首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of seismic hazard in Panama is made using a seismotectonic regionalization model. The coefficients of Gumbel's Type-I distribution are calculated and return periods for several magnitudes are found. From these coefficients intensities, peak ground acceleration and earthquake hazard for a set of return periods and epicentral distances are estimated and substantial variations in the probability of occurrence are noted. The Panama Fracture Zone (PFZ) and the Panama-South America Suture Zone (PSZ) provinces are the most active in producing earthquakes with a magnitude of about 7.0 in less than 16 yr. Magnitude 7.0 earthquakes in the Azuero province have a return period of about 160 yr, whereas in the Panama Deformed Belt (PDB) province the return period for magnitude 7.5 events is about 175 yr.  相似文献   

2.
The earthquake hazard in Jordan and its vicinity is assessed on the basis of probabilistic methods. For this purpose, an updated earthquake catalog is compiled which covers the period between AD 1–1989. The earthquakes lie between latitudes 27.0°-35.5° N and longitudes 32.0°-39.0° E. Thirteen seismic zones are defined on a regional seismic and tectonic map presented for the area. Point-source and line-source models are used. The seismic hazard parameters, namely, theb-parameter (of the Gutenberg-Richter relation),m 1 (the upper bound magnitude), and 4 (the annual rate of occurrence of earthquakes with local magnitudeM L 4.0) are calculated for each zone. The results of the seismic hazard assessment are displayed as iso-acceleration contours expected to be exceeded during typical economic life times of structures, i.e. 50 and 100 years. For each model, two seismic hazard maps are derived. In order to determine the importance of the South-eastern Mediterranean zone and the north part of the Red Sea zone from a seismic hazard point of view for Jordan, one seismic hazard map which corresponds to 50 years' economic life for every model, excluding the seismicity of these zones, is derived.  相似文献   

3.
Martirosyan  A.  Balassanian  S.  Simonian  R.  Asatryan  L. 《Natural Hazards》1999,20(1):1-20
As a result of work carried out during the first two stages of the Global Seismic Hazard Assessment Program (GSHAP) for the Test Area Caucasus, a uniform earthquake catalogue was compiled and a Seismic Source Zones Model was designed. At the final stage of the program, the computation of seismic hazard was done by different methods.The results of a computation done using the Probabilistic Seismic Hazard Assessment methodology, as well as primary intermediate steps and preparatory work are given in the present paper. Peak horizontal ground acceleration is chosen as the parameter representing seismic hazard. Final computer calculations were done with the SEISRISK III program. The two final Seismic Hazard maps for different return periods are presented. The work was carried out at the National Survey for Seismic Protection of the Republic of Armenia.  相似文献   

4.
Past studies of seismic hazard in the U.K. that have used modern probabilistic methods of hazard assessment have been site-specific studies, mostly in connection with nuclear installations. There has been a need for general-purpose maps of seismic hazard to show relative variation of exposure within the U.K. and to give some guidance on absolute values. Such maps have now been produced, incorporating, for the first time, the wealth of new information on historical earthquakes in Britain that has been gathered over the last 15 years. The hazard calculations were undertaken using a new computer code based on the USGS program SEISRISK III, but incorporating a logic tree approach to model variation in the input parameters (e.g. focal depth) or uncertainty in the formulation of the model (e.g. attenuation parameters). An innovative approach was taken to the formulation of seismic source zones, in which two overlapping models were employed. The first of these uses relatively broad source zones based loosely on an interpretation of seismicity and tectonics, while the second uses numerous small zones that reflect the locations of past significant earthquakes. This double approach (using the logic tree methodology) has the merit of both considering the general trend of earthquake activity as well as focusing in on known danger spots. The results show that the areas of highest hazard are western Scotland, north-western England and Wales, where the intensity with 90% probability of non-exceedance in 50 years is 6 EMS.  相似文献   

5.
Assessment of seismic hazard in Panama is made using a seismotectonic regionalization model. The coefficients of Gumbel's Type-I distribution are calculated and return periods for several magnitudes are found. From these coefficients intensities, peak ground acceleration and earthquake hazard for a set of return periods and epicentral distances are estimated and substantial variations in the probability of occurrence are noted. The Panama Fracture Zone (PFZ) and the Panama-South America Suture Zone (PSZ) provinces are the most active in producing earthquakes with a magnitude of about 7.0 in less than 16 yr. Magnitude 7.0 earthquakes in the Azuero province have a return period of about 160 yr, whereas in the Panama Deformed Belt (PDB) province the return period for magnitude 7.5 events is about 175 yr.  相似文献   

6.
Some Bayesian methods of dealing with inaccurate or vague data are introduced in the framework of seismic hazard assessment. Inaccurate data affected by heterogeneous errors are modeled by a probability distribution instead of the usual value plus a random error representation; these data are generically called imprecise. The earthquake size and the number of events in a certain time are modeled as imprecise data. Imprecise data allow us to introduce into the estimation procedures the uncertainty inherent in the inaccuracy and heterogeneity of the measuring systems from which the data were obtained. The problem of estimating the parameter of a Poisson process is shown to be feasible by the use of Bayesian techniques and imprecise data. This background technique can be applied to a general problem of seismic hazard estimation. Initially, data in a regional earthquake catalog are assumed imprecise both in size and location (i.e errors in the epicenter or spreading over a given source). By means of scattered attenuation laws, the regional catalog can be translated into a so-called site catalog of imprecise events. The site catalog is then used to estimate return periods or occurrence probabilities, taking into account all sources of uncertainty. Special attention is paid to priors in the Bayesian estimation. They can be used to introduce additional information as well as scattered frequency-size laws for local events. A simple example is presented to illustrate the capabilities of this methodology.  相似文献   

7.
The definition of earthquake sources in the Panama region on the basis of both tectonics and average seismicity rates, have recently led to the concept of a microplate surrounded by seismically active areas. The effects of these earthquakes on the place where the most important concentration of investments and population is located, the capital city of Panama, are analyzed in this paper using statistical approaches.The parameters of Gumbel's Type-I distribution of extreme values for a continuous interval of 60 yr annual maximum magnitudes were used to make probabilistic estimations of the seismic hazard in Panama City. An earthquake with magnitude 7.5 is capable of producing a modified Mercalli intensity VII in Panama City, provided the source distance is of the order of 100 km. This earthquake has a probability of occurrence of 69% in 50 yr.  相似文献   

8.
The general philosophy of seismic hazard evaluation described here is appropriate for selection of seismic input to regional earthquake engineering codes prior to detailed on-site inspections and geotechnical assessments. Some probabilistic seismic hazard methodologies which can be applied in areas of low and high seismicity, are briefly described to emphasise the main equations with specimen results. Three aspects of hazard assessment are explored by different pathways. These include the analysis of regional earthquake catalogues to obtain magnitude recurrence, particularly using Gumbel extreme value statistics. This is extended to assess ground shaking hazard which is usually sought by earthquake engineers. Thirdly, the concept of earthquake perceptibility is developed, leading to the identification of an earthquake magnitude or type which is characteristic of a region. This most perceptible earthquake is most likely to be felt at any site in a region and provides an earthquake selection criterion which can be used in aseismic design of noncritical structures. Because there are several methods of seismic hazard evaluation, the view is expressed that it is sensible for practical purposes to seek results from different methods or different pathways to the hazard evaluation.Paper presented at the Commission of the European Communities' School on Earthquake Hazard Evaluation, Athens, and at the 21st General Assembly of the European Seismological Commission, held in Sofia, 1988.Now at School of Environmental Sciences, University of East Anglia, University Plain, Norwich NR4 7TJ, U.K.  相似文献   

9.
Probabilistic methods are used to quantify the seismic hazard in Jordan and neighbouring regions. The hazard model incorporates the uncertainties associated with the seismicity parameters and the attenuation equation. Seven seismic sources are identified in the region and the seismicity parameters of these sources are estimated by making use of all the available information. Seismic hazard computations and the selection of peak ground acceleration and modified Mercalli intensity values at the nodes of a 25 × 25 km mesh covering the region under study are carried out by two different computer programs.The results of the study are presented through a set of seismic hazard maps displaying iso-acceleration and iso-intensity contours corresponding to specified return periods. The first set of maps is derived based on the seismicity data assessed in this study and display our best estimate of the seismic hazard for Jordan and the neighbouring areas. The second set of maps which shows the alternative estimate of seismic hazard is based solely on the seismicity parameters reported by other researchers. The third set of maps, called the Bayesian estimate of seismic hazard, reflects the influence of expert opinion involving more conservative assumptions regarding the Red Sea and Araba faults.  相似文献   

10.
Seismic hazard analysis is based on data and models, which both are imprecise and uncertain. Especially the interpretation of historical information into earthquake parameters, e.g. earthquake size and location, yields ambiguous and imprecise data. Models based on probability distributions have been developed in order to quantify and represent these uncertainties. Nevertheless, the majority of the procedures applied in seismic hazard assessment do not take into account these uncertainties, nor do they show the variance of the results. Therefore, a procedure based on Bayesian statistics was developed to estimate return periods for different ground motion intensities (MSK scale).Bayesian techniques provide a mathematical model to estimate the distribution of random variables in presence of uncertainties. The developed method estimates the probability distribution of the number of occurrences in a Poisson process described by the parameter . The input data are the historical occurrences of intensities for a particular site, represented by a discrete probability distribution for each earthquake. The calculation of these historical occurrences requires a careful preparation of all input parameters, i.e. a modelling of their uncertainties. The obtained results show that the variance of the recurrence rate is smaller in regions with higher seismic activity than in less active regions. It can also be demonstrated that long return periods cannot be estimated with confidence, because the time period of observation is too short. This indicates that the long return periods obtained by seismic source methods only reflects the delineated seismic sources and the chosen earthquake size distribution law.  相似文献   

11.
Mäntyniemi  P.  Mârza  V.  Kijko  A.  Retief  P. 《Natural Hazards》2003,29(3):371-385
In this paper we apply a probabilistic methodology to map specific seismic hazard induced by the Vrancea Seismogenic Zone, which represents the uttermost earthquake danger to Romania as well as its surroundings. The procedure is especially suitable for the estimation of seismic hazard at an individual site, and seismic hazard maps can be created by applying it repeatedly to grid points covering larger areas. It allows the use of earthquake catalogues with incompletely reported historical and complete instrumental parts. When applying themethodology, special attention was given to the effect of hypocentral depth and the variation of attenuation according to azimuth. Hazard maps specifying a 10% chance of exceedance of the given peak ground acceleration value for an exposure time of 50 years were prepared for three different characteristic depths of earthquakes in the Vrancea area. These maps represent a new realistic contribution to the mitigation of the earthquake risk caused by the Vrancea Seismogenic Zone in terms of: (1) input data (consistent, reliable, and the most complete earthquake catalogue), (2) appropriate and specific attenuation relationships (considering both azimuthal and depth effects); and (3) a new and versatile methodology.  相似文献   

12.
Two sample probabilistic hazard maps for the Philippine Region are compiled. In these are shown various levels of expected horizontal ground acceleration for some given annual probability of exceedence, namely, for 0.1% a.p.e. and for 0.01% a.p.e. Such hazard maps are needed by structural engineers for compiling seismic zoning maps. The hazard maps are derived from source-zone or seismogenic maps, which, in turn, are compiled from seismographic, geologic, and geotectonic data. Much weight is put on geotectonic data rather than on seismographic data. The former lends support to extrapolating to much longer periods of exposure time or longer periods of recurrence.  相似文献   

13.
Seismic Hazard and Loss Estimation for Central America   总被引:2,自引:2,他引:2  
Yong  Chen  Ling  Chen  Güendel  Federico  Kulhánek  Ota  Juan  Li 《Natural Hazards》2002,25(2):161-175
A new methodology of seismic hazard and loss estimation has been proposed by Chen et al. (Chen et al., 1998; Chan et al., 1998) for the study of global seismic risk. Due to its high adaptability for regions of different features and scales, the methodology was applied to Central America. Seismic hazard maps in terms of both macro-seismic intensity and peak ground acceleration (PGA) at 10% probability of exceedance in 50 years are provided. The maps are all based on the global instrumental as well as historical seismic catalogs and available attenuation relations. Employing the population-weighted gross domestic product (GDP) data, the expected earthquake loss in 50 years for Central America is also estimated at a 5' latitude × 5' longitude resolution. Besides the seismic risk index, a measure of the relative loss or risk degree is calculated for each individual country within the study area. The risk index may provide a useful tool to help allocations of limited mitigation resources and efforts for the purpose of reduction of seismic disasters. For expected heavy loss locations, such as the Central American capital cities, earthquake scenario analysis is helpful in providing a quick overview of loss distribution assuming a major event occurs there. Examples of scenario analysis are given for San Jose, capital of Costa Rica, and Panama City, capital of Panama, respectively.  相似文献   

14.
Earthquake hazard maps for Syria are presented in this paper. The Peak Ground Acceleration (PGA) and the Modified Mercalli Intensity (MMI) on bedrock, both with 90% probability of not being exceeded during a life time of 50, 100 and 200 years, respectively are developed. The probabilistic PGA and MMI values are evaluated assuming linear sources (faults) as potential sources of future earthquakes. A new attenuation relationship for this region is developed. Ten distinctive faults of potential earthquakes are identified in and around Syria. The pertinent parameters of each fault, such as theb-parameter in the Gutenberg-Richter formula, the annual rate 4 and the upper bound magnitudem 1 are determined from two sets of seismic data: the historical earthquakes and the instrumentally recorded earthquake data (AD 1900–1992). The seismic hazard maps developed are intended for preliminary analysis of new designs and seismic check of existing civil engineering structures.  相似文献   

15.
Öncel  A. O.  Alptekin  Ö. 《Natural Hazards》1999,19(1):1-11
In order to investigate the effect of aftershocks on earthquake hazard estimation, earthquake hazard parameters (m, b and Mmax) have been estimated by the maximum likelihood method from the main shocks catalogue and the raw earthquakes catalogue for the North Anatolian Fault Zone (NAFZ). The main shocks catalogue has been compiled from the raw earthquake catalogue by eliminating the aftershocks using the window method. The raw earthquake catalogue consisted of instrumentally detected earthquakes between 1900 and 1992, and historical earthquakes that occurred between 1000–1900. For the events of the mainshock catalogue the Poisson process is valid and for the raw earthquake catalogue it does not fit. The paper demonstrates differences in the hazard outputs if on one hand the main catalogues and on the other hand the raw catalogue is used. The maximum likelihood method which allows the use of the mixed earthquake catalogue containing incomplete (historical) and complete (instrumental) earthquake data is used to determine the earthquake hazard parameters. The maximum regional magnitude (Mmax, the seismic activity rate (m), the mean return period (R) and the b value of the magnitude-frequency relation have been estimated for the 24°–31° E, 31°–41° E, 41°–45° E sections of the North Anatolian Fault Zone from the raw earthquake catalogue and the main shocks catalogue. Our results indicate that inclusion of aftershocks changes the b value and the seismic activity rate m depending on the proportion of aftershocks in a region while it does not significantly effect the value of the maximum regional magnitude since it is related to the maximum observed magnitude. These changes in the earthquake hazard parameters caused the return periods to be over- and underestimated for smaller and larger events, respectively.  相似文献   

16.
Stress concentrations produced by rock deformation due to extraction in underground mines induce seismicity that can take the shape of violent and quite dangerous rockbursts.The hazard evaluation presented in this paper is based on a Bayesian probabilistic synthesis of information determined from mining situations during excavation, with previous and present data from microseismicity and seismoacustics.The method proposed in this study is an example of time-dependent on-line seismic hazard evaluation. All results presented were obtained retrospectiely for different underground coal mines in Poland and Czechoslovakia.On leave from Institute of Geophysics, Polish Academy of Sciences 01-452 Warszawa, ul. Ksiecia Janusza 64, Poland.  相似文献   

17.
CHEN  Y.  Liu  J.  Chen  L.  Chen  Q.  Chan  L. S. 《Natural Hazards》1998,17(3):251-267
A global seismic hazard assessment was conducted using the probabilistic approach in conjunction with a modified means of evaluating the seismicity parameters. The earthquake occurrence rate function was formulated for area source cells from recent instrumental earthquake catalogs. For the statistical application of the G–R relation of each source cell, the upper- and lower-bound magnitudes were determined from, respectively, historical earthquake data using a Kernel smoothing operator and detection thresholds of recent catalogs. The seismic hazard at a particular site was obtained by integrating the hazard contribution from influencing cells, and the results were combined with the Poisson distribution to obtain the seismic hazard in terms of the intensity at 10% probability of exceedance for the next 50 years. The seismic hazard maps for three countries, constructed using the same method, agree well with the existing maps obtained by different methods. The method is applicable to both oceanic and continental regions, and for any specific duration of time. It can be used for those regions without detailed geological information or where the relation between existing faults and earthquake occurrence is not clear.  相似文献   

18.
A semi-probabilistic approach to the seismic hazard assessment of Greece is presented. For this reason, a recent seismotectonic model for shallow and intermediate depth earthquake sources, based on historical as well as on instrumental data, was used. Different attenuation formulae were proposed for the macroseismic intensity and the strong ground motion parameters for the shallow and the intermediate focal depth shocks. The data were elaborated in terms of McGuire's computer program, which is based on the Cornell's method.A grid of equally spaced points at 20 km distance was made and the seismic hazard recurrence curves for various parameters of the seismic intensity was estimated for each point. Finally, seismic hazard maps for the area of Greece were compiled utilizing the entire range of recurrence curves. These maps depict areas of equal seismic hazard and for every area the analytical relations of the typeSI =f(Tm), whereSI is a seismic intensity parameter andTm is the mean return period, were determined.  相似文献   

19.
Within the activity of the ESC Subcommission 8 Engineering Seismology, Project TERESA, seismic hazard calculations have been performed for two areas of a different earthquake activity. Fundamental seismological data (earthquake catalogues, macroseismic observations and maps) and some additional geological information were analyzed and processed to prepare inputs for hazard computations. Great attention has been paid to verifying the reliability of the input data. Seismic hazards obtained for five sites of the region of high seismic activity (Sannio-Matese, southern Italy) and six sites of the region of low seismic activity (Brabant Massif and northern Rhine, Belgium—The Netherlands—Germany) are presented and discussed.  相似文献   

20.
A seismic nonlinear time-history analysis was made for four-, six-, and eight-storey reinforced concrete buildings. These buildings were made as three-dimensional space frame structures with shear walls in both orthogonal directions. They have five bays with 4.8 m spacing each in the horizontal direction, and three bays with 4.2 m spacing each in the transversal direction. The frames were designed according to the Jordanian Seismic Code of practice for Seismic Zones 4, 3, 2, and 1 as proposed for Jordan by several authors. Time-history analysis was made using the El Centro (N-S) earthquake record of May 1940 as an actual earthquake excitation. The response reduction factor (R) that primarily consists of two factors that are the ductility reduction (Rµ) and the overstrength (), is obtained. It has been seen that the seismic zoning has a slight effect on the ductility reduction factor for different buildings, since it ranges from Zone 4 to Zone 1 as 2.37 to 2.52, 1.72 to 1.78, and 1.14 to 1.18 for four-, six-, and eight-storey buildings, respectively. Moreover, it is observed that, for different buildings and different seismic zones, the ductility reduction factor (Rµ) is slightly different from the system ductility factor (µ) especially for higher values of µ (i.e., Rµ µ). The response reduction factor, called overstrength (), was evaluated. The overstrength factor was found to vary with seismic zones (Z) , number of stories, and design gravity loads. However, the dependency on seismic zones was the strongest. The average overstrength of these buildings in Zones 4 and 1 was 2.61 and 6.94, respectively. The overstrength increased as the number of storeys decreased: overstrength of a four-storey building was higher than an eight-storey building by 36% in Zone 4, and 39% in Zone 1. Furthermore, buildings of the three heights had an average overstrength 165.9% higher in Zone 1 than in Zone 4. These observations have a significant implications for the seismic design codes which currently do not take into account the variation of the response reduction factor, R (i.e., ductility reduction factor times overstrength).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号