where anthropogenic impact is minimal. In view of the estimations of methane emission during thawing of permafrost grounds, a new hypothesis explaining the present climate conditions in northern latitudes has been proposed. The planetary maximum of climate warming in the arctic zone is substantially caused by methane and carbonic acid outbreaks from thawing permafrost grounds, which, in turn, is an additional reason for the greenhouse effect. This effect is materially analogous to the influence of technogenic discharge of greenhouse gases in the temperate zone.  相似文献   

8.
Tritium is a short-lived radioactive isotope (T 1/2=12.33 yr) produced naturally in the atmosphere by cosmic radiation but also released into the atmosphere and hydrosphere by nuclear activities (nuclear power stations, radioactive waste disposal). Tritium of natural or anthropogenic origin may end up in soils through tritiated rain, and may eventually appear in groundwater. Tritium in groundwater can be re-emitted to the atmosphere through the vadose zone. The tritium concentration in soil varies sharply close to the ground surface and is very sensitive to many interrelated factors like rainfall amount, evapotranspiration rate, rooting depth and water table position, rendering the modeling a rather complex task. Among many existing codes, SOLVEG is a one-dimensional numerical model to simulate multiphase transport through the unsaturated zone. Processes include tritium diffusion in both, gas and liquid phase, advection and dispersion for tritium in liquid phase, radioactive decay and equilibrium partitioning between liquid and gas phase. For its application with bare or vegetated (perennial vegetation or crops) soil surfaces and shallow or deep groundwater levels (contaminated or non-contaminated aquifer) the model has been adapted in order to include ground cover, root growth and root water uptake. The current work describes the approach and results of the modeling of a tracer test with tritiated water (7.3×108 Bq m−3) in a cultivated soil with an underlying 14 m deep unsaturated zone (non-contaminated). According to the simulation results, the soil’s natural attenuation process is governed by evapotranspiration and tritium re-emission. The latter process is due to a tritium concentration gradient between soil air and an atmospheric boundary layer at the soil surface. Re-emission generally occurs during night time, since at day time it is coupled with the evaporation process. Evapotranspiration and re-emission removed considerable quantities of tritium and limited penetration of surface-applied tritiated water in the vadose zone to no more than ∼1–2 m. After a period of 15 months tritium background concentration in soil was attained.  相似文献   

9.
The authors believe that recent global warming of Earth’s atmosphere is not due to an increase in anthropogenic carbon dioxide emission but rather to long-term global factors. The human contribution to the CO2 content in the atmosphere and the increase in temperature is negligible in comparison with other sources of carbon dioxide emission. Discussed in this paper are sources, avenues of migration, and the amounts of naturally produced carbon dioxide and methane (greenhouse gases) and long-term changes in the Earth’s climate, which are necessary for understanding the causes of current temperature trends.  相似文献   

10.
垃圾填埋场服役期间会因微生物降解有机物释放大量甲烷,即使有气体收集装置,仍有甲烷逃逸到大气中。甲烷气体是造成温室效应的重要气体之一。甲烷氧化菌是以甲烷为唯一碳源的微生物,具有其优良的甲烷氧化效能。在中小型填埋场、老旧填埋场及开启集气装置已不再经济的大型填埋场,可在填埋场覆层中掺入甲烷氧化菌,对甲烷进行生物氧化,减少垃圾填埋场的甲烷释放量,从而减少温室效应,达到环保的目的。文章回顾了近些年国内外对甲烷氧化菌及其甲烷氧化效能的相关研究,对甲烷氧化菌的分类及其甲烷氧化机理,影响甲烷氧化菌氧化效能的因素以及甲烷氧化菌在垃圾填埋场中的应用等研究成果进行了总结,并对其今后的研究和应用提出了展望。  相似文献   

11.
It has been suggested that part of the so-called “missing sink” of carbon dioxide introduced into the atmosphere by anthropogenic activities, that is the imbalance between estimated anthropogenic carbon dioxide emissions and oceanic uptake, may be stored in the vegetation in midlatitudes. Precise mechanisms of abstraction of additional carbon dioxide by vegetation, also known as the “fertilization effect”, are poorly understood. Stable carbon and hydrogen isotope ratios of cellulose extracted from annual growth rings (covering the time period 1980–1993) in an oak tree from Kalamazoo, SW Michigan provide a basis to investigate at a physiological level how the fertilization effect may operate. The carbon isotope ratios show that the intercellular concentration of carbon dioxide increased due to an increase in stomatal opening. Although increased intercellular concentration of carbon dioxide translated to increased Water Use Efficiency and assimilation rates, it also resulted in increased transpiration rate as shown by higher D/H of the fixed carbon. The two-fold significance of the isotope data are: first, they provide the first field evidence based on isotope studies for excess CO2 induced biomass production and second, they suggest that this mechanism is likely to operate only in limited environments. Vegetation in regions where moisture availability is not restricted so that there can be a gain in water use efficiency despite increased leaf evaporation are best suited to sequester excess carbon from the atmosphere.  相似文献   

12.
自工业革命以来全球大气CH4含量呈快速的增长趋势, 但达索普冰芯记录所显示的北半球中低纬度地区大气CH4增长的启动时间要晚于极地冰芯记录近100 a. 由于受北半球人类活动CH4排放、CH4在大气中的寿命及大气中CH4的传输等过程的影响, 最近150 a以来, 中低纬度大气CH4与南极大气CH4含量在不同的时段表现出不同的净积累量和增长速率, 且20世纪两次世界大战期间达索普冰芯记录明确显示出人类活动排放的减缓使大气CH4呈负增长. 对比研究认为, 到20世纪中叶人类活动的甲烷排放已达到极高值, 中低纬度大气中CH4增长率及年积累逐步趋于平稳且略有降低. 可以认定, 工业革命以来中低纬度地区大气CH4与南极大气CH4含量的变化在不同的时段在受控于人类活动影响的同时, CH4在大气中的行为和传输过程以及东亚中低纬度季风气候的影响决定了两地之间大气CH4含量变化存在显著的差异.  相似文献   

13.
Hydraulic fracturing is a method used for the production of unconventional gas resources. Huge amounts of so-called fracturing fluid (10,000–20,000 m3) are injected into a gas reservoir to create fractures in solid rock formations, upon which mobilised methane fills the pore space and the fracturing fluid is withdrawn. Hydraulic fracturing may pose a threat to groundwater resources if fracturing fluid or brine can migrate through fault zones into shallow aquifers. Diffuse methane emissions from the gas reservoir may not only contaminate shallow groundwater aquifers, but also escape into the atmosphere where methane acts as a greenhouse gas. The working group “Risks in the Geological System” as part of ExxonMobil’s hydrofracking dialogue and information dissemination processes was tasked with the assessment of possible hazards posed by migrating fluids as a result of hydraulic fracturing activities. In this work, several flow paths for fracturing fluid, brine and methane are identified and scenarios are set up to qualitatively estimate under what circumstances these fluids would leak into shallower layers. The parametrisation for potential hydraulic fracturing sites in North Rhine-Westphalia and Lower Saxony (both in Germany) is derived from literature using upper and lower bounds of hydraulic parameters. The results show that a significant fluid migration is only possible if a combination of several conservative assumptions is met by a scenario.  相似文献   

14.
According to a new hypothesis, greenhouse-gas concentrations in the atmosphere should have fallen throughout the last several thousand years and caused a significant cooling of Earth's climate, but early anthropogenic emissions of carbon dioxide and methane kept temperatures relatively warm. A further prediction is that ice should have begun accumulating in northeast Canada several thousand years ago. We carry out a preliminary test of this hypothesis by reducing atmospheric CO2 and CH4 concentrations to their estimated ‘natural’ levels in an experiment with the GENESIS climate model. In the absence of anthropogenic contributions, global climate is almost 2 °C cooler than today and roughly one third of the way toward full-glacial temperatures. The hypothesis of an overdue glaciation is confirmed, but at a small scale: parts of Baffin Island retain snow cover year-round, and snow cover persists on high terrain in Labrador for 11 months of the year.  相似文献   

15.
Natural seabed gas seeps as sources of atmospheric methane   总被引:5,自引:0,他引:5  
Microbial and thermogenic methane migrates towards the seabed where some is utilised during microbially-mediated anaerobic oxidation. Excess methane escapes as gas seeps, which occur in a variety of geological contexts in every sea and ocean, from inter-tidal zones to deep ocean trenches. Some seeps are localised, gentle emanations; others are vigorous covering areas of >1 km2; the most prolific seeps reported (offshore Georgia) produce ~40 t CH4 per year. Gas bubbles lose methane to the water as they rise, so deep water seeps are unlikely to contribute to the atmosphere. However, bubbles break the surface above some shallow water seeps. Estimates of the total methane contribution to the atmosphere are poorly constrained, largely because the data set is so small. 20 Tg yr–1 is considered a realistic first approximation. This is a significant contribution to the global budget, particularly as methane from seeps is 14C-depleted. A seep measurement programme is urgently required.GEM  相似文献   

16.
A new estimate of global methane emission into the atmosphere from mud volcanoes (MVs) on land and shallow seafloor is presented. The estimate, considered a lower limit, is based on 1) new direct measurements of flux, including both venting of methane and diffuse microseepage around craters and vents, and 2) a classification of MV sizes in terms of area (km2) based on a compilation of data from 120 MVs. The methane flux to the atmosphere is conservatively estimated between 6 and 9 Mt y–1. This emission from MVs is 3–6% of the natural methane sources and is comparable with ocean and hydrate sources, officially considered in the atmospheric methane budget. The total geologic source, including MVs, seepage from seafloor, microseepage in hydrocarbon-prone areas and geothermal sources, would amount to 35–45 Mt y–1. The authors believe it is time to add this parameter in the Intergovernmental Panel on Climate Change official tables of atmospheric methane sources.GEM  相似文献   

17.
Olaf Krüger 《GeoJournal》1996,39(2):117-131
The contribution of the atmosphere to the input of heavy metals to marine environments of Northern Europe is determined by applying an EMEP-type Lagrangian trajectory model. The results show that the model is capable of simulating long-range transport of heavy metals from European anthropogenic sources to the North Sea and the Baltic Sea including emission reduction scenarios for lead. Model calculations for lead indicate maximum annual inputs from the atmosphere of more than 2,400 tonnes for the North Sea and 1,300 tonnes for the baltic sea. It was calculated that in the 1985–1990 time period, mainly as a consequence of use of unleaded gasoline, the trend show a pronounced decrease of the deposition fluxes of lead from the atmosphere.  相似文献   

18.
Mud volcanoes (MVs) are considered important methane (CH4) sources for the atmosphere; gas is not only released from macro-seepage, i.e., from craters and visible gas bubbling manifestations, but also from invisible and pervasive exhalation from the ground, named miniseepage. CH4 flux related to miniseepage was measured only in a few MVs, in Azerbaijan, Italy, Japan, Romania and Taiwan. This study examines in detail the flux data acquired in 5 MVs and 1 “dry” seep in SW Taiwan, and further compares with other 23 MVs in Italy, Romania and Azerbaijan. Miniseepage from the six manifestations in SW Taiwan MVs and seeps annually contribute at least 110 tons of methane directly to the atmosphere, and represents about ∼80% of total degassing during a quiescent period. Combining miniseepage flux and geo-electrical data from the Wu-shan-ding MV revealed a possible link between gas flux and electrical resistivity of the vadose zone. This suggests that unsaturated subsoil is a preferential zone for shallow gas accumulation and seepage to the atmosphere. Besides, miniseepage flux in Chu-huo everlasting fire decreases by increasing the distance from the main gas channeling zone and molecular fractionation (methane/ethane ratio) is higher for lower flux seepage, consistently with what observed in other MVs worldwide. Measurements from Azerbaijan, Italy, Romania, and Taiwan converge to indicate that miniseepage is directly proportional to the vent output and it is a significant component of the total methane budget of a MV. A miniseepage vs. macro-seepage flux equation has been statistically assessed and it can be used to estimate theoretically at least the order of magnitude of the flux of miniseepage for MVs of which only the flux from vents was evaluated, or will be evaluated in future. This will allow a more complete and objective quantification of gas emission in MVs, thus also refining the estimate of the global methane emission from geological sources.  相似文献   

19.
地质成因的甲烷释放对大气的影响   总被引:2,自引:1,他引:2  
地质成因自然源的甲烷释放在整个大气甲烷估算中起着非常重要的作用,它既是不含放射性14C甲烷源(死碳源)缺失部分的重要代表,也是甲烷重碳源的重要部分.概述了国内外关于地质成因甲烷释放对大气甲烷源与汇影响的研究进展,详述了来自地质成因化石燃料泄漏的人为甲烷释放以及来自沉积盆地(含油气盆地)、泥火山、地热区、海洋和甲烷水合物的地质自然源甲烷释放对大气甲烷源与汇的贡献及其影响因素;说明由于地质成因甲烷分布的区域性、不均匀性和时空的高度变化性,以及目前地质成因甲烷的通量估算仅建立在区域性的少量甲烷通量测试基础上,造成了地质成因甲烷释放通量估算的高度不确定性;指出研究中国西北地区油气田集聚区的甲烷释放通量,对油气田地质成因甲烷释放通量的估算具有重要意义.  相似文献   

20.
鄂尔多斯盆地东缘地区煤层气资源量巨大,现已成为我国煤层气主力产区之一。区块自开发以来,针对中浅层煤层大斜度井与水平井开展了液力无杆泵、水力射流泵、电潜泵、隔膜泵排采工艺试验,生产中发现上述4类无杆排采工艺具有能有效避免大斜度井与水平井管杆偏磨的优点,但同时存在防煤粉防砂能力一般、防腐蚀防垢能力一般,存在高压刺漏风险、下泵深度受限、地面设备可靠性不强等缺点。通过分析区块前期中浅层煤层气井无杆排采工艺试验效果,总结了各类无杆排采工艺的优缺点,并指出中浅层煤层气井无杆排采工艺的改进方向。目前,随着煤层气勘探开发领域由中浅层煤层逐步转向深层煤层,原有中浅层煤层气井无杆排采工艺已无法满足深层煤层气井的排水采气需求,针对深层煤层气 “原生结构煤发育、地层压力高、高含气、高饱和、游离气与吸附气共存”的地质特征和 “见气早、气液比高”的生产特点,认为深层煤层气井无杆排采工艺需跳出中浅层煤层气井无杆排采工艺的思路,可以借鉴区块内致密气和海陆过渡相页岩气先导试验井的采气工艺经验,在生产现场开展“同心管气举”工艺、“小油管+泡排”工艺与“连续油管+柱塞+气举”工艺试验,能在有效避免传统无杆排采工艺缺点的同时实现深层煤层气的高效开发。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号