首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 836 毫秒
1.
报道了一种微型化铷原子钟,它采用一种新型陶瓷填充微波腔来减小物理部分体积,其铷光谱灯采用升压电路以实现快速点亮,整机电子线路采用低电压技术,在国内首次对这类铷钟实现12V直流供电,并且首次对这类铷钟加入与外秒同步的功能。该铷原子钟体积为190mL,开机3min后可实现锁定,锁定后频率稳定度为1.5×10^-11/√τ(τ:1~1000s),稳态功耗为5.5W。  相似文献   

2.
为了提高铷频标长稳,消除老化漂移,我们用不同同位素的特殊比例、几种不同缓冲气体的特殊比例、化学性能稳定的特殊玻璃来充制铷吸收泡.通过较长时问的观测,改进后的铷频标长稳和短稳兼而优之,物理部分温度系数指标提高一个数量级,基本消除了了铷频标的老化漂移.  相似文献   

3.
铷钟光谱灯老化的实验研究和寿命评估   总被引:2,自引:0,他引:2  
铷光谱灯(铷灯)是汽泡式铷原子钟的关键部件。铷灯内金属铷的损耗是决定铷原子钟使用寿命的主要因素。为了预测铷灯使用寿命期内的铷消耗量,采用差示扫描量热技术对6个铷光谱灯开展了8a的铷消耗量测量。依据铷消耗模型的经验公式对铷消耗量数据用最小二乘法线性拟合,得到了一种肖特耐碱金属玻璃铷光谱灯铷消耗模型的各项参数。数据分析结果表明:铷与灯泡内所含杂质的反应消耗量在20~60μg之间,铷的消耗率稳定在0.18~0.28μg/h之间。以正常工作时铷消耗量最多的铷灯的拟合参数计算,10a使用寿命期的铷消耗量约为127μg。与相应时间内实际的铷量消耗的比较表明,使用该模型预测的结果是相对保守和可靠的。  相似文献   

4.
GPS星载原子钟性能评估   总被引:10,自引:0,他引:10  
介绍了星载原子钟性能评估指标——频率准确度、稳定度、漂移率的定义及计算方法,基于IGS(international GNSS service)卫星钟差数据,对GPS星载原子钟的性能指标进行了分析。其中,基于Hadamard方差方法的稳定度分析结果表明,GPS Block IIR星载铷原子钟天稳已经处于1~3×10-14的水平。  相似文献   

5.
针对全球定位系统(Global Positioning System, GPS)星载原子钟在钟差预报时与不同模型的适应度不同的问题,采用二次多项式(Quadratic Polynomial, QP)模型、灰色(Grey Model, GM(1,1)模型和灰色+自回归(GM(1,1)+Autoregressive, GM(1,1)+AR)模型对不同类型原子钟的钟差进行预报,着重分析不同类型原子钟的预报精度、不同长度钟差序列建模预报效果以及钟差序列波动对预报结果的影响。实验结果表明:(1)钟差预报精度与建模序列长度有一定关系,二次多项式模型受影响最大,灰色+自回归模型受影响最小;(2)不同卫星原子钟在不同预报模型下最佳建模序列长度不同,铷钟受建模序列长度的影响小于铯钟;(3)二次多项式模型对铯钟预报效果较差,对铷钟预报效果可与灰色模型和灰色+自回归模型相当;(4)钟差序列波动时,建模预报精度降低,不同模型的预报结果受钟差波动幅度大小的影响不同。  相似文献   

6.
钟信号分配放大器的主要用途是把原子钟的10MHz、5MHz、1MHz和1pps信号以高质量的缓冲分别以多路形式不失真地馈送给用户,其目的是:第一,隔离负载对原子钟的影响:第二,在同一原子钟情况下,能向负载提供5路与钟一样的信号。它是高精密时  相似文献   

7.
星载原子钟长期性能的分析对于系统完好性监测、卫星钟差确定与预报等具有重要的作用.GPS最新型的BLOCK IIF系列卫星于2016年2月6日部署完成.通过星载原子钟的频率准确度、频率漂移率、频率稳定度、观测噪声水平和钟差周期特性这5个指标的长期变化,分析评估了GPS BLOCK IIF星载原子钟的长期性能.计算分析表明:铷钟的频率准确度为7.1×10~(-12)±2.1×10~(-13),频率漂移率为(5.5×10~(-14)±1.1×10~(-14))/d,平均噪声水平约为0.2 ns;铯钟的频率准确度为1.0×10~(-12)±2.9×10~(-15),频率漂移率为(3.4×10~(-15)±5.4×10~(-16))/d,平均噪声水平约为1.0 ns,并且指标变化相对平稳;铷钟的2 h、6 h、12 h和天稳定度分别为3.4×10~(-14)、2.3×10~(-14)、7.3×10~(-15)与6.0×10~(-15);铯钟对应的稳定度指标分别为1.9×10~(-13)、1.1×10~(-13)、7.9×10~(-14)和5.5×10~(-14);卫星钟差存在显著周期项,主周期分别近似为卫星轨道周期的1/2、1倍或2倍.  相似文献   

8.
无线电长波传播时延的测量   总被引:1,自引:1,他引:0  
为了在长波授时与导航系统中,进行传播时延的修正,研究电波传播时延修正的理论及方法,及通过传播时延的测量测定土地等效导电率等,必须对电波传播的时延进行精确的测量。利用飞机搬运原子钟方法就是一种高精度的测量长波传播时延的方法。一九七八年十月至十一月进行的3262工程电波传播搬运钟试验,采用飞机搬运铷原子钟测量了我国不同传播路径上许多地点长波天、地波传播的时延,测量的精度为±0.14μs。下面我们就这次实验中传播时延的测量问题进行分析讨论。  相似文献   

9.
原子泡是CPT(相干布居囚禁)原子钟物理部分的主体,对于微型原子钟而言,传统的吹玻璃法已不再适用,必须用新的技术和方法来设计加工原子泡。介绍了利用MEMS(微机电系统)技术结合吹玻璃法、空心光纤嵌套法和MEMS方法加工微型原子泡的工艺以及碱金属原子和缓冲气体的几种常见的注入方法。  相似文献   

10.
激光参量对CPT铷原子钟稳定度影响的数值分析   总被引:1,自引:0,他引:1  
为具体分析激光参量对相干布居囚禁(CPT)原子钟的稳定度性能的影响,在(-型三能级原子系统模型的基础上,采用半经典密度矩阵方法,数值模拟计算了不同激光参量对CPT铷原子钟共振谱线信号的影响,并给出了比较分析.结果显示:两束激光强度的不对称对CPT钟信号强度的影响很大,而激光频率失谐对CPT钟信号影响较小;此外,当激光强度不对称与频率失谐同时存在时,荧光信号谱出现不对称,微波辐射信号发生频移.  相似文献   

11.
上海天文台时间频率研究室以原有被动型氢钟物理部分为基础,开展了脉冲微波式氢原子钟的研究。设计电路产生2个相干微波脉冲,连续激励氢原子跃迁,模拟双腔共振,使氢原子发生Ramsey干涉,压缩氢原子跃迁谱线宽度,以期提高氢原子钟短期稳定度指标。具体做法为:用DDS产生扫频电路,混频生成1.420 405 GHz激励信号后,再用CPLD产生脉冲时序控制数字衰减器,将激励信号衰减为脉冲形式,激励氢原子发生Ramsey干涉,导出微波信号并进行相关处理就可以产生Ramsey条纹。已观测到Ramsey干涉条纹,其中心峰宽度为1.2 Hz,相比传统被动型氢原子钟压缩了60%。  相似文献   

12.
Abstract Noble gases and N were analyzed in handpicked metal separates from lunar soil 68501 by a combination of step-wise combustions and pyrolyses. Helium and Ne were found to be unfractionated with respect to one another when normalized to solar abundances, for both the bulk sample and for all but the highest temperature steps. However, they are depleted relative to Ar, Kr and Xe by at least a factor of 5. The heavier gases exhibit mass-dependent fractionation relative to solar system abundance ratios but appear unfractionated, both in the bulk metal and in early temperature steps, when compared to relative abundances derived from lunar ilmenite 71501 by chemical etching, recently put forward as representing the abundance ratios in solar wind. Estimates of the contribution of solar energetic particles (SEP) to the originally implanted solar gases, derived from a basic interpretation of He and Ne isotopes, yield values of about 10%. Analysis of the Ar isotopes requires a minimum of 20% SEP, and Kr isotopes, using our preferred composition for solar wind Kr, yield a result that overlaps both of these values. It is possible to reconcile the data from these gases if significant loss of solar wind Ar, Kr and presumably Xe has occurred relative to the SEP component, most likely by erosive processes that are mass independent, although mass-dependent losses (Ar > Kr > Xe) cannot be excluded. If such losses did occur, the SEP contribution to the solar implanted gases must have been no more than a few percent. Nitrogen is a mixture of indigenous meteoritic N, whose isotopic composition is inferred to be relatively light, and implanted solar N, which has probably undergone diffusive redistribution and fractionation. If the heavy noble gases have not undergone diffusive loss, then N/Ar in the solar wind can be inferred to be at least several times the accepted solar ratio. The solar wind N appears, even after correction for fractionation effects, to have a minimum δ15N value ≥+150‰ and a more probable value ≥+200‰.  相似文献   

13.
Abstract— The noble gases He, Ne, Ar, Kr, and Xe were measured in 27 individual Antarctic micrometeorites (AMMs) in the size range 60 to 250 μm that were collected at the Dome Fuji Station. Eleven of the AMMs were collected in 1996 (F96 series) and 16 were collected in 1997 (F97 series). One of the F97 AMMs is a totally melted spherule, whereas all other particles are irregular in shape. Noble gases were extracted using a Nd‐YAG continuous wave laser with an output power of 2.5‐3.5 W for ?5 min. Most particles released measurable amounts of noble gases. 3He/4He ratios are determined for 26 AMMs ((0.85‐9.65) × 10?4). Solar energetic particles (SEP) are the dominant source of helium in most AMMs rather than solar wind (SW) and cosmogenic He. Three samples had higher 3He/4He ratios compared to that of SW, showing the presence of spallogenic 3He. The Ne isotopic composition of most AMMs resembled that of SEP as in the case of helium. Spallogenic 21Ne was detected in three samples, two of which had extremely long cosmic‐ray exposure ages (> 100 Ma), calculated by assuming solar cosmic‐ray (SCR) + galactic cosmic‐ray (GCR) production. These two particles may have come to Earth directly from the Kuiper Belt. Most AMMs had negligible amounts of cosmogenic 21 Ne and exposure ages of <1 Ma. 40Ar/36Ar ratios for all particles (3.9–289) were lower than that of the terrestrial atmosphere (296), indicating an extraterrestrial origin of part of the Ar with a very low 40Ar/36Ar ratio plus some atmospheric contamination. Indeed, 40Ar/36Ar ratios for the AMMs are higher than SW, SEP, and Q‐Ar values, which is explained by the presence of atmospheric 40Ar. The average 38Ar/36Ar ratio of 24 AMMs (0.194) is slightly higher than the value of atmospheric or Q‐Ar, suggesting the presence of SEP‐Ar which has a relatively high 38Ar/36Ar ratio. According to the elemental compositions of the heavy noble gases, Dome Fuji AMMs can be classified into three groups: chondritic (eight particles), air‐affected (nine particles), and solar‐affected (eight particles). The eight AMMs classified as chondritic preserve the heavy noble gas composition of primordial trapped component due to lack of atmospheric adsorption and solar implantation. The average of 129Xe/132Xe ratio for the 16 AMMs not affected by atmospheric contamination (1.05) corresponds to the values in matrices of carbonaceous chondrites (?1.04). One AMM, F96DK038, has high 129Xe/132Xe in excess of this ratio. Our results imply that most Dome Fuji AMMs originally had chondritic heavy noble gas compositions, and carbonaceous chondrite‐like objects are appropriate candidate sources for most AMMs.  相似文献   

14.
Abstract— The abundances and isotopic compositions of N and Ar have been measured by stepped combustion of the Allan Hills 84001 (ALH 84001) Martian orthopyroxenite. Material described as shocked is N-poor ([N] ~ 0.34 ppm; δ15N ~ +23%); although during stepped combustion, 15N-enriched N (δ15N ~ +143%) is released in a narrow temperature interval between 700 °C and 800 °C (along with 13C-enriched C (δ13C ~ +19%) and 40Ar). Cosmogenic species are found to be negligible at this temperature; thus, the iso-topically heavy component is identified, in part, as Martian atmospheric gas trapped relatively recently in the history of ALH 84001. The N and Ar data show that ALH 84001 contains species from the Martian lithosphere, a component interpreted as ancient trapped atmosphere (in addition to the modern atmospheric species), and excess 40Ar from K decay. Deconvolution of radiogenic 40Ar from other Ar components, on the basis of end-member 36Ar/14N and 40Ar/36Ar ratios, has enabled calculation of a K-Ar age for ALH 84001 as 3.5–4.6 Ga, depending on assumed K abundance. If the component believed to be Martian palaeoatmos-phere was introduced to ALH 84001 at the time the K-Ar age was set, then the composition of the atmosphere at this time is constrained to: δ15N ≥ +200%, 40Ar/36Ar ≤ 300 and 36Ar/14N ≥ 17 × 10?5. In terms of the petrogenetic history of the meteorite, ALH 84001 crystallised soon after differentiation of the planet, may have been shocked and thermally metamorphosed in an early period of bombardment, and then subjected to a second event. This later process did not reset the K-Ar system but perhaps was responsible for introducing (recent) atmospheric gases into ALH 84001; and it might mark the time at which ALH 84001 suffered fluid alteration resulting in the formation of the plagioclase and carbonate mineral assemblages.  相似文献   

15.
Because of the effects of various kinds of noises and other factors, the state of running of an atomic clock is quite complicated. In order to precisely predict the exact variation in frequency or clock rate of the atomic clock, it is necessary to study and make a reliable prediction model and via the model the clock rate of the atomic clock is predicted so as to be adopted in the monitoring of the coordinated local time and the calculation of the local atomic time. The problem how to utilize the grey model and autoregressive model to predict the clock rate of the atomic clock is discussed. The synthesized model of the two models is proposed and researched. It is tested and verified in combination with the actual data of the atomic clocks at National Time Service Center, and the computational methods of predicting the accuracies of the models corresponding to different atomic clocks are given.  相似文献   

16.
Abstract— We measured the noble gas isotopic abundances in lunar meteorite QUE 94269 and in bulk-, glass-, and crystal-phases of lunar meteorite QUE 94281. Our results confirm that QUE 94269 originated from the same meteorite fall as QUE 93069: both specimens yield the same signature of solar-particle irradiation and also the cosmogenic noble gases are in agreement within their uncertainities. Queen Alexandra Range 93069/94269 was exposed to cosmic rays in the lunar regolith for ~1000 Ma, and it trapped 3.5 × 10?4 cm3STP/g solar 36Ar, the other solar noble gases being present in proportions typical for the solar-particle irradiation. The bulk material of QUE 94281 contains about three times less cosmogenic and trapped noble gases than QUE 93069/94269 and the lunar regolith residence time corresponds to 400 ± 60 Ma. We show that in lunar meteorites the trapped solar 20Ne/22Ne ratio is correlated with the trapped ratio 40Ar/36Ar, that is, trapped 20Ne/22Ne may also serve as an antiquity indicator. The upper limits of the breccia compaction ages, as derived from the trapped ratio 40Ar/36Ar for QUE 93069/94269 and QUE 94281 are ~400 Ma and 800 Ma, respectively. We found very different regolith histories for the glass phase and the crystals separated from QUE 94281. The glass phase contains much less cosmogenic and solar noble gases than the crystals, in contrast to the glasses of lunar meteorite EET 87521, that were enriched in noble gases relative to the crystalline material. The QUE 94281 phases yield a 40K-40Ar gas retention age of 3770 Ma, which is in the range of that for lunar mare rocks.  相似文献   

17.
Abstract— We report the elemental and isotopic composition of the noble gases as well as the chemical abundances in pyroxene, maskelynite/mesostasis glass, and bulk material of Shergotty and of bulk samples from Chassigny and Yamato 793605. The 40K-40Ar isochron for the Shergotty minerals yields a gas retention age of 196 Ma, which is, within errors, in agreement with previously determined Rb-Sr internal isochron ages. Argon that was trapped at this time has a 40Ar/36Ar ratio of 1100. For Chassigny and Y-793605, we obtain trapped 40Ar/36Ar ratios of 1380 and 950, respectively. Using these results and literature data, we show that the three shergottites, Shergotty, Zagami, and QUE 94001; the lherzolites ALH 77005, LEW 88516, and Y-793605; as well as Chassigny and ALH 84001 contain a mixture of Martian mantle and atmospheric Ar; whereas, the trapped 40Ar/36Ar ratio of the nakhlites, Nakhla, Lafayette, and Governador Valadares cannot be determined with the present data. We show that Martian atmospheric trapped Ar in Martian meteorites is correlated with the shock pressure that they experienced. Hence, we conclude that the Martian atmospheric gases were introduced by shock into the meteoritic material. For the Shergotty minerals, we obtain 3He-, 21Ne-, and 38Ar-based cosmic-ray exposure ages of 3.0 Ma, and for the lherzolite Y-793605, 4.0 Ma, which confirms our earlier conclusion that the lherzolites were ejected from Mars ~1 Ma before the shergottites. Chassigny yields the previously known ejection age of 11.6 Ma.  相似文献   

18.
Abstract— Several experimentally and naturally shocked silicate samples were analyzed for noble gas contents to further characterize the phenomenon by which ambient gases can be strongly implanted into silicates by shock and to evaluate the possible importance of this process in capturing planetary atmospheres in naturally shocked samples. Gas implantation efficiency is apparently mineral independent, as mono-mineralic powders of oligoclase, labradorite, and diopside and a powdered basalt shocked to 20 GPa show similar efficiencies. The retentivity of shock-implanted gas during stepwise heating in the laboratory is defined in terms of two parameters: activation energy for diffusion as determined from Arrhenius plots, and the extraction temperature at which 50% of the gas is released, both of which correlate with shock pressure. These gas diffusion parameters are essentially identical for radiogenic 40Ar and shock-implanted 40Ar in oligoclase and labradorite shocked to 20 GPa, suggesting that the two 40Ar components occupy analogous lattice sites. Our experiments indicate that gas implantation occurs through an increasing production of microcracks/defects in the lattice with increasing shock pressure. The ease of diffusive loss of implanted gas is controlled by the degree of annealing of these microcracks/defects. Identification of a shock-implanted component requires relatively large concentrations of implanted gas which is strongly retained (i.e., moderate activation energy) in order to separate implanted gas from surface adsorbed gases. Literature data on shocked terrestrial samples indicate only weak evidence for shock-implanted gases, with an upper limit for 40Ar of ~ 10?6 cm3STP/g. New analyses of shocked samples from the Wabar Crater indicate the presence of shock-implanted Ar, having concentrations (~ 10?4 cm3STP/g) and activation energies for diffusive loss which are essentially that expected from experimental studies. Lack of sufficient target porosity or the presence of ground water may explain the sparse evidence for shock-implanted gas at other terrestrial craters. Although Wabar Crater may represent an unusually favorable environment on Earth for shock-implanting gases, surfaces of other planetary bodies, such as Mars, may frequently provide such environments. Analyses of returned samples from old Martian terraines may document temporal changes in earlier atmospheric composition.  相似文献   

19.
Abstract— Noble gases were measured in the Kapoeta achondrite by means of step-wise closed-system acid-etching with H2SO3. Isotopic ratios indicate that He, Ne and Ar are primarily solar in origin, although elemental abundance ratios indicate that the He and Ne have been significantly depleted relative to the Ar. Xenon is dominated by a typical trapped meteoritic component, and the same is probably true for Kr. The initial 11% of the Ar released from the sample by acid etching has a cumulative 36Ar/38Ar ratio of 5.58 ± 0.03, which indicates that the solar wind at some time in the past had a 36Ar/38Ar ratio significantly above previous values suggested for this ratio.  相似文献   

20.
The experiment described here is focussed to the observation of underexpanded, hypersonic turbulent jets. The experiment is relevant to a few aspects concerning the dynamics of astrophysical phenomena such as the Herbig-Haro jets and to the interaction between the large-scale vortices and the system of shocks that determine the spreading and entrainment properties of highly compressible free-flows. A number of orifice jets with a ratio between the stagnation pressure and the ambient pressure of the order 103-104 have been studied by changing the stagnation/ambient density ratio. This has been realized using dissimilar gases in the jet and in the ambient medium: by using He, Ar and air the stagnation/ambient density ratio can be changed by one order of magnitude while keeping fixed the pressure ratio. It has been possible to visualize the near and mid-term evolution of the jets and measure the axial and transversal density distributions. A comparison relevant to the shock waves configuration in between the nozzle exit and the first Mach's disk is shown for an air in air laboratory jet and its numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号