首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We examine the diatom flux collected between November 1996 and April 1998, and between January and October 1999 at the time-series study site in the Cariaco Basin, off Venezuela. The temporal dynamics of the total diatom flux mainly reflect seasonal, trade wind-driven changes in surface hydrographic conditions, including changes associated with the El Niño/Southern Oscillation (ENSO). Highest diatom fluxes (>1.8×107 valves m?2 d?1) coincided with the upwelling season in boreal winters 1997 and 1999. Changes in the composition of the diverse diatom community reflect variations in hydrographic and atmospheric conditions, as well as nutrient availability. Cyclotella litoralis, a neritic diatom typical of nutrient-rich waters, along with resting spores of several Chaetoceros spp., dominate during periods of high diatom flux, following trade wind-driven upwelling. During the boreal summers of 1997 and 1999, nutrient-depleted surface waters resulted in low diatom fluxes (<5.2×106 valves m?2 d?1). The seasonal pattern of high diatom production was altered from July 1997 through April 1998, when the ENSO affected the Caribbean Sea. The occurrence of ENSO during boreal winter 1997–1998 caused a major change in the qualitative composition of the diatom assemblage: the highly diverse diatom assemblage was composed of a mixture of pelagic (Nitzschia bicapitata, Thalassionema nitzschioides var. inflata, T. nitzschioides var. parva, Azpeitia tabularis) and coastal species (C. litoralis, resting spores of Chaetoceros, T. nitzschioides var. nitzschioides). The simultaneous occurrence of neritic and open-ocean diatoms during boreal summers reflects the fact that the Cariaco Basin is influenced by both offshore and coastal waters, with considerable short-term variability in hydrographic conditions and nutrient availability.  相似文献   

2.
We investigated biogenic silica, several biological components, and silicate in pore-water in the abyssal sediment to determine silicon flux of western North Pacific during several cruises. The surficial sediment biogenic silica content was high at high latitudes with the boundary running along the Kuroshio Extension, and maximum values (exceeding 20%) were found in the Oyashio region. In the subtropical region to the south, most stations showed less than 5% biogenic silica content. This distribution pattern reflected primary production and ocean currents in the surface layer very well. Pore-water samples were collected from 4 stations along the east coast of Japan. The highest asymptotic silicic acid concentration (670 μmol L?1) in pore-water was observed at the junction of Kuroshio and Oyashio, followed by samples from the Oyashio region. It is at the southern station that the lowest value (450 μmol L?1) was observed, and the primary production is low under the influence of Kuroshio there. The diffusive flux followed the same geographic trend as the asymptotic silicic acid concentrations did, ranging 77–389 mmol m?2 yr ?1. Multiple sampling of pore-water was conducted throughout the year at one station at high latitude. The average annual biogenic silica rain flux observed using sediment traps was 373 mmol m?2 yr?1; the diffusive flux and burial flux at the sediment–water interface were 305 and 9 mmol m?2 yr?1, respectively. We concluded that most of the settling silica particles dissolved and diffused at the sediment–water interface and approximately 3% only were preserved in this area. In addition, the obvious time lag observed between the peak rain flux and the maximum diffusive flux suggested that primary production in the surface layer has a great influence on the sedimentation environment of abyssal western North Pacific. These transitions of Si flux at the sediment–water interface were considerably greater in northwestern North Pacific than in southwestern North Pacific. In addition, a station in the Philippine Sea indicated high biogenic silica content because of Ethmodiscus ooze, which are scattered randomly on the sea floor in the subtropical region.  相似文献   

3.
An array of four sediment trap moorings recorded the particulate flux across the Antarctic Circumpolar Current (ACC) at 170 °W, between November 1996 and January 1998, as part of the US JGOFS-Antarctic Environment and Southern Ocean Process Study (AESOPS) program. The trap locations represent sampling within the Polar Frontal Zone, the Antarctic Polar Front, the Antarctic Zone and the Southern Antarctic Zone. Here we report observations from 1000 m below the sea-surface compared to seafloor and surface water distributions. Sub-sample splits from each trap were obtained and total diatom flux and species composition were determined. The diatom fluxes were quantified using both a dilution and a ‘spike’ method to allow for the rapid repeatability of measurements. Diatom flux was found to be highly seasonal across the ACC particularly at higher latitudes. Marine snow aggregates of intact diatom cells and chains were the major components of the biogenic flux. Siliceous particle size was noted to decrease with increasing latitude, which could be aligned with a shift of the diatom assemblage to small-size species/sea-ice affiliated species. A ‘double-structured’ diatom flux was recorded at the location of the Antarctic Polar Front trap, with a shift in the diatom assemblage from larger to smaller diatoms in the second flux episode. The sediment trap assemblage shows deviations from the surface water assemblage, while surface sediment samples indicate that significant dissolution occurs after 1000 m and at the sediment–water interface. Estimation of diatom biovolumes across the ACC shows that large diatoms have the potential to greatly impact biogenic fluxes to the ocean interior despite their low fluxes. Small species of the genus Fragilariopsis could potentially export as much Corg as Fragilariopsis kerguelensis near the retreating ice edge. However, their low abundance in the surface sediments also suggests that these diatoms are a shallow export species.  相似文献   

4.
Flux of siliceous plankton and taxonomic composition of diatom and silicoflagellate assemblages were determined from sediment trap samples collected in coastal upwelling-influenced waters off northern Chile (30°S, CH site) under “normal” or non-El Niño (1993–94) and El Niño conditions (1997–98). In addition, concentration of biogenic opal and siliceous plankton, and diatom and silicoflagellate assemblages preserved in surface sediments are provided for a wide area between 27° and 43°S off Chile. Regardless of the year, winter upwelling determines the maximum production pattern of siliceous microorganisms, with diatoms numerically dominating the biogenic opal flux. During the El Niño year the export is markedly lower: on an annual basis, total mass flux diminished by 60%, and diatom and silicoflagellate export by 75%. Major components of the diatom flora maintain much of their regular seasonal cycle of flux maxima and minima during both sampling periods. Neritic resting spores (RS) of Chaetoceros dominate the diatom flux, mirroring the influence of coastal-upwelled waters at the CH trap site. Occurrence of pelagic diatoms species Fragilariopsis doliolus, members of the Rhizosoleniaceae, Azpeitia spp. and Nitzschia interruptestriata, secondary components of the assemblage, reflects the intermingling of warmer waters of the Subtropical Gyre. Dictyocha messanensis dominates the silicoflagellate association almost year-around, but Distephanus pulchra delivers ca. 60% of its annual production in less than three weeks during the winter peak. The siliceous thanatocoenosis is largely dominated by diatoms, whose assemblage shows significant qualitative and quantitative variations from north to south. Between 27° and 35°S, the dominance of RS Chaetoceros, Thalassionema nitzschioides var. nitzschioides and Skeletonema costatum reflects strong export production associated with occurrence of coastal upwelling. Both highest biogenic opal content and diatom concentration at 35° and 41°–43°S coincide with highest pigment concentrations along the Chilean coast. Predominance of the diatom species Thalassiosira pacifica and T. poro-irregulata, and higher relative contribution of the silicoflagellate Distephanus speculum at 41°–43°S suggest the influence of more nutrient-rich waters and low sea surface temperatures, probably associated with the Antarctic Circumpolar Water.  相似文献   

5.
The fluxes of total mass, organic carbon (OC), biogenic opal, calcite (CaCO3) and long-chain C37 alkenones (ΣAlk37) were measured at three water depths (275, 455 and 930 m) in the Cariaco Basin (Venezuela) over three separate annual upwelling cycles (1996–1999) as part of the CARIACO sediment trap time-series. The strength and timing of both the primary and secondary upwelling events in the Cariaco Basin varied significantly during the study period, directly affecting the rates of primary productivity (PP) and the vertical transport of biogenic materials. OC fluxes showed a weak positive correlation (r2=0.3) with PP rates throughout the 3 years of the study. The fluxes of opal, CaCO3 and ΣAlk37 were strongly correlated (0.6<r2<0.8) with those of OC. The major exception was the lower than expected ΣAlk37 fluxes measured during periods of strong upwelling. All sediment trap fluxes were significantly attenuated with depth, consistent with marked losses during vertical transport. Annually, strong upwelling conditions, such as those observed during 1996–1997, led to elevated opal fluxes (e.g., 35 g m−2 yr−1 at 275 m) and diminished ΣAlk37 fluxes (e.g., 5 mg m−2 yr−1 at 275 m). The opposite trends were evident during the year of weakest upwelling (1998–1999), indicating that diatom and haptophyte productivity in the Cariaco Basin are inversely correlated depending on upwelling conditions.The analyses of the Cariaco Basin sediments collected via a gravity core showed that the rates of OC and opal burial (10–12 g m−2 yr−1) over the past 5500 years were generally similar to the average annual water column fluxes measured in the deeper traps (10–14 g m−2 yr−1) over the 1996–1999 study period. CaCO3 burial fluxes (30–40 g m−2 yr−1), on the other hand, were considerably higher than the fluxes measured in the deep traps (∼10 g m−2 yr−1) but comparable to those obtained from the shallowest trap (i.e. 38 g m−2 yr−1 at 275 m). In contrast, the burial rates of ΣAlk37 (0.4–1 mg m−2 yr−1) in Cariaco sediments were significantly lower than the water column fluxes measured at all depths (4–6 mg m−2 yr−1), indicating the large attenuation in the flux of these compounds at the sediment–water interface. The major trend throughout the core was the general decrease in all biogenic fluxes with depth, most likely due to post-depositional in situ degradation. The major exception was the relatively low opal fluxes (∼5 g m−2 yr−1) and elevated ΣAlk37 fluxes (∼2 mg m−2 yr−1) measured in the sedimentary interval corresponding to 1600–2000 yr BP. Such compositions are consistent with a period of low diatom and high haptophyte productivity, which based on the trends observed from the sediment traps, is indicative of low upwelling conditions relative to the modern day.  相似文献   

6.
Previous studies measuring biogenic silica production in the Sargasso Sea, all conducted when no phytoplankton bloom was in progress, have reported a mean rate of 0.4 mmol Si m?2 d?1 and maximum rate of 0.9 mmol Si m?2 d?1, the lowest rates yet recorded in any ocean habitat. During February/March of 2004 and 2005 we studied the effects of late-winter storms prior to seasonal stratification on the production rate, standing stock and vertical export of biogenic silica in the Sargasso Sea. In 2004, alternating storm and stratification events provided pulsed input of nutrients to the euphotic zone. In contrast, nearly constant storm conditions in 2005 caused the mixed layer to deepen to ~350 m toward the end of the cruise. Biogenic silica production rates in the upper 140 m were statistically indistinguishable between years, averaging ~1.0 mmol Si m?2 d?1. In early March 2004, a storm event entrained nutrients into the euphotic zone and, upon stabilization, vertically integrated biogenic silica in the upper 140 m nearly doubled in 2 days. Within 4 days, 75–100% of the accumulated biogenic silica was exported, sustaining a flux to 200 m of ~0.5 mmol Si m?2 d?1 (4× greater than export measured during February and March in the mid-1990s). In 2005, destabilization without stratification increased biogenic silica flux at 200 m up to two-fold above previously measured export in late winter, with little or no increase in water-column biogenic silica. Despite comprising <5% of total chlorophyll, diatoms accounted for an estimated 25–50% of the nitrate uptake in the upper 140 m and 35–97% of the particulate organic nitrogen export from the upper 200 m during both cruise periods. These previously unobserved brief episodes of diatom production and export in response to late-winter storms increase the estimated production and export of diatom-derived material in the Sargasso Sea in late winter by >150%, and increase estimated annual biogenic silica production in this region by ~8%.  相似文献   

7.
Mass fluxes of diatom opal, planktonic foraminifera carbonate and coccolithophorid carbonate were measured with time-series sediment traps at six sites in the Arabian Sea, Bay of Bengal and Equatorial Indian Ocean (EIOT). The above fluxes were related to regional variations in salinity, temperature and nutrient distribution. Annual fluxes of diatom opal range between 3 and 28 g m−2 yr−1, while planktonic foraminifera carbonate fluxes range between 6 and 23 g m−2 yr−1 and coccolithophorid carbonate fluxes range between 4 and 24 g m−2 yr−1. Annual planktonic foraminifera carbonate to coccolithophorid carbonate ratios range between 0.8 and 2.2 and coccolithophorid carbonate to diatom opal ratios range between 0.5 and 3.3.In the western Arabian Sea, coccolithophorids are the major contributors to biogenic flux during periods of low nutrient concentrations. Coccolithophorid carbonate fluxes decrease and planktonic foraminiferal carbonate and diatom opal fluxes increase when nutrient-rich upwelled waters are advected over the trap site. In the oligotropic eastern Arabian Sea, coccolithophorid carbonate fluxes are high throughout the year. Planktonic foraminiferal carbonate fluxes are the major contributors to biogenic flux in the EIOT. In the northern and central Bay of Bengal, when surface salinity values drop sharply during the SW monsoon, there is a drastic reduction in planktonic foraminiferal carbonate fluxes, but coccolithophorid carbonate and diatom opal fluxes remain steady or continue to increase. Distinctly higher annual molar Sibio/Cinorg (>1) and Corg/Cinorg (>1.5) ratios are observed in the northern and central Bay of Bengal mainly due to lower foraminiferal carbonate production as a result of sharp salinity variations. We can thus infer that the enhanced freshwater supply from rivers should increase oceanic CO2 uptake. Its silicate supply favours the production of diatoms while the salinity drop produces conditions unfavourable for most planktonic foraminifera species.  相似文献   

8.
Since 2000 long-term measurements of vertical particle flux have been performed with moored sediment traps at the long-term observatory HAUSGARTEN in the eastern Fram Strait (79°N/4°E). The study area, which is seasonally covered with ice, is located in the confluence zone of the northward flowing warm saline Atlantic water with cold, low salinity water masses of Arctic origin. Current projections suggest that this area is particularly vulnerable to global warming. Total matter fluxes and components thereof (carbonate, particulate organic carbon and nitrogen, biogenic silica, biomarkers) revealed a bimodal seasonal pattern showing elevated sedimentation rates during May/June and August/September. Annual total matter flux (dry weight, DW) at ~300 m depth varied between 13 and 32 g m?2 a?1 during 2000 and 2005. Of this total flux 6–13% was due to CaCO3, 4–21% to refractory particulate organic carbon (POC), and 3–8% to biogenic particulate silica (bPSi). The annual flux of all biogenic components together was almost constant during the period studied (8.5–8.8 g m?2 a?1), although this varied from 27% to 67% of the total annual flux. The fraction was lowest in a year characterized by the longest duration of ice coverage (91 and 70 days for the calendar year and summer season, May–September, respectively). Biomarker analyses revealed that organic matter originating from marine sources was present in excess of terrigenious material in the sedimented matter throughout most of the study period. Fluxes of recognizable phyto- and protozooplankton cells amounted up to 60×106 m?2 d?1. Diatoms and coccolithophorids were the most abundant organisms. Diatoms, mainly pennate species, dominated during the first years of the investigation. A shift in the composition occurred during the last year when numbers of diatoms declined considerably, leading to a dominance of coccolithoporids. This was also reflected in a decrease in the sedimentation of bPSi. The sedimentation of biogenic matter, however, did not differ from the amount observed during the previous years. Among the larger organisms, pteropods at times contributed significantly to both the total matter and CaCO3, fluxes.  相似文献   

9.
Several are the hypotheses proposed to explain the occurrence of Ethmodiscus oozes in tropical sediments representative of some glacial periods. In this paper, a review of those hypotheses within a paleoclimatic perspective is presented. Flux records of Ethmodiscus fragments found in site M16772 (1°21′ S, 11°58′ W) during the last 190 ka are compared to the other marine and freshwater diatom accumulation rates (AR) and diatom assemblages composition. Ethmodiscus is present all along the core, but Ethmodiscus-rich levels are found at 185–170 and 150–140 ka (stages 6.6 and 6.4), and at 70–60 ka (stage 4.2), levels where a concomitant increase in the flux of the other marine diatoms, and in the contribution to the assemblage of diatom species related to equatorial and coastal upwelling, and river plume waters is also observed. Climatic conditions favouring simultaneous occurrence of strong equatorial upwelling, coincident with increased advection of waters from coastal upwelling areas and important river run-off are proposed as the explanation for these Ethmodiscus-rich levels.  相似文献   

10.
For the investigation of organic carbon fluxes reaching the seafloor, oxygen microprofiles were measured at 145 sites in different sub-regions of the Southern Ocean. At 11 sites, an in situ oxygen microprofiler was deployed for the measurement of oxygen profiles and the calculation of organic carbon fluxes. At four sites, both in situ and ex situ data were determined for high latitudes. Based on this data set as well as on previous published data, a relationship was established for the estimation of fluxes derived by ex situ measured O2 profiles. The fluxes of labile organic matter range from 0.5 to 37.1 mg C m?2 d?1. The high values determined by in situ measurements were observed in the Polar Front region (water depth of more than 4290 m) and are comparable to organic matter fluxes observed for high-productivity, upwelling areas like off West Africa. The oxygen penetration depth, which reflects the long-term organic matter flux to the sediment, was correlated with assemblages of key diatom species. In the Scotia Sea (~3000 m water depth), oxygen penetration depths of less than 15 cm were observed, indicating high benthic organic carbon fluxes. In contrast, the oxic zone extends down to several decimeters in abyssal sediments of the Weddell Sea and the southeastern South Atlantic. The regional pattern of organic carbon fluxes derived from microsensor data suggests that episodic and seasonal sedimentation pulses are important for the carbon supply to the seafloor of the deep Southern Ocean.  相似文献   

11.
North Atlantic sediment drifts are valuable archives for paleoceanographic reconstructions spanning various timescales. However, the short-term dynamics of such systems are poorly known, and this impinges on our ability to quantitatively reconstruct past change. Here we describe a high-resolution 319-day time-series of hydrodynamics and near-bottom (4 m) particulate matter flux variability at a 2600 m deep site with an extremely high sediment accumulation rate on the southern Gardar Drift in the North Atlantic. We compare our findings with the actual deposits at the site. The total annual particle flux amounted to ~360 g m?2 yr?1, varied from ~0.15 to >5.0 g m?2 day?1 and displayed strong seasonal compositional changes, with the highest proportion of fresh biogenic matter arriving after the spring bloom in June and July. Flux variability also depended on the changing input of lithogenic matter that had been (re)suspended for a longer time (decades). Active focussing of material from both sources is required to account for the composition and the magnitude of the total flux, which exceed observations elsewhere by an order of magnitude. The enhanced focussing or increased delivery appeared to be positively related to current velocity. The intercepted annual particle flux accounted for only 60% of the sediment accumulation rate of 600±20 g m?2 yr?1 (0.20±0.07 cm yr?1), indicating higher intra- and inter-annual variability of both the biogenic and lithogenic fluxes and/or advection of additional sediment closer to the seafloor (i.e. <4 m). This temporal variability in the composition and amount of material deposited highlights intra-annual changes in the flux of lithogenic material, but also underscores the importance of (reworked) sediment focussing and seasonality of the biogenic flux. All should be taken into account in the interpretation of the paleorecord from such depositional settings.  相似文献   

12.
Six research cruises were conducted off the west coast of Vancouver Island between April and October of 1997 and 1998 as part of the Canadian GLOBEC project to compare nutrient and phytoplankton dynamics between ENSO (1997) and non-ENSO (1998) years. Limited sampling also was conducted during three cruises in 1999. During the 1997 ENSO period, there was a shallow thermocline (∼10 m) that resulted in a shallower mixed layer, lower salinity and density, and stronger summer stratification. In general on the shelf, the 1997 growing season was characterized by higher nitrate (7.5 μM) and silicic acid (17 μM) concentrations, lower total chlorophyll (∼76 mg m−2), lower phytoplankton carbon biomass (0.2 mg C L−1), and lower diatom abundance and biomass than in 1998. Phytoplankton assemblages were dominated by nanoplankton in 1997 and by diatoms in 1998. These results suggest that the 1997 ENSO was responsible for a reduction in the growth and biomass of larger phytoplankton cells. In mid-1998, the hydrographic characteristics off the west coast of Vancouver Island changed suddenly. The 1997 poleward transport of warm water reversed to an equatorward transport of coastal water in July 1998, which was accompanied by normal summer upwelling. During 1998, a large diatom bloom (mainly dominated by Chaetoceros debilis, Leptocylindrus danicus and to a lesser extent by Skeletomema and Pseudo-nitzschia sp.) was observed in July over the continental shelf. This large bloom resulted in chlorophyll concentrations of up to 400 mg m−2, primary productivity of up to 11 g C m−2 d−1, and near undetectable dissolved nitrogen concentrations at some of the shelf stations in 1998. In contrast, during 1997, the sub-tropical waters that were advected over the slope, resulted in low chlorophyll a and primary productivity (generally <1 g C m−2 d−1). Therefore, there was a sharp contrast between the very high primary productivity on the shelf in July 1998, due to normal nutrient replenishment from summer upwelling and outflow from the Strait of Juan de Fuca, and the lower primary productivity during the 1997 ENSO year. During 1998, non-ENSO conditions resulted in phytoplankton biomass that was twice as high on the shelf as that measured in regions beyond the continental shelf of the west coast of Vancouver Island.  相似文献   

13.
The Amazon River Plume delivers freshwater and nutrients to an otherwise oligotrophic western tropical North Atlantic (WTNA) Ocean. Plume waters create conditions favorable for carbon and nitrogen fixation, and blooms of diatoms and their diazotrophic cyanobacterial symbionts have been credited with significant CO2 uptake from the atmosphere. The fate of the carbon, however, has been measured previously by just a few moored or drifting sediment traps, allowing only speculation about the full extent of the plume's impact on carbon flux to the deep sea. Here, we used surface (0.5 m) sediment cores collected throughout the Demerara Slope and Abyssal Plain, at depths ranging from 1800 to 5000 m, to document benthic diagenetic processes indicative of carbon flux. Pore waters were extracted from sediments using both mm- and cm-scale extraction techniques. Profiles of nitrate (NO3) and silicate (Si(OH)4) were modeled with a diffusion-reaction equation to determine particulate organic carbon (POC) degradation and biogenic silica (bSi) remineralization rates. Model output was used to determine the spatial patterns of POC and bSi arrival at the sea floor. Our estimates of POC and Si remineralization fluxes ranged from 0.16 to 1.92 and 0.14 to 1.35 mmol m−2 d−1, respectively. A distinct axis of POC and bSi deposition on the deep sea floor aligned with the NW axis of the plume during peak springtime flood. POC flux showed a gradient along this axis with highest fluxes closest to the river mouth. bSi had a more diffuse zone of deposition and remineralization. The impact of the Amazon plume on benthic fluxes can be detected northward to 10°N and eastward to 47°W, indicating a footprint of nearly 1 million km2. We estimate that 0.15 Tmol C y−1 is remineralized in abyssal sediments underlying waters influenced by the Amazon River. This constitutes a relatively high fraction (~7%) of the estimated C export from the region.; the plume thus has a demonstrable impact on Corg export in the western Atlantic. Benthic fluxes under the plume were comparable to and in some cases greater than those observed in the eastern equatorial Atlantic, the southeastern Atlantic, and the Southern Ocean.  相似文献   

14.
Direct measurements of new production and carbon export in the subtropical North Atlantic Ocean appear to be too low when compared to geochemical-based estimates. It has been hypothesized that episodic inputs of new nutrients into surface water via the passage of mesoscale eddies or winter storms may resolve at least some of this discrepancy. Here, we investigated particulate organic carbon (POC), particulate organic nitrogen (PON), and biogenic silica (BSiO2) export using a combination of water column 234Th:238U disequilibria and free-floating sediment traps during and immediately following two weather systems encountered in February and March 2004. While these storms resulted in a 2–4-fold increase in mixed layer NO3 inventories, total chlorophyll a and an increase in diatom biomass, the systems were dominated by generally low 234Th:238U disequilibria, suggesting limited particle export. Several 234Th models were tested, with only those including non-steady state and vertical upwelling processes able to describe the observed 234Th activities. Although upwelling velocities were not measured directly in this study, the 234Th model suggests reasonable rates of 2.2–3.7 m d?1.Given the uncertainties associated with 234Th derived particle export rates and sediment traps, both were used to provide a range in sinking particle fluxes from the upper ocean during the study. 234Th particle fluxes were determined applying the more commonly used steady state, one-dimensional model with element/234Th ratios measured in sediment traps. Export fluxes at 200 m ranged from 1.91±0.20 to 4.92±1.22 mmol C m?2 d?1, 0.25±0.08 to 0.54±0.09 mmol N m?2 d?1, and 0.22±0.04 to 0.50±0.06 mmol Si m?2 d?1. POC export efficiencies (Primary Production/Export) were not significantly different from the annual average or from time periods without storms, although absolute POC fluxes were elevated by 1–11%. This increase was not sufficient, however, to resolve the discrepancy between our observations and geochemical-based estimates of particle export. Comparison of PON export rates with simultaneous measurements of NO3? uptake derived new production rates suggest that only a fraction, <35%, of new production was exported as particles to deep waters during these events. Measured bSiO2 export rates were more than a factor of two higher (p<0.01) than the annual average, with storm events contributing as much as 50% of annual bSiO2 export in the Sargasso Sea. Furthermore it appears that 65–95% (average 86±14%) of the total POC export measured in this study was due to diatoms.Combined these results suggest that winter storms do not significantly increase POC and PON export to depth. Rather, these storms may play a role in the export of bSiO2 to deep waters. Given the slower remineralization rates of bSiO2 relative to POC and PON, this transport may, over time, slowly decrease water column silicate inventories, and further drive the Sargasso Sea towards increasing silica limitation. These storm events may further affect the quality of the POC and PON exported, given the large association of this material with diatoms during these periods.  相似文献   

15.
《Journal of Sea Research》2009,61(4):246-254
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m 2 d 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after ∼ 30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m 2 d 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   

16.
Zooplankton in the coastal upwelling region off northern Chile may play a significant biogeochemical role by promoting carbon flux into the subsurface OMZ (oxygen minimum zone). This work identifies the dominant zooplankton species inhabiting the area influenced by the OMZ in March 2000 off Iquique (20°S, northern Chile). Abundance and vertical distribution studies revealed 17 copepod and 9 euphausiid species distributed between the surface and 600 m at four stations sampled both by day and by night. Some abundant species remained in the well-oxygenated upper layer (30 m), with no evidence of diel vertical migration, apparently restricted by a shallow (40–60 m) oxycline. Other species, however, were found closely associated with the OMZ. The large-sized copepod Eucalanus inermis was found below the oxycline and performed diel vertical migrations into the OMZ, whereas the very abundant Euphausia mucronata performed extensive diel vertical migrations between the surface waters and the core of the OMZ (200 m), even crossing it. A complete assessment of copepods and euphausiids revealed that the whole sampled water column (0–600 m) is occupied by distinct species having well-defined habitats, some of them within the OMZ. Ontogenetic migrations were evident in Eucalanidae and E. mucronata. Estimates of species biomass showed a substantial (>75% of total zooplankton biomass) daily exchange of C between the photic layer and the OMZ. Both E. inermis and E. mucronata can actively exchange about 37.8 g C m−2 d−1 between the upper well-oxygenated (0–60 m) layer and the deeper (60–600 m) OMZ layer. This migrant biomass may contribute about 7.2 g C m−2 d−1 to the OMZ system through respiration, mortality, and production of fecal pellets within the OMZ. This movement of zooplankton in and out of the OMZ, mainly as a result of the migratory behavior of E. mucronata, suggests a very efficient mechanism for introducing large amounts of freshly produced carbon into the OMZ system and should, therefore, be considered when establishing C budgets for coastal upwelling systems.  相似文献   

17.
Particulate fluxes of trace elements (Al, Cd, Co, Cu, Fe, Mn, Ni, P, Ti, V and Zn) in the northeast Atlantic Ocean (three positions at latitudes from 33°N to 54°N along ∼20°W) were measured using time-series sediment traps between March 1992 and September 1994. Significant variabilities of fluxes with season and depth (1000 m to maximum of 4000 m) were observed only for ‘biogenic elements’, such as Cd, Ni, Zn or P. On the other hand, we found a distinct large-scale increase of fluxes into the deep-sea traps to the south for Al, Co, Fe, Mn and V. We attribute this latitudinal gradient to the increasing influence of the Saharan dust plume. The biogenic flux decreased towards the south. This trend was clearly visible for Cd and P only. The fluxes of other ‘nutrient-like’ elements, such as Ni or Zn, exhibited a general decrease between 53°N and 33°N. We compared our sedimentation flux data with published data from the western North Atlantic basins. For this purpose we corrected the deep-sea fluxes of Cu, Mn, Ni and Zn for their lithogenic fractions on the basis of Al, with average crustal material and granitic rocks as references. The comparison indicates that these ‘excess’ fluxes are a factor of at least 2 higher in the western basins for the selected elements. Estimated fluxes are in good agreement with reported atmospheric deposition in the two areas. The noted imbalance between the non-lithogenic atmospheric input of Mn and the determined ‘excess flux’ in the deep northeast Atlantic indicates an additional input in the form of a lateral flux of dissolved Mn(II) species and scavenging onto sinking particles. With respect to the mechanism of sedimentation, a unique behaviour is noticed for the refractory elements Co, Fe, Mn, Ti and V, which were found to correlate with the vertical transport of Al (clay). The ‘excess’ fluxes of Cu, Ni and Zn are linearly related to Corg, whereas the overall relation of Cd to P fluxes exhibits a molar Cd/P ratio of 2.0×10-4, which is close to the ratio in the dissolved fractions in the northeast Atlantic.  相似文献   

18.
A time-series sediment trap was deployed from October 2007 to May 2011 in the western subtropical Pacific with the aim of understanding the seasonal and inter-annual variability on particle flux in response to El Niño-Southern Oscillation (ENSO) events. Total mass fluxes varied from 3.04 mg m−2 day−1 to 31.1 mg m−2 day−1, with high fluxes during February–April and low fluxes during other months. This seasonal variation was also characterized by a distinct change in the CaCO3 flux between the two periods. The marked increase in particle flux during February–April may be attributed to enhanced biological productivity in surface waters caused by strong wind-driven mixing in response to the western North Pacific monsoon system. The 2009/10 strong El Niño was accompanied by a significant reduction in particle flux, whereas the La Niña had no recognizable effect on particle flux in the subtropical Pacific. In particular, in the mature phase of the 2009/10 strong El Niño, the fluxes of organic carbon and biogenic silica decreased by 70–80% compared with those during the normal period, implying that the El Niño acted to suppress biological productivity in surface waters. The suppression of biological productivity during the 2009/10 strong El Niño is attributed to the decrease in precipitation due to the shift in the western Pacific warm pool. This finding is opposite that of other studies of the western equatorial Pacific, where El Niño events were observed to result in an increase in biological productivity and particle flux. The difference in particle flux between the western equatorial and subtropical Pacific is attributed to the regional differences in oceanic and atmospheric circulation systems generated by the strong El Niño.  相似文献   

19.
Sediment traps were deployed for almost 1 yr at two sites near 178°40′E in 1996–1997 on Chatham Rise (New Zealand). These sites were either side of the Subtropical Front (STF), which is a biologically productive zone, characterised by moderate atmospheric CO2 uptake. At each site, PARFLUX sediment traps (Mk 7G–21) were deployed at 300 and 1000 m in 1500 m water depth. At 42°42′S, north of the STF, approximately 80% of the integrated total mass, POC and biogenic silica flux at 300 m occurred in a 7-day pulse in austral mid-spring (1064, 141 and 6 mg m−2 d−1, respectively, in early October). This pulse was recorded a week later in the 1000 m trap, indicating a particle sinking rate of 100 m d−1. In contrast, at 44°37′S, south of the STF, the main flux of total mass and biogenic silica occurred 3 weeks later in late spring (289 and 3 mg m−2 d−1, respectively, in early November). Organic carbon, nitrogen and phosphorus fluxes were persistently high over spring at the southern site, although total POC flux integrated over 3 months was only 60 mg m−2 d−1. Thus, up to 2–3 times more material was exported north of the STF, compared with fluxes measured <200 km away to the south. As an integrated proportion of the annual total mass flux, however, more organic carbon was exported south of the STF (17% cf. 5–14%). Furthermore, organic material exported in spring from southern waters was labile and protein-rich (C : N — 8–16, C : P — 200–450, N : P — 13–36), compared to the more refractory, diatom-dominated material sinking out north of the STF in spring (C : N 9–22, C : P 50–230, N : P 5–19). These observations are consistent with anomalously high benthic biomass and diversity observed on south Chatham Rise. Resuspension and differential particle settling are probable causes for depth increases in particulate flux. Estimated particle source areas may be up to 120 km away due to high levels of mesoscale activity and mean flow in the STF region.  相似文献   

20.
An extensive 234Th data set was collected at two sites in the North Pacific: ALOHA, an oligotrophic site near Hawaii, and K2, a mesotrophic HNLC site in the NW Pacific as part of the VERTIGO (VERtical Transport In the Global Ocean) study. Total 234Th:238U activity ratios near 1.0 indicated low particle fluxes at ALOHA, while 234Th:238U ~0.6 in the euphotic zone at K2 indicated higher particle export. However, spatial variability was large at both sites—even greater than seasonal variability as reported in prior studies. This variability in space and time confounds the use of single profiles of 234Th for sediment trap calibration purposes. At K2, there was a decrease in export flux and increase in 234Th activities over time associated with the declining phase of a summer diatom bloom, which required the use of non-steady state models for flux predictions. This variability in space and time confounds the use of single profiles of 234Th for sediment trap calibration purposes. High vertical resolution profiles show narrow layers (20–30 m) of excess 234Th below the deep chlorophyll maximum at K2 associated with particle remineralization resulting in a decrease in flux at depth that may be missed with standard sampling for 234Th and/or with sediment traps. Also, the application of 234Th as POC flux tracer relies on accurate sampling of particulate POC/234Th ratios and here the ratio is similar on sinking particles and mid-sized particles collected by in-situ filtration (>10–50 μm at ALOHA and >5–350 μm at K2). To further address variability in particle fluxes at K2, a simple model of the drawdown of 234Th and nutrients is used to demonstrate that while coupled during export, their ratios in the water column will vary with time and depth after export. Overall these 234Th data provide a detailed view into particle flux and remineralization in the North Pacific over time and space scales that are varying over days to weeks, and 10's–100's km at a resolution that is difficult to obtain with other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号