首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
刘海波 《地质与勘探》2024,60(3):572-580
复杂边坡稳定性问题一直是岩土工程界重点研究的问题之一,提高复杂边坡安全系数的方法有很多,其中采用抗滑桩支护是常用手段之一。以安徽省某高速公路复杂边坡为研究对象,采用套孔应力解除法对该边坡岩土体进行了地应力测试,以测试结果作为有限元分析的边界条件,分别对该边坡加固前和采用抗滑桩加固后两种工况进行数值分析,得到有代表性的有限元分析结果;并对有限元的计算出位移结果和实测位移进行了对比。分析表明,未采用抗滑桩支护的边坡,会产生局部应力过分集中、整体变形和水平向位移较大、塑性区贯通等不利于边坡稳定的危险状况。采用了抗滑桩支护后,贯通的塑性区消失,边坡变形和位移减少,应力分布趋于均匀,安全系数大幅度提高。有限元计算出的位移结果和实测位移十分接近,匹合度较好,从而说明了有限元分析手段的可靠性。  相似文献   

2.
Numerical pile segment analysis is conducted in this study with an advanced soil model to investigate the skin friction behaviour of a drilled Cast‐In‐Place (CIP) pile installed in sand. Although the interface between the sand and pile is considered rough, thin elements adjacent to the pile are used to include effects of localized shear. Unit weights of fluid concrete and accompanied changes in stress are considered as the effects of pile installation. Changes in effective stresses are the most prominent effect due to pile installation with a change in direction of the major principal stress from the vertical to the radial direction. Shear behaviour of the sand at the interface during the early shear stage is related to the contractive tendency of the sand at small strain levels. Changes in the stress field around the pile with little changes in volumetric strain take place during the early shear stage. Stress redistributions during the early shear stage depend on the direction of the major principal stress before shear. Results of the pile segment analyses for drilled CIP piles show good agreement with design methods. Parametric studies are used to characterize the effects of sand density and pile diameter on the skin friction behaviour of drilled CIP piles. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

Use of granular pile as a ground improvement technique in case of soft soils is one of the reliable and economic options. Analysis of a partially stiffened group of granular floating piles has been numerically assessed and presented here. Partial stiffening simply means that instead of using conventional material for making the granular pile (GP) in its full length, top region is replaced partially by some suitable material, having better mechanical properties, i.e. higher deformation modulus. Various normalised parameters like settlement influence factor for top of GP, settlement interaction factor, settlement reduction factor, percentage load shared by the base and shear stress distribution along the length of the granular pile are evaluated. The settlement influence factor for top of GP is found to decrease with the increase in the values of the stiffening parameters. The interfacial shear stresses get redistributed along the length of the granular pile.  相似文献   

4.
高喷插芯组合桩荷载传递机制足尺模型试验研究   总被引:10,自引:1,他引:9  
刘汉龙  任连伟  郑浩  肖耀祖 《岩土力学》2010,31(5):1395-1401
高喷插芯组合桩(简称JPP)是由高压旋喷桩和预应力混凝土芯桩构成的一种新型组合桩,为了对其荷载传递机制有更深入的认识,以自行开发的大型土工试验模型槽为依托,进行了JPP桩、灌注桩和高压旋喷水泥土桩静载荷对比试验。通过埋设在JPP桩中的监测仪器对桩身轴力、桩端阻力以及桩体沉降等进行了直接量测,进而分析了JPP桩中管桩与水泥土轴力的分布和内外侧摩阻力的分布。试验结果表明,JPP桩与同桩长、同桩经灌注桩相比承载力高30%以上;JPP桩变形由芯桩控制,管桩轴力分布与水泥土轴力分布规律不一致,但同一截面上管桩和水泥土的轴力比值约为其弹性模量的比值;内外摩阻沿桩身的分布规律类似,内摩阻是外摩阻的1.62倍左右,约为JPP桩直径和管桩直径的比值;桩侧摩阻力与桩土相对位移近似双曲线分布,桩端阻力和桩端位移也近似双曲线分布。  相似文献   

5.
Comments on the interpretation of deformation textures in rocks   总被引:4,自引:0,他引:4  
In rocks that undergo ductile deformation, preferred orientation develops as a result of intracrystalline slip and mechanical twinning. The orientation distribution is a consequence of the microscopic mechanisms and of the strain path. It can be used to get some insight into the deformation history; however it is never unique. The interpretation relies largely on polycrystal plasticity theory. The concepts of stress equilibrium and strain compatibility, which are two extreme assumptions made to model deformation, are discussed. New approaches such as the viscoplastic self-consistent theory are a compromise and may be applicable to mineral systems which display a high degree of plastic anisotropy. Important extensions allow for heterogeneous deformation in the polycrystal from grain to grain and even within grains in correspondence with microstructural observations. All these theories defy the popular notion which is becoming entrenched in the geological literature, that the microscopic slip plane normal aligns with the axis of maximum principal compressive stress, and that in simple shear the crystallographic slip plane rotates into the macroscopic shear plane and the slip direction into the macroscopic shear direction, an orientation referred to by geologists as ‘easy glide’. It is emphasized that future work on texture development of rocks should be based on rigorous physics rather than ingenious intuition, in accordance with an old recommendation of Walter Schmidt.  相似文献   

6.
We have analysed the earthquake sequence occurred at Campi Flegrei during an unrest episode of strong ground uplift and seismicity, occurred in the period 1982–1984. The maximum magnitude of these events was about 4. Both earthquake occurrence and ground deformation have been interpreted in terms of the role played by a ring fault system, inward dipping, related to phenomena of caldera collapse and resurgence. Earthquakes are of mixed strike-slip and normal fault type. They show a dip movement opposite to the static ground deformation. The rising of the internal block with respect to the zone external to the ring fault, as observed by ground deformation, should cause thrust fault slip on the fracture system, whereas a normal fault dip component is observed. The simulation of the stress field generated by overpressure in a magma chamber in presence of lateral discontinuities, as performed by a boundary element method, allows to hypothesise that reverse fault slip on the ring fault is mainly aseismic, and such aseismic movement is able to focus normal fault shear stress along the lateral discontinuities. Aseismic slip on the ring fault in response to static deformation is also supported by the low amount of seismic moment released (M0 ≅ 1015 Nm), about two orders of magnitude lower than expected from the shear slip on the discontinuities needed to accomplish the total static surface deformation (1.8 m). Such results have been compared with observations at Rabaul caldera, during a similar unrest episode. In such area, the seismic moment release is in good agreement with shear slip produced on a system of outward dipping ring faults, and seismicity is much more focused on the fault structures. The comparison between the two areas shed new light about the dynamics of earthquakes in calderas, as due to the role of bordering ring fault systems.  相似文献   

7.
陈育民  陈润泽  霍正格 《岩土力学》2019,40(10):3709-3716
为了分析剪切条件下零有效应力状态砂土的流动变形规律,对传统环剪仪进行了试样可视化改造,研制了透明环形剪切盒,通过对剪切盒膨胀性能分析及与标准砂的剪切试验对比,验证了环剪装置改造的合理性。通过分析不排水条件下饱和悬浮塑料砂的剪应力-应变曲线,发现其剪切强度具有应变软化的特性。通过分析环剪仪中饱和悬浮塑料砂试样的有效应力,证实了可视环剪试验中的土体基本处于零有效应力状态。开展了饱和悬浮塑料砂的流动变形可视环剪试验研究,结果表明:饱和悬浮塑料砂在固结不排水条件下剪切变形不连续,直接在剪切面发生断裂;在不固结不排水的条件下饱和悬浮塑料砂的剪切变形表现出流动形态,且与剪切速率有关:在低剪切速率下,剪切变形仅在剪切面处形成具有曲线轨迹的流动变形而在其他区域不发生变形;而在高剪切速率下剪切变形为整体的倾斜变形,符合黏性流体的流动变形特征。  相似文献   

8.
INTRODUCTIONRock deformation is normally explained by tec-tonic stress as rock deformation results fromthe tec-tonic stress field. The classic tools that explainedfracture mechanisms were the Coulomb shear fracturerule and the Anderson mode derived fromit (Zhu,1999) . More and more studies have shown that it isdifficult to explain rock deformation in a large strainrange using only the Coulomb shear fracture rule( Waltham,2002 ; Gutscher et al .,2001 ; Tikoff andWojtal ,1999) . As a ver…  相似文献   

9.
The driving response of thin‐walled open‐ended piles is studied using numerical simulation of the wave propagation inside the soil plug and the pile. An elastic finite element analysis is carried out to identify the stress wave propagation in the vicinity of the pile toe. It is found that the shear stress wave has the highest magnitude above the bottom of the soil plug. Below the bottom of the soil plug, the vertical stress wave has the highest magnitude. Although the shear stress wave propagating in the radial direction is similar in magnitude to the vertical stress wave at the bottom of the soil plug, it decays rapidly while travelling downwards. The highest vertical stress at the bottom of the soil plug appears after the vertical stress wave interacts with the shear stress wave travelling in the radial direction. Initially, the vertical stress wave propagates with the dilation wave velocity in both the radial and vertical directions. After it interacts with the shear stress wave, the vertical stress wave starts to propagate with the shear wave velocity in the radial direction and with the axial wave velocity downwards. It is concluded that at the bottom of the soil plug, the interaction between the waves travelling in radial and vertical directions is important. The capabilities of several one‐dimensional pile‐in‐pile models to reproduce the driving response given by a two‐dimensional axisymmetric finite element model is studied. It is seen that when the base of the soil plug fails, a one‐dimensional pile‐in‐pile model can be used to achieve results in agreement with the finite element model. However, when the pile is unplugged, where the base of the soil plug does not fail, a reduced finite element mesh that permits the radial wave propagation inside the soil plug must be used. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
A critical state sand plasticity model accounting for fabric evolution   总被引:1,自引:0,他引:1  
Fabric and its evolution need to be fully considered for effective modeling of the anisotropic behavior of cohesionless granular sand. In this study, a three‐dimensional anisotropic model for granular material is proposed based on the anisotropic critical state theory recently proposed by Li & Dafalias [2012], in which the role of fabric evolution is highlighted. An explicit expression for the yield function is proposed in terms of the invariants and joint invariants of the normalized deviatoric stress ratio tensor and the deviatoric fabric tensor. A void‐based fabric tensor that characterizes the average void size and its orientation of a granular assembly is employed in the model. Upon plastic loading, the material fabric is assumed to evolve continuously with its principal direction tending steadily towards the loading direction. A fabric evolution law is proposed to describe this behavior. With these considerations, a non‐coaxial flow rule is naturally obtained. The model is shown to be capable of characterizing the complex anisotropic behavior of granular materials under monotonic loading conditions and meanwhile retains a relatively simple formulation for numerical implementation. The model predictions of typical behavior of both Toyoura sand and Fraser River sand compare well with experimental data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
通过圆盘沙堆以及斜坡堆积物理模拟试验,解释其崩滑的动力学机制.发现溜砂坡堆积的过程是一个典型的自组织临界过程,整个坡体是一个广延耗散动力学系统.从颗粒级配的角度探究其对散粒体边坡稳定性的影响.  相似文献   

12.
针对淮南矿区顾北煤矿-648 m水平绞车房硐室底板突出严重,容易发生拉剪破坏的特点,首先采用FLAC3D对绞车房硐室支护前的围岩变形和应力分布特征进行了模拟分析:变截面处和底角应力集中明显,在高应力作用下底角剪切滑移和底板折断隆起是造成底臌的根本原因。基于分步联合支护理论,对绞车房硐室底板支护方案进行了优化,并对绞车房硐室表面与深部位移、锚索受力和基础内部应力进行了全方位监测,结果表明:原支护方案下巷道底板变形较大,巷道底角发生剪切滑移诱使巷道断面圆形化,注浆花管和底角地梁可以较好地抵抗底角处的剪切滑移;巷道底板变形量受地应力方位影响较大,采用新的底板联合支护方式不仅可以很好地满足绞车房硐室对底板变形的要求,还能加强两帮稳定性,同时保证了绞车房基础稳定。  相似文献   

13.
This paper presents the results of three-dimensional, finite element analyses performed with an advanced, two-surface-plasticity, constitutive sand model to investigate the response of non-displacement piles to axial loading. The analysis domain is carefully meshed such that the formation and evolution of shear bands next to the pile shaft and near the pile base can be properly captured. Analyses considering various soil profiles and pile geometries show that the mobilized lateral earth pressure coefficient K along the pile shaft increases with increasing relative density and decreasing initial confining stress. The ultimate unit base resistance is independent of pile diameter, increasing with increasing relative density and increasing initial confining stress at the pile base. Based on the analysis results, design equations are proposed to estimate the limit shaft resistance and ultimate base resistance of non-displacement piles in sandy soil. In proposing these relationships, the pile slenderness ratio is considered. The effect of layer proximity to the base of the pile or pile base embedment in a layer is also considered.  相似文献   

14.
崔军文 《地球学报》1987,9(3):89-101
随着深部构造研究的不断深入,岩石流变作用日益受到人们重视,普遍认为塑性流变是地壳深部构造形成的主要机制。超基性岩的流变作用目前已成为研究上地幔流变、岩石圈板块动力学和热对流,甚至震源机制的重要内容。 本文拟通过对构成雅鲁藏布江蛇绿岩套底部的藏南超基性岩的研究,重点划分塑性流变的结构类型,探讨不同结构类型中橄榄石的组构特征及实际存在的滑动系,用不同方法计算超基性岩形成和侵位过程中的流动应力值,并认为由于橄榄石塑性流变而获得的晶格方位排列是造成地震波速度不连续性的主因,岩石的塑性流动有可能是深部能量释放和诱发  相似文献   

15.
Geotechnical experiments show that Lode angle‐dependent constitutive formulations are appropriate to describe the failure of geomaterials. In the present study, we have adopted one such class of failure criteria along with a versatile constitutive relationship to theoretically analyze the effects of Lode angle on localized shear deformation or shear band formation in loose sand for both drained and undrained conditions. We determine the variation in the possible stress states for shear localization due to the introduction of Lode angle by considering the localized deformation as a bifurcation problem. Further, similar bifurcation analysis is performed for the stress states along a specific loading path, namely, plane strain compression at the constitutive level. In addition, the plane strain compression tests have been simulated as a boundary value finite element problem to see how Lode angle affects the post‐localization response. Results show that the inclusion of a Lode angle parameter within the failure criterion has considerable effects on the onset, plastic strain, and propagation of shear localization in loose sand specimens. For drained condition, we notice early inception of shear localization and multiple band formation when the Lode angle‐dependent failure criterion is used. Undrained localization characteristics, however, found to be independent of Lode angle consideration.  相似文献   

16.
17.
A novel conceptual model of the mechanics of sands is developed within an elastic–plastic framework. Central to this model is the realization that volume changes in anisotropic granular materials occur as a result of two fundamentally different mechanisms. The first is purely kinematic, dilative, and is the result of the changes in anisotropic fabric. There is also a second volume change in granular media that occurs as a direct response to changes in stress as in a standard elastic/plastic continuum. The inclusion of the two sources of volume change results in three important datum states. When subjected to isotropic strains, the resulting stress state in granular materials is not isotropic but lies upon the kinematic normal consolidation line. There exists a state at which the fabric‐induced volumetric strain rate becomes equal to the stress‐induced volumetric strain rate making the total plastic volumetric strain rate equal to zero. Granular response changes from contractive to dilative at this phase transformation line. The third datum state is the one in which the stress‐induced volumetric strain rate is zero. The sand, however, continues to dilate at this state with the difference between stress and dilation ratio a constant as predicted by Taylor's stress–dilatancy rule. These predictions are shown in accordance with experimental data from a series of drained tests and undrained on Ottawa sand. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Menzies, J. & Ellwanger, D. 2010: Insights into subglacial processes inferred from the micromorphological analyses of complex diamicton stratigraphy near Illmensee‐Lichtenegg, Höchsten, Germany. Boreas, 10.1111/j.1502‐3885.2010.00194.x. ISSN 0300‐9483. Investigations of a 30‐m‐high section of Pleistocene sediments at Illmensee‐Lichtenegg, Höchsten in Baden‐Württemberg provide detailed information on subglacial conditions beneath the Rhine Glacier outlet of the Alpine ice sheet in southern Germany. The sediment exposure extends from an upper cemented sand and gravel (Deckenschotter) into diamictic units that extend down to weathered Molasse bedrock. The exposure reveals sediments symptomatic of active syndepositional stress/strain processes ongoing beneath the ice sheet. Macrosedimentology reveals diamicton subfacies units and a strong uni‐direction of ice motion based on clast fabric analyses. At the microscale level, thin‐section analyses provide a substantially clearer picture of the dynamics of subglacial sediment deformation and till emplacement. Evidence based on detailed micromorphological analyses reveals microstructural strain and depositional markers that indicate a subglacial environment of ongoing soft bed deformation in which the diamictons can be readily identified as subglacial tills. Within this subglacial environment, distinct changes in pore‐water pressure and sediment rheology can be detected. These changes reveal fluctuating conditions of progressive, non‐pervasive deformation associated with rapid changes in effective stress and shear strain leading to till emplacement. This site, through the application of micromorphology, increases our understanding of localized subglacial conditions and till formation.  相似文献   

19.
Large earthquakes in strike-slip regimes commonly rupture fault segments that are oblique to each other in both strike and dip. This was the case during the 1999 Izmit earthquake, which mainly ruptured E–W-striking right-lateral faults but also ruptured the N60°E-striking Karadere fault at the eastern end of the main rupture. It will also likely be so for any future large fault rupture in the adjacent Sea of Marmara. Our aim here is to characterize the effects of regional stress direction, stress triggering due to rupture, and mechanical slip interaction on the composite rupture process. We examine the failure tendency and slip mechanism on secondary faults that are oblique in strike and dip to a vertical strike-slip fault or “master” fault. For a regional stress field well-oriented for slip on a vertical right-lateral strike-slip fault, we determine that oblique normal faulting is most favored on dipping faults with two different strikes, both of which are oriented clockwise from the strike-slip fault. The orientation closer in strike to the master fault is predicted to slip with right-lateral oblique normal slip, the other one with left-lateral oblique normal slip. The most favored secondary fault orientations depend on the effective coefficient of friction on the faults and the ratio of the vertical stress to the maximum horizontal stress. If the regional stress instead causes left-lateral slip on the vertical master fault, the most favored secondary faults would be oriented counterclockwise from the master fault. For secondary faults striking ±30° oblique to the master fault, right-lateral slip on the master fault brings both these secondary fault orientations closer to the Coulomb condition for shear failure with oblique right-lateral slip. For a secondary fault striking 30° counterclockwise, the predicted stress change and the component of reverse slip both increase for shallower-angle dips of the secondary fault. For a secondary fault striking 30° clockwise, the predicted stress change decreases but the predicted component of normal slip increases for shallower-angle dips of the secondary fault. When both the vertical master fault and the dipping secondary fault are allowed to slip, mechanical interaction produces sharp gradients or discontinuities in slip across their intersection lines. This can effectively constrain rupture to limited portions of larger faults, depending on the locations of fault intersections. Across the fault intersection line, predicted rakes can vary by >40° and the sense of lateral slip can reverse. Application of these results provides a potential explanation for why only a limited portion of the Karadere fault ruptured during the Izmit earthquake. Our results also suggest that the geometries of fault intersection within the Sea of Marmara favor composite rupture of multiple oblique fault segments.  相似文献   

20.
由岩溶塌陷、隧道开挖等方面引起的土体变形往往会对基础建设和基础结构等造成不均匀沉降、地面塌陷及开裂等危害,确定土体结构顶部松动土压力的分布情况并准确地分析土体变形与土拱效应间关系显得尤为重要。为了揭示土体变形和沉降对结构顶部松动土压力的变化规律,进行了一系列不同H/B的活动门试验(H为地基高度,B为活动门宽度)。基于试验结果,提出以三角形作为力学模型分析不同滑移面时松动土压力的数学模型,考虑了滑移面角度与土体变形及主应力偏转三者之间的关系,分析了滑移面内任意水平微分土条的主应力偏转情况并建立受力平衡微分方程,根据不同滑移面形态下的边界条件求解松动土压力理论公式,与已有试验结果对比验证了理论公式的合理性。通过对滑移面角度、侧向土压力系数和内摩擦角等主要参数进行分析,结果表明:在较小相对位移下(1%~3%)土体应力迅速发生转移和重分布,初始滑移面角度略小于π/4+φ/2(φ为内摩擦角),随着H/B增大土体应力比缓慢增长最终趋于稳定;地基内封闭三角形滑移面的松动土压力与相对位移及内摩擦角相关;内摩擦角的增加使得土拱效应得到充分发挥,加强了应力转移,降低了土拱应力比;内摩擦角的增大减小了水平向...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号