首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We report on the extraordinary findings of several endemic species of North Pacific deepwater fish and squid on the continental slope of the Falkland Islands in the Southwest Atlantic, namely the giant rattail grenadier Albatrossia pectoralis (Macrouridae), pelagic eelpout Lycodapus endemoscotus (Zoarcidae) and squid Gonatopsis octopedatus (Gonatidae). These deepwater dwellers might have moved more than 15,000 km from their common species ranges with Pacific Deep Water along the western slopes of both Americas and through the Drake Passage. Our findings provide further evidence of the possible role of deepwater currents in the dispersal of bathypelagic and benthopelagic animals from one polar region to another across various climatic zones of the world ocean.  相似文献   

2.
《Journal of Sea Research》2011,65(4):436-445
The Northwest Atlantic marine community underwent dramatic changes during the last 30 years, including the collapse of many groundfish stocks and an increase in shrimp populations. Greenland halibut Reinhardtius hippoglossoides is an important commercial species and one of the top fish predators in this system. It is a large, wide-ranging flatfish that is found at depths up to 2200 m and it has an opportunistic diet which makes it a potential candidate for an ecosystem indicator. Analysis of stomach contents of Greenland halibut between 1978 and 2003 indicates that diet composition reflects the major changes in community structure. Over the entire period there was a clear increase in the importance of invertebrates, particularly after 1992. This change was associated with a higher importance of Pandalus shrimp and Gonatus squid and a protracted reliance on zooplankton by predators under 25 cm length. Capelin Mallotus villosus was the dominant prey between 1978 and 1992 for predators in the 12–63 cm range, but its importance dropped off drastically in the mid 1990s. Levels of main prey in the diet of Greenland halibut correlated well with fishery-independent surveys. Greenland halibut sample capelin well, compared to bottom trawl surveys and acoustic surveys. Greenland halibut consumed small shrimp which are not routinely caught by surveys and may be important in deriving information on year classes and growth of shrimp. Our results suggest that Greenland halibut's diet is a useful tracker of ecosystem change.  相似文献   

3.
The life cycle of the deep-sea octopus Pteroctopus tetracirrhus was studied from monthly samples obtained throughout the year in different areas of the western Mediterranean (mainly around the Balearic Islands and along the coast of the Iberian Peninsula). A total of 373 individuals (205 females, 168 males) were analyzed; females ranged from 4.5 to 14.0 cm mantle length (ML) and males from 4.5 to 11.5 cm ML. There were few small-sized octopuses (<7 cm ML) in the samples, which might indicate that these individuals inhabit rocky grounds that are not accessible to trawlers or waters deeper than the maximum depth sampled (800 m). The species occurred more frequently around the Balearic Islands than along the Iberian Peninsula as they appeared in 20% and 7%, respectively, of the hauls in these areas. The octopus inhabits the lower continental shelf and upper slope in both areas, primarily between 200 and 500 m depth. Modal lengths were followed from autumn, when recruits were caught by trawlers, to summer, when reproduction took place. Females grew from 8 to 10 cm ML from winter to spring, but this modal size did not increase further in summer; males grew from 7 to 9 cm ML from winter to spring. The total disappearance of large individuals after summer suggests a life cycle lasting a single year. The evolution of the monthly mean sizes showed that the growth was best described by log-linear functions in both sexes. The length at first maturity was clearly higher in females (12 cm ML) than in males (8 cm ML). A total of 30 different prey items, belonging to four major taxonomic groups (crustaceans, osteichthyes, cephalopods and gastropods), were identified in the stomach contents. The diet of the octopus was based on crustaceans and teleosts, which accounted for 75% and 23% of the prey items, respectively. Cephalopods and gastropods were accessory prey as they only represented 1.6% and 0.7%, respectively, of the total. The octopus showed a marked preference for the benthic fish Symphurus nigrescens and the endobenthic crustacean Alpheus glaber. The bathymetric distribution of P. tetracirrhus coincides with those of these two main prey, which suggests that the distribution of the octopus might be strongly linked to its trophic resources.  相似文献   

4.
We examined the bioaccumulation and trophic transfer of mercury in two marine finfish species, striped bass (Morone saxatilis) and tautog (Tautoga onitis), collected from the Narragansett Bay (Rhode Island, USA). For each of these target fish, white muscle tissue was analyzed for total mercury (Hg) and results were evaluated relative to fish age, body size, and Hg content of preferred prey. Dietary and stable isotope analysis was also used to elucidate the effect of trophic processes on Hg concentrations in fish. The Hg content of muscle tissue was positively correlated with fish age and length for both species, although striped bass accumulated Hg faster than tautog. Accelerated Hg bioaccumulation in striped bass is consistent with its high trophic level (trophic level = 4.07) and Hg-enriched prey (forage fish and macrocrustaceans; mean Hg content = 0.03 mg Hg kg wet wt?1). In contrast, tautog maintain a lower trophic status (trophic level = 3.51) and consume prey with lower Hg levels (mussels and crabs; mean Hg content = 0.02 mg Hg kg wet wt?1). Despite differences in Hg bioaccumulation between target fish, the mean Hg concentration of tautog exceeded levels in striped bass (0.24 and 0.16 mg Hg kg wet wt?1, respectively) due to a disparity in age-at-catch between sampled groups (mean age of tautog and bass = 11.3 and 4.3 yr, respectively). Taking into account legal minimum catch lengths further revealed that 75.0% of legal-size striped bass (>70.2 cm TL; n = 4) and 44.8% of tautog (>40.6 cm TL; n = 29) had Hg levels beyond the US EPA regulatory threshold of 0.3 mg Hg kg wet wt?1. Moreover, Hg-length relationships suggest that each target fish meets this threshold near their minimum legal catch length. Our findings reiterate the value of species ecology to improve predictions of fish Hg and permit better management of human contamination by this important dietary source.  相似文献   

5.
Short spatio–temporal variations in the feeding intensity and the diet of the European hake, Merluccius merluccius, together with the abundance of their potential prey were studied between August 2003 and June 2004 at two locations, northwest (Sóller) and south (Cabrera), off the island of Mallorca (Balearic Islands, Western Mediterranean) at depths between 150 and 750 m. The two areas present different oceanographic conditions. Hake was mainly distributed along the shelf-slope break and the upper slope (between 166 and 350 m) where recruits (TL<18 cm) were dominant. The hake's diet varied as a function of size. Recruits fed mainly on micronektonic prey, and the diet was influenced primarily by seasonality, with two dietary patterns (identified by MDS analyses) corresponding to August–September 2003 (summer) and to November 2003/February–April 2004 (autumn–winter). The summer pattern was consistent with a thermally stratified water column, while November and April were consistent with homogenized temperature and salinity throughout all the water column. The main prey of recruits were the euphausiid Meganyctiphanes norvegica and the midwater fish Maurolicus muelleri in autumn–winter and myctophids (mainly Ceratoscopelus maderensis) in summer. In contrast to recruits, the geographic factor (NW vs. S) was the main factor influencing the diets of post-recruits (TL between 18 and 21.9 cm) and adults (TL?22 cm). Hake recruits (and to a lesser extent post-recruits) and their preferred prey occupied different depth ranges during daylight periods. Meganyctiphanes norvegica and Ceratoscopelus maderensis were, for instance, distributed as much as 500 m deeper than hake that had eaten them. All these trends were especially obvious at NW, an area with a more abrupt slope and with a greater influence by northern winter intermediate water (WIW) inflow in early spring than the S area. These factors probably enhanced micronekton aggregation in April, when feeding intensity (stomach fullness) increased among recruits and post-recruits only at NW. All these factors may have a crucial role in the diet, distribution and probably recruitment success of small hake. Biological factors were also important in trophic shifts in the diet and feeding of hake. Multi-linear regression models pointed to a trend of higher fullness with higher hepato-somatic index (HSI). Therefore greater food consumption by hake may enhance its metabolic condition. Within the framework of shelf-break and slope ecology, we show how the ‘boundary’ mesopelagic community inhabiting the middle slope sustains the trophic requirements of hake, a species distributed at shallower depths along the shelf-slope break. Mesopelagic euphausiids and myctophids are often found in the diets of shelf-break fish. Because the boundary mesopelagic community is distributed worldwide, the high levels of fish biomass often found at shelf-slope breaks could be sustained trophically by deeper, offshore mesopelagic communities, an inverse energy transfer from deep to shallow-water marine ecosystems.  相似文献   

6.
A bioenergetic model of juvenile pink salmon (Oncorhynchus gorbuscha) was used to estimate daily prey consumption and growth potential of four ocean habitats in the Gulf of Alaska during 2001 and 2002. Growth potential was not significantly higher in 2002 than in 2001 at an alpha level of 0.05 (P=0.073). Average differences in growth potential across habitats were minimal (slope habitat=0.844 g d−1, shelf habitat=0.806 g d−1, offshore habitat=0.820 g d−1, and nearshore habitat=0.703 g d−1) and not significantly different (P=0.630). Consumption demand differed significantly between hatchery and wild stocks (P=0.035) when examined within year due to the interaction between hatchery verses wild origin and year. However, the overall effect of origin across years was not significant (P=0.705) due to similar total amounts of prey consumed by all juvenile pink salmon in both study years. We anticipated that years in which ocean survival was high would have had high growth potential, but this relationship did not prove to be true. Therefore, modeled growth potential may not be useful as a tool for forecasting survival of Prince William Sound hatchery pink salmon stocks. Significant differences in consumption demand and a two-fold difference in nearshore abundance during 2001 of hatchery and wild pink salmon confirmed the existence of strong and variable interannual competition and the importance of the nearshore region as being a potential competitive bottleneck.  相似文献   

7.
This study examines the parasite fauna of Bathypterois mediterraneus, the most common fish below 1500 m in Western Mediterranean waters. Samples were obtained during July 2010 from the continental slope of two different areas (off Catalonia and Balearic Islands) in three different bathymetric strata at depths between 1000 and 2200 m. The parasite fauna of B. mediterraneus included a narrow range of species: Steringophorus cf. dorsolineatum, Scolex pleuronectis, Hysterothylacium aduncum, Anisakis sp. larva 3 type II and Sarcotretes sp. Steringophorus cf. dorsolineatum and H. aduncum were the most predominant parasites. H. aduncum showed significant differences in abundance between depths of 2000–2200 m with 1000–1400 m and 1400–2000 m, irrespective of locality, whereas S. cf. dorsolineatum showed significant differences between the two localities at all depths except for 2000–2200 m. We suggest the possible usefulness of these two parasites as geographical indicators for discriminating discrete stocks of B. mediterraneus in Western Mediterranean waters.  相似文献   

8.
《Marine Chemistry》2007,103(1-2):1-14
We succeeded in determining the Ce isotopic composition (138Ce/142Ce) in seawater with an error of 2σm = 0.3–0.7 of ε unit. In this study, 1000–3000 L of seawater samples were passed through MnO2 fibers to concentrate Ce and Nd for precise measurement of their isotope ratios. Four surface seawater samples of the northwestern Pacific and a coastal sample in Tokyo Bay were analyzed. Most Ce isotope ratios in the surface water showed positive εCe values (+ 0.8 to + 1.4) in the northwestern Pacific Ocean. These values indicate that Ce in the surface water originates from the continental crust preferentially over mantle-derived materials. We examined binary mixing model between the continental crust and mid-ocean ridge basalt. However the model could not explain both isotopic compositions and concentrations, which implies that the atmospheric input was a possible pathway for Ce into the ocean. A negative εCe value was observed in Tokyo Bay, suggesting mantle-derived sources.  相似文献   

9.
The life cycle of the two species of the deep-sea family Histioteuthidae inhabiting the Mediterranean Sea (Histioteuthis reversa and Histioteuthis bonnellii) was studied from monthly samples taken throughout the year during daytime hours by bottom trawl gears. A small sample of individuals found floating dead on the sea surface was also analyzed. Both species were caught exclusively on the upper slope at depths greater than 300 m. Their frequency of occurrence increased with depth and showed two different peaks, at 500–600 m and 600–700 m depth in H. bonnellii and H. reversa, respectively, which might indicate spatial segregation. Maturity stages were assigned using macroscopic determination and confirmed with histological analyses. Although mature males were caught all year round, no mature females were found, which suggests that their sexual maturation in the western Mediterranean takes place deeper than the maximum depth sampled (800 m). In fact, the increase in mean squid size with increasing depth in H. reversa indicates an ontogenetic migration to deeper waters. The individuals of both species found floating dead on the sea surface were spent females which had a relatively large cluster of small atresic eggs and a small number of remaining mature eggs scattered in the ovary and mantle cavity. The sizes of these females were clearly larger than the largest individuals caught with bottom trawls. A total of 12 and 7 different types of prey, belonging to three major taxonomic groups (crustaceans, osteichthyes and cephalopods), were identified in the stomach contents of H. reversa and H. bonnellii, respectively. In both species fishes were by far the main prey followed by crustaceans, whereas cephalopods were found only occasionally. The preys identified, mainly myctophids and natantian crustaceans, indicate that both histioteuthids base their diet on pelagic nictemeral migrators.  相似文献   

10.
The spatial and temporal changes of near-bottom macrofauna (suprabenthos and macroplankton) and the trophic relationships of megabenthic decapod crustaceans were analyzed off the Catalonian coasts (western Mediterranean) around Berenguera submarine canyon in four periods (April and December 1991, March and July 1992) and four zones (within Berenguera Canyon at ca. 450 m, and on adjacent slope at ca. 400, 600 m and 1200 m). In March 1992, we found the highest macrofauna abundance and the smallest sizes in the canyon, suggesting a positive effect of river discharges on suprabenthos recruitment. By contrast, macroplankton (decapods, fishes and euphausiids) did not show higher recruitment into canyons. After analyzing the diet of 23 decapod crustaceans, we found a significant segregation between guilds feeding on zooplankton and on benthos. Zooplankton (euphausiids and Pasiphaeidae) and infauna (polychaetes, Calocaris macandreae and ophiuoroids) were consistently the main prey exploited by decapod crustaceans around Berenguera Canyon. We also found some macrophyte (Posidonia oceanica) consumption, which was higher in periods of water column homogeneity (winter–spring and late autumn). Positive correlations between decapods' gut fullness (F) and decapod abundance indicate feeding aggregations, while positive correlations were also found between F and Llobregat River (situated ca. 18 km from Berenguera head) flow 1 to 2 months before sampling. Increases in F were delayed only 1 month when zooplankton feeders were analyzed alone, while benthos feeders did not show significant relationships with any environmental variables. That indicates that the response of megabenthic decapods feeding on benthos to environmental shifts is slower than that of zooplankton feeders. The importance of river flows in enhancing food supply of macro- and megabenthos dwelling close to submarine canyons was apparent, with a delay in the fauna response of 0–2 months after river flow peaks.  相似文献   

11.
The role of mesozooplankton as consumers and transformers of primary and secondary production in the Beaufort and Chukchi Seas was examined during four cruises in spring and summer of both 2002 and 2004 as part of the western Arctic Shelf–Basin Interactions (SBI) program. Forty-seven grazing experiments using dominant mesozooplankton species and life stages were conducted at locations across the shelf, slope, and basin of the Chukchi and Beaufort Seas to measure feeding rates on both chlorophyll and microzooplankton and to determine mesozooplankton prey preferences.Mesozooplankton biomass was at all times dominated by life stages of four copepod taxa: Calanus glacialis, Calanus hyperboreus, Metridia longa, and Pseudocalanus spp. Significant interannual, seasonal, regional, between species and within species differences in grazing rates were observed. Overall, the dominant zooplankton exhibited typical feeding behavior in response to chlorophyll concentration that could be modeled using species and life-stage specific Ivlev functions. Microzooplankton were preferred prey at almost all times, with the strength of the preference positively related to the proportion of microzooplankton prey availability. Average mesozooplankton grazing impacts on both chlorophyll standing stock (0.6±0.5% d−1 in spring, 5.1±6.3% d−1 in summer) and primary production (12.8±11.8% d−1 in spring, 27.6±24.5% d−1 in summer) were quite low and varied between shelf, slope, and basin. Coincident microzooplankton grazing experiments [Sherr, E.B., Sherr, B.F., Hartz, A.J., 2009. Microzooplankton grazing impact in the Western Arctic Ocean. Deep-Sea Research II] were conducted at most stations. Together, microzooplankton–mesozooplankton grazing consumed only 44% of the total water-column primary production, leaving more than half directly available for local export to the benthos or for offshore transport into the adjacent basin.  相似文献   

12.
Prey selection and knowledge of the amounts of water processed by the early stages of the common jellyfish Aurelia aurita may at certain times of the year be crucial for understanding the plankton dynamics in marine ecosystems with mass occurrences of this jellyfish. In the present study we used two different methods (“clearance method” and “ingestion-rate method”) to estimate the amount of water cleared per unit of time of different types and sizes of prey organisms offered to A. aurita ephyrae and small medusae. The mean clearance rates of medusae, estimated with Artemia sp. nauplii as prey by both methods, agreed well, namely 3.8 ± 1.4 l h? 1 by the clearance method and 3.2 ± 1.1 l h? 1 by the ingestion-rate method. Both methods showed that copepods (nauplii and adults) and mussel veligers are captured with considerably lower efficiency, 22 to 37% and 14 to 30%, respectively, than Artemia salina nauplii. By contrast, the water processing rates of ephyrae measured by the clearance method with A. salina nauplii as prey were 3 to 5 times lower than those measured by the ingestion-rate method. This indicates that the prerequisite of full mixing for using the clearance method may not have been fulfilled in the ephyrae experiments. The study demonstrates that the predation impact of the young stages of A. aurita is strongly dependent on its developmental stage (ephyra versus medusa), and the types and sizes of prey organisms. The estimated prey-digestion time of 1.3 h in a steady-state feeding experiment with constant prey concentration supports the reliability of the ingestion-rate method, which eliminates the negative “container effects” of the clearance method, and it seems to be useful in future jellyfish studies, especially on small species/younger stages in which both type and number of prey can be easily and precisely assessed.  相似文献   

13.
Deep-sea benthic communities primarily rely on an allochthonous food source. This may be in the form of phytodetritus or as food falls e.g. sinking carcasses of nekton or debris of marine macrophyte algae. Deep-sea macrourids are the most abundant demersal fish in the deep ocean. Macrourids are generally considered to be the apex predators/scavengers in deep-sea communities. Baited camera experiments and stable isotope analyses have demonstrated that animal carrion derived from the surface waters is an important component in the diets of macrourids; some macrourid stomachs also contained vegetable/plant material e.g. onion peels, oranges, algae. The latter observations led us to the question: is plant material an attractive food source for deep-sea scavenging fish? We simulated a plant food fall using in situ benthic lander systems equipped with a baited time-lapse camera. Abyssal macrourids and cusk-eels were attracted to the bait, both feeding vigorously on the bait, and the majority of the bait was consumed in <30 h. These observations indicate (1) plant material can produce an odour plume similar to that of animal carrion and attracts deep-sea fish, and (2) deep-sea fish readily eat plant material. This represents to our knowledge the first in situ documentation of deep-sea fish ingesting plant material and highlights the variability in the scavenging nature of deep-sea fishes. This may have implications for food webs in areas where macrophyte/seagrass detritus is abundant at the seafloor e.g. canyon systems and continental shelves close to seagrass meadows (Bahamas and Mediterranean).  相似文献   

14.
To describe the larval and juvenile fish fauna and to evaluate the relative contribution of the ocean and the estuary as settlement areas for benthic species, we compared the composition and abundance of larval fish supply to that of recently settled juvenile fishes in both ocean and an adjacent estuary habitats in southern New Jersey. The study was conducted from May to November 1992 in the Great Bay–Little Egg Harbor estuary (<1–8 m sampling depth) and on the adjacent inner continental shelf in the vicinity of Beach Haven Ridge (8–16 m). During the study more larvae nearing settlement (postflexion) were captured in the estuary than in the ocean. Settlement occurred earlier in the estuary than in the ocean perhaps under the influence of earlier, seasonal warming of estuarine waters. There appeared to be two spatial patterns of settlement in the study area based on the dominant species (n = 17) represented by a sufficient number of individuals (n  25 individuals). There were species that primarily settle in the estuary, as represented by both estuarine residents (n = 3) and transients (n = 4), and those that settle in both the estuary and the ocean (n = 10). However, there were no species whose larvae were present in the estuary yet settle in the ocean. The fact that many of the species settle in both the estuary and the ocean indicates an overlap between these habitats because, at least for some species, these habitats may function in the same way. Further resolution of fish settlement patterns, and its influence on recruitment will need to rely on synoptic comparisons between estuaries and the ocean over multiple years.  相似文献   

15.
The study of contourite drifts is an increasingly used tool for understanding the climate history of the oceans. In this paper we analyse two contourite drifts along the continental margin west of Spitsbergen, just south of the Fram Strait where significant water mass exchanges impact the Arctic climate. We detail the internal geometry and the morphologic characteristics of the two drifts on the base of multichannel seismic reflection data, sub-bottom profiles and bathymetry. These mounded features, that we propose to name Isfjorden and Bellsund drifts, are located on the continental slope between 1200 and 1800 m depth, whereas the upper slope is characterized by reduced- or non-deposition. The more distinct Isfjorden Drift is about 25 km wide and 45 km long, and over 200 ms TWT thick. We revise the 13 years-long time series of velocity, temperature, and salinity obtained from a mooring array across the Fram Strait. Two distinct current cores are visible in the long-term average. The shallower current core has an average northward velocity of about 20 cm/s, while the deeper bottom current core at about 1450 m depth has an average northward velocity of about 9 cm/s. We consider Norwegian Sea Deep Water episodically ventilated by relatively dense and turbid shelf water from the Barents Sea responsible for the accumulation of the contourites. The onset of the drift growth west of Spitsbergen is inferred to be about 1.3 Ma and related to the Early Pleistocene glacial expansion recorded in the area. The lack of mounded contouritic deposits on the continental slope of the Storfjorden is related to consecutive erosion by glacigenic debris flows. The Isfjorden and Bellsund drifts are inferred to contain the record of the regional palaeoceanography and glacial history and may constitute an excellent target of future scientific drilling.  相似文献   

16.
The influence of mesoscale physical and trophic variables on deep-sea megafauna, a scale of variation often neglected in deep-sea studies, is crucial for understanding their role in the ecosystem. Drivers of megafaunal assemblage composition and biomass distribution have been investigated in two contrasting areas of the Balearic basin in the NW Mediterranean: on the mainland slope (Catalonian coasts) and on the insular slope (North of Mallorca, Balearic Islands). An experimental bottom trawl survey was carried out during summer 2010, at stations in both sub-areas located between 450 and 2200 m water depth. Environmental data were collected simultaneously: near-bottom physical parameters, and the elemental and isotopic composition of sediments. Initially, data were analysed along the whole depth gradient, and then assemblages from the two areas were compared. Analysis of the trawls showed the existence of one group associated with the upper slope (US=450–690 m), another with the middle slope (MS=1000–1300 m) and a third with the lower slope (LS=1400–2200 m). Also, significant differences in the assemblage composition were found between mainland and insular slopes at MS. Dominance by different species was evident when the two areas were compared by SIMPER analysis. The greatest fish biomass was recorded in both areas at 1000–1300 m, a zone linked to minimum temperature and maximum O2 concentration on the bottom. Near the mainland, fish assemblages were best explained (43% of total variance, DISTLM analysis) by prey availability (gelatinous zooplankton biomass). On the insular slope, trophic webs seemed less complex and were based on vertical input of surface primary production. Decapods, which reached their highest biomass values on the upper slope, were correlated with salinity and temperature in both the areas. However, while hydrographic conditions (temperature and salinity) seemed to be the most important variables over the insular slope, resource availability (gelatinous zooplankton and Calocaris macandreae) predominated and explained 59% of decapod assemblage variation over the mainland slope. Both fish and decapods were linked to net primary production recorded over the mainland 3 months before sampling, while the delay between the input of food from the surface and fish abundance was only 1 month on the insular slope. Our results suggest that trophic relationships over insular slopes probably involve a shorter food chain than over mainland slopes and one that is likely more efficient in terms of energy transfer.  相似文献   

17.
Very large subaqueous sand dunes were discovered on the upper continental slope of the northern South China Sea. The dunes were observed along a single 40 km long transect southeast of 21.93°N, 117.53°E on the upper continental slope in water depths of 160 m to 600 m. The sand dunes are composed of fine to medium sand, with amplitudes exceeding 16 m and crest-to-crest wavelengths exceeding 350 m. The dunes' apparent formation mechanism is the world's largest observed internal solitary waves which generate from tidal forcing on the Luzon Ridge on the east side of the South China Sea, propagate west across the deep basin with amplitudes regularly exceeding 100 m, and dissipate extremely large amounts of energy via turbulent interaction with the continental slope, suspending and redistributing the bottom sediment. While subaqueous dunes are found in many locations throughout the world's oceans and coastal zones, these particular dunes appear to be unique for two principal reasons: their location on the upper continental slope (away from the influence of shallow-water tidal forcing, deep basin bottom currents and topographically-amplified canyon flows), and their distinctive formation mechanism (approximately 60 episodic, extremely energetic, large amplitude events each lunar cycle).  相似文献   

18.
We analyzed what are the best ecological conditions for megafauna associated with the bamboo coral Isidella elongata based on the geomorphological, physical and trophic information taken in 3 stations (St1, St2, St3) off the southern Catalonian coasts at 620 m depth in June 2011. Results were compared with assemblage compositions recorded in past cruises (May 1992, 1994) at the same 3 stations. St1 was in a fishing ground exploited since the 1940s over a relatively wide slope at ca. 22 km from the nearest canyon head; St2 and St3 were on a narrower slope closer to canyon heads and to the Ebro river mouth than St1. I. elongata had formed (to May 1994, at least) a dense coral forest at St2–St3 (to ca. 255 colonies/ha at St3), and some isolated colonies (to ca. 0.9 colonies/ha) were still collected in 2011. Fish and invertebrate communities significantly differed between St1 and St2/St3, with two macrourid fishes (Trachrhynchus trachyrhynchus and Nezumia aequalis) and two decapods (Plesionika martia and Plesionika acanthonotus) more abundant at St2/St3. The following ecological indicators imply better food conditions for megafauna at St2–St3 and for I. elongata itself: (i) greater density of zooplankton (copepods, euphausiids, and others) as potential prey for planktivores (including I. elongata); (ii) greater biomass and mean weight of epifaunal and infaunal deposit feeders; (iii) higher feeding intensity, F, at St3 for benthos feeders (Phycis blennoides, N. aequalis and Aristeus antennatus). Also, at St2–St3 we found higher near-bottom turbidity (indicating particle resuspension: food for suspension feeders) and finer and more reduced (Eh) sediments. The results let us suggest that corals and accompanying fauna preferently found optimal ecological conditions in the same habitat, while habitat-forming capacity by I. elongata seemed weak to generate these conditions. Coral forests may enhance detritus accumulations around them, improving habitat conditions for benthos feeders (e.g. macrourid fish). At St3 our side-scan sonar recorded three types of tracks produced by trawler doors, which match with three identified vessels occasionally operating in the area. After this low fishing activity off the Ebro Delta since the mid-1990s, almost all colonies of I. elongata has been removed. However, this impact has hardly altered fish and invertebrate composition without any significant loss of diversity, pointing also toward a rather low capacity of I. elongata facies in forming habitat for megafauna on muddy bottoms of the Mediterranean slope.  相似文献   

19.
Investigation of the bottom slope effects on the nonlinear transformation of irregular waves, which are generated based on JONSWAP spectra, is carried out in a physical wave flume with three slopes (β = 1/15, 1/30, 1/45). The slope effects on the estimation of representative wave height are examined first. To obtain a better estimation of wave height, the slope effect should be considered when slope is larger than 1/30. The nonlinear parameters (bicoherence, skewness and asymmetry) are estimated by using the wavelet-based bispectrum, and the empirical formulae regarding these nonlinear parameters as a function of the local Ursell number are derived based on the present data measured on each slope. The results indicate that the slopes have a negligible effect on the variations of the skewness. The fitted coefficients of the formulae for the other parameters on slope β = 1/15 are clearly different from the results on the slopes β = 1/30 and 1/45, indicating that slope influence on the parameterization cannot be ignored when β > 1/30. Hence, new formulae considering the slope effect are presented. Furthermore, the empirical formulae for the data in surf zone are recommended.  相似文献   

20.
We conducted full-depth hydrographic observations between 8°50′ and 44°30′N at 165°W in 2003 and analyzed the data together with those from the World Ocean Circulation Experiment and the World Ocean Database, clarifying the water characteristics and deep circulation in the Central and Northeast Pacific Basins. The deep-water characteristics at depths greater than approximately 2000 dbar at 165°W differ among three regions demarcated by the Hawaiian Ridge at around 24°N and the Mendocino Fracture Zone at 37°N: the southern region (10–24°N), central region (24–37°N), and northern region (north of 37°N). Deep water at temperatures below 1.15 °C and depths greater than 4000 dbar is highly stratified in the southern region, weakly stratified in the central region, and largely uniform in the northern region. Among the three regions, near-bottom water immediately east of Clarion Passage in the southern region is coldest (θ<0.90 °C), most saline (S>34.70), highest in dissolved oxygen (O2>4.2 ml l?1), and lowest in silica (Si<135 μmol kg?1). These characteristics of the deep water reflect transport of Lower Circumpolar Deep Water (LCDW) due to a branch current south of the Wake–Necker Ridge that is separated from the eastern branch current of the deep circulation immediately north of 10°N in the Central Pacific Basin. The branch current south of the Wake–Necker Ridge carries LCDW of θ<1.05 °C with a volume transport of 3.7 Sv (1 Sv=106 m3 s?1) into the Northeast Pacific Basin through Horizon and Clarion Passages, mainly through the latter (~3.1 Sv). A small amount of the LCDW flows northward at the western boundary of the Northeast Pacific Basin, joins the branch of deep circulation from the Main Gap of the Emperor Seamounts Chain, and forms an eastward current along the Mendocino Fracture Zone with volume transport of nearly 1 Sv. If this volume transport is typical, a major portion of the LCDW (~3 Sv) carried by the branch current south of the Wake–Necker and Hawaiian Ridges may spread in the southern part of the Northeast Pacific Basin. In the northern region at 165°W, silica maxima are found near the bottom and at 2200 dbar; the minimum between the double maxima occurs at a depth of approximately 4000 dbar (θ~1.15 °C). The geostrophic current north of 39°N in the upper deep layer between 1.15 and 2.2 °C, with reference to the 1.15 °C isotherm, has a westward volume transport of 1.6 Sv at 39–44°30′N, carrying silica-rich North Pacific Deep Water from the northeastern region of the Northeast Pacific Basin to the Northwest Pacific Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号