首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The Mesoarchaean Tasiusarsuaq terrane of southern West Greenland consists of Tonalite–trondhjemite–granodiorite gneisses and, locally, polymetamorphic mafic and ultramafic rocks. The terrane experienced medium‐pressure granulite facies conditions during M1A in the Neoarchean, resulting in the development of two‐pyroxene melanosome assemblages in mafic granulites containing garnet‐bearing leucosome. Reworking of these rocks during retrogression introduced garnet to the melanosome in the form of overgrowths, coronas and grain necklaces that separate the mafic minerals from plagioclase. NCFMASHTO pseudosection modelling constrains the peak metamorphism during M1A to ~850 °C and 7.5 kbar at fluid‐saturated conditions. Following M1A, the rocks retained their M1A H2O content and became fluid‐undersaturated as they underwent near‐isobaric cooling to ~700 °C and 6.5–7 kbar, prior to reworking during M1B. These low H2O contents allowed for the formation of garnet overgrowths and coronas during M1B. The stability of garnet is greatly increased to lower pressure and temperature in fluid‐absent, fluid‐undersaturated mafic rocks, indicating that fluid and melt loss during initial granulite facies metamorphism is essential for the introduction of garnet, and the formation of garnet coronas, during retrogression. The occurrence of garnet coronas is consistent with, but not unique to, near‐isobaric cooling paths.  相似文献   

2.
A massif-type (intrusive) charnockite body in the Eastern Ghats granulite belt, India, is associated with hornblende-bearing mafic granulite, two-pyroxene granulite and enderbitic granulite. The charnockite is characterised by pervasive gneissic foliation (S1). This is axial planar to the folded layers of hornblende-bearing mafic granulite (F1 folds), indicating that the granulite protoliths were present before the development of S1. Two-pyroxene granulite and enderbitic granulite occur as lenticular patches disposed along the foliation and hence could be syngenetic to S1. The tonalitic to granodioritic, metaluminous to weakly peraluminous compositions and relatively high Sr/Rb of the charnockite are consistent with its derivation by partial melting of a mafic protolith. Strong Y depletion, lack of Sr depletion and strongly fractionated REE patterns with high (La/Yb)N ratio, but relatively lower HREE (Gd/Lu) fractionation with marked positive Eu anomalies, suggest major residual hornblende (as well as garnet), but not plagioclase, consistent with the hornblende dehydration melting in the source rocks. Such a residual mineralogy is broadly similar to those of some of the hornblende-bearing mafic granulite inclusions, which have compositional features indicative of a restitic nature. Quantitative modelling supports an origin for the charnockite melts by partial melting of a hornblende-rich mafic granulite source, although source heterogeneity is very likely given the rather variable trace element contents of the charnockite. The whole-rock and mineral compositions of the two-pyroxene granulites and enderbitic granulites are consistent with them representing peritectic phase segregations of hornblende-dehydration melting. A clockwise P-T path implies that melting could have occurred in thickened continental crust undergoing decompression.Editorial responsibility: T.L. Grove  相似文献   

3.
The metasedimentary rocks of the area around Mangpu constitute a portion of the hinge zone of the northern limb of the major synform of Lower Darjeeling Himalaya. The rocks display evidences of multiple deformation and at least three major phases of deformation have been recognized. The time relations between the phases of deformation (D1, D2, D3) and metamorphic crystallization reveal a single major prograde metamorphic event that initiated with the D1 deformation and finally outlasted it. The earlier phase of this metamorphism is essentially regional syn-tectonic lowgrade (greenschist facies) which may be designated (M1, early). This was followed by regional static metamorphism (M1, late) in the post-tectonic phase between D1 and D2 deformations (upper green schist and amphibolite facies). This M1 metamorphism is superposed by later retrogressive metamorphism (M2) during the D2 and D3 deformations (lower greenschist facies). Within the study area four isograds have been delineated by the first appearance of index minerals in the pelitic schists and gneiss which display Barrovian type of metamorphism.  相似文献   

4.
In this paper, we compare the petrological histories of the Kemp Land Coast (east Antarctica), and Gokavaram area (Eastern Ghats), that were supposed to have been juxtaposed. The area around Gokavaram is dominated by different varieties of paragneisses (pelitic, quartzofeldspathic, and calcareous composition) with relatively minor amounts of orthogneisses (mafic, enderbitic, and granitic composition). The rocks were involved in three major phases of deformation, and were finally affected by localised shear movement. On the basis of reaction textures, well preserved in high Mg-Al granulites, and calc-silicate granulites, and geothermobarometric data we deduce a polymetamorphic evolution of the rocks. Following an early M1 metamorphism culminating at 9.2–9.4 kbar, > 950°C, the rocks cooled nearly isobarically down to 850°C. During a subsequent M2 metamorphism, near isothermal decompression to 5–6 kbar occurred. This was followed by near isobaric cooling down to 600–650°C. M3 is a weak amphibolite facies overprint, largely restricted to late shears, which involved hydration as well. Available radiometric data from this area can be interpreted in terms of partial resetting of U-Pb systematics in older sphenes due to M3 metamorphism at ca. 550 Ma. Despite the absence of sufficient isotopic data on the Eastern Ghats granulites, we document a remarkable similarity in the petrological history of the two supposedly erstwhile neighbours.  相似文献   

5.
A suite of rocks from Borra Carbonate Granulite Complex (BCGC) in the Eastern Ghats granulite belt displays superposed structures and overprinted mineral assemblages that reveal multiple episodes of tectonothermal reworking of the complex under granulite facies condition. Five distinct episodes of deformation (D1, D2, D3, D4 and D5) and four phases of metamorphism (M1, M2, M3 and M4) are recorded. The signature of the earliest tectonothermal event, D1 is a gneissic foliation (S1) denned by segregation of peak granulite facies mineral assemblages corresponding to prograde M1 metamorphism. M2 metamorphic overprint represents an episode of near-isobaric cooling of the complex under a static condition. D2 represents an episode of ductile deformation manifested by isoclinal folding (F2) and associated extensional structures, within a broad framework of coaxial bulk deformation. The present study reveals that D2 took place subsequent to M2 - Subsequent deformation, D3, produced F3 folds and also deformations of boudins formed during D2. M3, which is synchronous with F3, represents a near isothermal decompression of the BCGC. This was followed by a weak structural readjustment (D4), producing E-W cross folds. The latter was not, however, associated with any recognizable petrological reworking. In the terminal events, deformation (D5) and mineral reactions (M4) were localized along narrow intersecting shear zones. The latter acted as channelways for carbonic and still later hydrous fluid infiltration. The available thermobarometric data from BCGC and other areas of the Eastern Ghats belt reveal that reworking during M2 and M3 ensued in a thermally perturbed regime. The high thermal regime might also have persisted during carbonic fluid infiltration related to terminal reworking (M4).  相似文献   

6.
大青山-乌拉山变质杂岩立甲子基性麻粒岩主要由角闪二辉麻粒岩、含榴角闪二辉麻粒岩和黑云角闪二辉麻粒岩所组成,并以变形岩墙和不规则透镜体形式赋存于富铝片麻岩和花岗质片麻岩之中.立甲子基性麻粒岩中变质锆石含有单斜辉石(Cpx)+角闪石(Amp)+斜长石(Pl)+磷灰石(Ap)的包体矿物,与寄主岩石——基性麻粒岩矿物组合及其化学成分十分一致,相应的207 pb/206 Pb表面年龄变化于1933±39Ma ~ 1834±40Ma,加权平均年龄为1892±7Ma(MSWD =0.50,n=46),应代表立甲子基性麻粒岩原岩经历中低压麻粒岩相的变质时代.在变质过程中,以大离子亲石元素(K、Na、Sr、Rb)为代表的活动元素发生了显著的改变;而高场强元素(Nb、Zr、Ti)和稀土元素基本无变化,保持稳定.立甲子基性麻粒岩原岩属于拉斑玄武质岩石系列,其SiO2集中变化于45.58% ~51.40%,Mg#值集中介于41 ~54之间;在球粒陨石标准化稀土配分图中,立甲子基性麻粒岩具有平坦型的稀土配分曲线特征((La/Yb)cN=1.30~1.51),Eu异常不明显(Eu/Eu*=0.93~1.04).与显生宙岛孤拉斑玄武岩类似,立甲子基性麻粒岩所有样品皆具有Nb、Zr、Ti负异常特征.综合分析认为,立甲子基性麻粒岩原岩形成于2450~1930Ma,并于~1900Ma经历中低压麻粒岩相变质作用的改造,其主量元素和微量元素组成具有岛弧拉斑玄武质岩石的地球化学特征,其原岩可能是板块汇聚动力学背景下,岛弧构造环境中形成的辉长岩或辉绿岩.  相似文献   

7.
The upper deck of the East Athabasca mylonite triangle (EAmt), northern Saskatchewan, Canada, contains mafic granulites that have undergone high P–T metamorphism at conditions ranging from 1.3 to 1.9 GPa, 890–960 °C. Coronitic textures in these mafic granulites indicate a near‐isothermal decompression path to 0.9 GPa, 800 °C. The Godfrey granite occurs to the north adjacent to the upper deck high P–T domain. Well‐preserved corona textures in the Godfrey granite constrain igneous crystallization and early metamorphism in the intermediate‐pressure granulite field (Opx + Pl) at 1.0 GPa, 775 °C followed by metamorphism in the high pressure granulite field (Grt + Cpx + Pl) at 1.2 GPa, 860 °C. U–Pb geochronology of zircon in upper deck mafic granulite yields evidence for events at both c. 2.5 Ga and c. 1.9 Ga. The oldest zircon dates are interpreted to constrain a minimum age for crystallization or early metamorphism of the protolith. A population of 1.9 Ga zircon in one mafic granulite is interpreted to constrain the timing of high P–T metamorphism. Titanite from the mafic granulites yields dates ranging from 1900 to 1894 Ma, and is interpreted to have grown along the decompression path, but still above its closure temperature, indicating cooling following the high P–T metamorphism from c. 960–650 °C in 4–10 Myr. Zircon dates from the Godfrey granite indicate a minimum crystallization age of 2.61 Ga, without any evidence for 1.9 Ga overgrowths. The data indicate that an early granulite facies event occurred at c. 2.55–2.52 Ga in the lower crust (c. 1.0 GPa), but at 1.9 Ga the upper deck underwent high P–T metamorphism, then decompressed to 0.9–1.0 GPa. Juxtaposition of the upper deck and Godfrey granite would have occurred after or been related to this decompression. In this model, the high P–T rocks are exhumed quickly following the high pressure metamorphism. This type of metamorphism is typically associated with collisional orogenesis, which has important implications for the Snowbird tectonic zone as a fundamental boundary in the Canadian Shield.  相似文献   

8.
SHRIMP U–Pb zircon isotopic data have been obtained for four samples collected from granitoids and paragneisses in the Fraser Complex, a large composite metagabbroic body cropping out in the Mesoproterozoic Albany‐Fraser Orogen of Western Australia. The data are combined with the results of field mapping and petrographic analysis to revise a model for the geological evolution of the Fraser Complex. Three main phases of deformation are recognised in the Fraser Complex (D1–3) associated with two metamorphic events (M1–2), which involve four distinguishable episodes of recrystallisation. The first metamorphic event recognised (M1a/D1) reached granulite facies and is characterised by peak T ≥800°C and P = 600–700 MPa. A syn‐M1a/D1 charnockite has a U–Pb SHRIMP zircon age of 1301 ± 6 Ma, which also provides an estimate for the age of intrusion of Fraser Complex gabbroic rocks. Disequilibrium textures comprising randomly oriented minerals (M1b), consistent with approximately isobaric cooling, formed in various lithologies in the interval between D1 and D2. Post‐D1, pre‐D2 granites intruded at 1293 ± 8 Ma and were foliated during the D2 event, which culminated in the burial of the Fraser Complex to depths equivalent to 800–1000 MPa. Following burial, pyroxene granulites on the western boundary of the complex were pervasively retrogressed to garnet amphibolite (M2a). An igneous crystallisation age of 1288 ± 12 Ma from a syn‐M2a aplite dyke suggests that retrogression may have occurred only a few millions of years after the peak of granulite facies metamorphism. Exhumation to depths of less than ~400 MPa occurred within ~20–30 million years of the M2a pressure peak. Associated deformation (D3) is characterised by the development of mylonite and transitional greenschist/amphibolite facies disequilibrium textures (M2b).  相似文献   

9.
Mafic rocks in the Chipman domain of the Athabasca granulite terrane, western Canadian Shield, provide the first well‐documented record of two distinct high‐P granulite facies events in the same domain in this region. Textural relations and the results of petrological modelling (NCFMASHT system) of mafic granulites are interpreted in terms of a three‐stage tectonometamorphic history. Stage 1 involved development of the assemblage Grt + Cpx + Qtz ± Pl (M1) from a primary Opx‐bearing igneous precursor at conditions of 1.3 GPa, 850–900 °C. Field and microstructural observations suggest that M1 developed synchronously with an early S1 gneissic fabric. Stage 2 is characterized by heterogeneous deformation (D2) and synkinematic partial retrogression of the peak assemblage to an amphibole‐bearing assemblage (M2). Stage 3 involved a third phase of deformation and a return to granulite facies conditions marked by the prograde breakdown of amphibole (Amph2) to produce matrix garnet (Grt3a) and the coronitic assemblage Cpx3b + Opx3b + Ilm3b + Pl3b (M3b) at 1.0 GPa, 800–900 °C. M1 and M3b are correlated with 2.55 and 1.9 Ga metamorphic generations of zircon, respectively, which were dated in a separate study. Heterogeneous strain played a crucial role in both the development and preservation of these rare examples of multiple granulite facies events within single samples. Without this fortuitous set of circumstances, the apparent reaction history could have incorrectly led to an interpretation involving a single‐cycle high‐grade event. The detailed PTtD history constructed for these rocks provides the best evidence to date that much of the east Lake Athabasca region experienced long‐term lower crustal residence from 2.55 to 1.9 Ga, and thus the region represents a rare window into the reactivation and ultimate stabilization processes of cratonic lithosphere.  相似文献   

10.
胶北莱西古元古代的高压基性麻粒岩和钙硅酸盐岩的基本矿物组合分别为以铁铝榴石为主的石榴石-普通辉石-铁紫苏辉石和钙铝榴石-黝帘石-葡萄石-钠长石.矿物岩石学研究表明钙硅酸盐岩是由含石榴石高压基性麻粒岩经退变质和钙质交代作用形成.南山口高压基性麻粒岩记录了麻粒岩相变质作用前、麻粒岩相变质作用、退变质和钙硅酸盐岩化共同作用以及完全钙硅酸盐岩化的四个阶段的地质作用,其矿物组合分别为Cpx+ Pl+ Qtz(M1),Grt+ Cpx+ Rt+ Qtz(M2),Cpx+Pl+ Opx+ Ilm+ Mgt+ Ep(M3)和Grs+ Zo+ Prh+ Ab+ Cal(M4).微量元素研究表明,高压基性麻粒岩中大离子亲石元素Ba、Rb、K、Rb、Th富集,而高场强元素Nb、Zr、Ti、Y亏损,具有轻稀土富集的右倾型稀土配分曲线.稀土元素和微量元素配分图解显示了岛孤拉斑玄武岩的特征.主元素、微量元素的构造判别图解进一步分析表明高压基性麻粒岩及其钙硅酸盐岩的原岩形成于大陆边缘的岛弧环境.综合高压基性麻粒岩岩石学、元素地球化学特征认为,莱西高压基性麻粒岩的原岩是拉斑玄武岩质岩石,可能是形成于孤后扩张背景下基性的侵入岩或喷出岩.岩石形成以后,在胶-辽-吉带碰撞闭合过程中,经历了麻粒岩相变质作用,又在后来的抬升过程中经历退变质和钙硅酸盐岩化作用.  相似文献   

11.
甘肃阿克塞县安南坝地区镁铁质麻粒岩呈脉状、透镜状赋存于新太古代米兰岩群和TTG片麻岩中。岩石主要由斜长石(Pl)+斜方辉石(Opx)+单斜辉石(Cpx)+角闪石(Amp)+磁铁矿(Mt)等组成。安南坝镁铁质麻粒岩中Ti、P、Nb、Ta、Th、Hf、Sr及REE等元素与Zr相关性较好,表明其在变质作用过程中保持基本稳定。地球化学数据显示其原岩属于拉斑玄武质岩系列,Si O_2、Ti O_2、Al_2O_3、P_2O_5含量相对较低,Ca O、Mg O含量相对较高。Mg~#值为41.52~43.09,低于原生玄武质岩石的Mg~#值,Fe_2O_3~T、Mg O、Ca O与Si O_2含量呈负相关性,指示原岩岩浆演化过程中可能发生了辉石、角闪石等镁铁质矿物的分异结晶作用。镁铁质麻粒岩∑REE较低,稀土元素配分模式为轻稀土元素弱富集、重稀土元素相对平坦的右倾型,Eu异常不明显(Eu/Eu~*=0.91~1.01)。岩石富集Rb、Ba、Sr等大离子亲石元素,亏损Nb、Ta、Zr、Ti等高场强元素,具有显生宙典型岛弧玄武质岩石的地球化学特征。Sr、Nd、Pb同位素组成显示镁铁质麻粒岩原岩源自富集地幔,并受到一定程度的地壳物质混染。构造环境分析表明安南坝镁铁质麻粒岩原岩形成于与俯冲有关的岛弧环境。在俯冲作用机制下,俯冲板片流体交代使地幔楔发生富集,形成富集地幔,随着(弧后)伸展作用的加强,进一步诱发富集地幔的部分熔融形成镁铁质岩浆,最终岩浆就位形成辉长岩或辉绿岩脉,后期在麻粒岩相变质作用条件下变质为镁铁质麻粒岩。  相似文献   

12.
Orthopyroxene‐rich quartz‐saturated granulites of the Strangways Range, Arunta Block, central Australia, record evidence of two high‐grade metamorphic events. Initial granulite facies metamorphism (M1, at c. 1.7 Ga) involved partial melting and migmatization culminating in conditions of 8.5 kbar and 850 °C. Preservation of the peak M1 mineral assemblages from these conditions indicates that most of the generated melt was lost from these rocks at or near peak metamorphic conditions. Subsequent reworking (M2, at c. 1.65 Ga) is characterized by intense deformation, the absence of partial melting and the development of orthopyroxene–sillimanite ± gedrite‐bearing mineral assemblages. Gedrite is only present in cordierite‐rich lithologies where it preferentially replaces M1 cordierite porphyroblasts. Pseudosection calculations indicate that M2 occurred at subsolidus fluid‐absent conditions (aH2o ~ 0.2) at 6–7.5 kbar and 670–720 °C. The mineral assemblages in the reworked rocks are consistent with closed system behaviour with respect to H2O subsequent to M1 melt loss. M2 reworking was primarily driven by increased temperature from the stable geotherm reached after cooling from M1 and deformation‐induced recrystallization and re‐equilibration, rather than rehydration from an externally derived fluid. The development of the M2 assemblages is strongly dependent on the intensity of deformation, not only for promoting equilibration, but also for equalizing the volume changes that result from metamorphic reactions. Calculations suggest that the protoliths of the orthopyroxene‐rich granulites were cordierite–orthoamphibole gneisses, rather than pelites, and that the unusual bulk compositions of these rocks were inherited from the protoliths. Melt loss is insufficient to account for the genesis of these rocks from more typical pelitic compositions. In quartz‐rich gneisses, however, melt loss along the M1 prograde path was able to modify the bulk rock composition sufficiently to stabilize peak metamorphic assemblages different from those that would have otherwise developed.  相似文献   

13.
In the Strangways Range a broad tract of lower Proterozoic mafic and silicic granulites with δ 18O = 0.1 to 7.3% is depleted in 18O on average by 2–47% compared with high-grade gneisses and granitoids of Canada and other shields. The Fraser Range mafic granulites (δ18O ~ 7.2%) are enriched with respect to unaltered sea-floor basalts (~5.7%).In some rocks depletion in 18O could be related to dehydration during granulite-facies metamorphism and removal of the resultant products of partial melting. In other rocks pre-granulite reaction between heated seawater and hot basic intrusives seems to be a plausible mechanism of depletion in 18O. A direct correlation between depletion in 18O and the abundance of brown granulite hornblende suggests that 18O-depleted water was present in certain mafic rocks before the onset of granulite metamorphism, whereas in others brown hornblende was introduced during a phase of the granulite facies metamorphism itself.  相似文献   

14.
At Deobhog, migmatitic gneisses and granulites of the Eastern Ghats Belt are juxtaposed against a cratonic ensemble of banded augen gneiss, amphibolite and calcsilicate gneiss, intruded by late hornblende granite and dolerite. In the migmatitic gneiss unit, early isoclinal folds (syn‐D1M and D2M) are reoriented along N–S‐trending and E‐dipping shear planes (S3M), with (S1M–S3M) intersection lineations having steep to moderate plunges. The near‐peak PT condition was syn‐D3M (≥900 °C, 9.5 kbar), as inferred from syn‐D3M Grt+Opx‐bearing leucosomes in mafic granulites, and from thermobarometry on Grt (corona)–Opx/Cpx–Pl–Qtz assemblages. The PT values are consistent with the occurrence of Opx–Spr–Crd assemblages in spatially associated high‐Mg–Al pelites. A subsequent period of cooling followed by isothermal decompression (800–850 °C, c. 7 kbar) is documented by the formation of coronal garnet and its decomposition to Opx+Pl symplectites in mafic granulites. Hydrous fluid infiltration accompanying the retrograde changes is manifested in biotite replacing Opx in some lithologies. The cratonic banded gneiss–granite unit also documents two phases of isoclinal folding (D1B & D2B), with the L2B lineation girdle different from the lineation spread in the migmatitic gneiss unit. Calcsilicate gneiss (Hbl–Pl–Cpx–Scap–Cal) and amphibolite (Hbl–Pl±Grt±Cpx) within banded gneisses record syn‐D2B peak metamorphic conditions (c. 700 °C, 6.5 kbar), followed by cooling (to c. 500 °C) manifested in the stabilization of coronal clinozoisite–epidote. The D3B shear deformation post‐dates granite and dolerite intrusions and is characterized by top‐to‐the‐west movement along N–S‐trending, E‐dipping shear planes. Deformation mechanisms of quartz and feldspar in granites and banded gneisses and amphibole–plagioclase thermometry within shear bands in dolerites document an inverted syn‐D3B thermal gradient with temperature increasing from 350 to 550 °C in the west to ≥700 °C near the contact with the migmatitic gneiss unit. The thermal gradient is reflected in the stabilization of chlorite after hornblende in S3B shears to the west, and post‐D2B neosome segregation along D3B folds and shears to the east. The contrasting lithologies, early structures and peak metamorphic conditions in the two units indicate unconnected pre‐D3PT –deformation histories. The shared D3 deformation in the two units, the syn‐D3 inverted thermal gradient preserved in the footwall cratonic rocks and the complementary cooling and hydration of the hanging wall granulites across the contact are attributed to westward thrusting of ‘hot’ Eastern Ghats granulites on ‘cool’ cratonic crust. It is suggested that the Eastern Ghats migmatitic gneiss unit is not a reworked part of the craton, but a para‐autochthonous/allochthonous unit emplaced on and amalgamated to the craton.  相似文献   

15.
Large-scale structures, textures and mineral assemblages in the Precambrian rocks of the Banded Gneissic Complex and the overlying Delhi Group in north-central Aravalli Mountain reveal a complex deformational-crystallization history. In the basement Gneissic Complex at least three deformational events, D0, D1 and D2, and two separate episodes of metamorphism, M1 and M2, are recognized. The supracrustal Delhi Rocks display only two phases of deformation, D1 and D2, associated with a single protracted period of metamorphism, M2.The first phase of deformation (D1) of the Delhi orogeny (1650-900 m.y.) produced large isoclinal folds that are overturned towards the southeast and have gentle plunges in NE and SW directions. The second phase of deformation (D2) gave rise to tight open folds on the limbs and axial-plane surfaces of the D1 folds. These folds generally plunge towards the N and NNW at 30°–80°. In the Basement Complex one more deformation (D0) of the Pre-Delhi orogeny (> 2000 m.y.) is recorded by the presence of reclined and recumbent folds with W to WNW trending fold axes. The D0 folds were superimposed by D1 and D2 folds during the Delhi orogeny.The three deformational events have been correlated with the crystallization periods of minerals in the rocks and a setting in time is established for this part of the Aravalli range.  相似文献   

16.
Reports of shoshonitic rocks in Precambrian terrains are relatively rare. Pl-Grt amphibolites and Hbl-Bt mafic granulites occurring in the migmatitic gneisses of the Chhotanagpur Gneissic Complex(CGC) show calc-alkaline and shoshonitic characteristics. Relict porphyritic, sub-ophitic and poikilitic textures are noted in these rocks. Their parent magma was emplaced during the waning phase of the regional metamorphism. Geochemically, these metamafics are similar to the Group Ⅲ potassic and ultrapo...  相似文献   

17.
The granulite‐facies rocks in the Tomkinson Ranges of central Australia are dominated by layered felsic (quartzofeldspathic) gneisses with minor interbanded mafic, calcareous, ferruginous, and quartzitic granulites. They are regarded as representing a middle Proterozoic metasedimentary and/or metavolcanic sequence which has undergone anhydrous granulite‐facies metamorphism approximately 1200 m.y. ago. Conditions of metamorphism have been derived from a petrogenetic grid based on several experimentally determined reactions and give estimates of 10–11 kb pressure and 950–1000°C. Such metamorphism could take place close to the base of the crust with a moderate geothermal gradient of 25–30°C/km.  相似文献   

18.
Deformation of granulite-facies rocks in the Moldanubian Zone of the southern Bohemian Massif is expressed in two intersecting planar fabrics - steeply disposed (S1) and flat-laying (S2) - which correspond to two deformation stages (D1) and (D2). The existing Sm-Nd garnet ages from banded granulite gneisses, new U-Pb zircon data from deformed granite intrusions within the granulite gneisses, and the P-T and field structural relations constrain the ages and P-T conditions of the two deformation phases. The early deformation (D1) was associated with a HP-HT metamorphic stage with a minimum age of ca. 354 Ma which was followed by a near-isothermal decompression. A concordant U-Pb zircon age of 318ǃ Ma dates the emplacement of intrusions of deformed granite into the granulite gneisses and constrains deformation phase (D2). This phase was associated with an LP-HT metamorphism dated in the region at ca. 340-330 Ma. The available structural and isotopic data indicate that granulites in the southern Bohemian Massif were exhumed from lower to middle crust during compression. The structural relations and P-T-t data for the studied granulites are consistent with their exhumation by near-vertical extrusion of the softened orogenic root.  相似文献   

19.
 Sittampundi and Bhavani Archean layered meta-anorthosite complexes occur as tectonic lenses within the Cauvery shear zone (CSZ), a crustal scale shear dividing the Precambrian granulite crust of south India into late Archean (> 2.5 Ga) and Proterozoic (c. 0.55 Ga) blocks. They and their host supracrustal-gneiss rocks record at least two stages of tectonometamorphic history. The first is seen as regional scale refolded isoclinal folds and granulite metamorphism (D1-M1) while the second stage is associated with dominantly E–W dextral transcurrent shearing and metamorphic recrystallisation (D2-MCSZ). Whole rock Sm-Nd isochrons for several comagmatic rocks of the layered complexes yield concordant ages: Sittampundi – 2935±60 Ma, ɛNd + 1.85±0.16 and Bhavani – 2899±28 Ma, ɛNd + 2.18±0.14 (2σ errors). Our Sm-Nd results suggest that: (1) the magmatic protoliths of the Sittampundi and Bhavani layered complexes were extracted from similar uniform and LREE depleted mantle sources; (2) M1 metamorphism occurred soon after emplacement at c.3.0 Ga ago. P-T estimates on garnet granulites from the Sittampundi complex characterise the MCSZ as a high-P event with metamorphic peak conditions of c. 11.8 kbar and 830°C (minimum). The MCSZ is associated with significant isothermal decompression of the order of 4.5–3.5 kbar followed by static high-temperature rehydration and retrogression around 600°C. The timing of MCSZ is inferred to be Neoproterozoic at c. 730 Ma based on a whole rock-garnet-plagioclase-hornblende Sm-Nd isochron age for a garnet granulite from the Sittampundi complex and its agreement with the 800–600 Ma published age data on post-kinematic plutonic rocks within the CSZ. These results demonstrate that the Cauvery shear zone is a zone of Neoproterozoic reworking of Archean crust broadly similar to the interface between the Napier and Rayner complexes of the East Antarctic shield in a model Proterozoic Gondwana supercontinent. Received: 5 December 1995 / Accepted: 3 May 1996  相似文献   

20.
The Eastern Ghats Frontal Thrust (EGFT) demarcates the boundary between the Archaean/Paleoproterozoic cratonic rocks to the west, and the Meso/Neoproterozoic granulites of the Eastern Ghats Mobile Belt (EGMB) to the east. At Jeypore (Orissa, India), mafic schists and granites of the cratonic domain document a spatial increase in the metamorphic grade from greenschist facies (garnet, clinozoisite – absent varieties) in the foreland to amphibolite facies (clinozoisite- and garnet-bearing variants) progressively closer to the EGFT. Across the EGFT, the enderbite–charnockite gneisses and mafic granulites of EGMB preserves a high-grade granulite facies history; amphibolite facies overprinting in the enderbite–charnockite gneisses at the cratonic fringe is restricted to multi-layered growth of progressively Al, Ti – poor hornblende at the expense of pyroxene and plagioclase. In associated mafic granulites, the granulite facies gneissic layering is truncated by sub-centimeter wide shear bands defined by synkinematic hornblende + quartz intergrowth, with post-kinematic garnet stabilized at the expense of hornblende and plagioclase. Proximal to the contact, these granulites of the Eastern Ghats rocks are intruded by dolerite dykes. In the metadolerites, the igneous assemblage of pyroxene–plagioclase is replaced by intergrown hornblende + quartz ± calcite that define the thrust-related fabric and are in turn mantled by coronal garnet overgrowth, while scapolite is stabilized at the expense of recrystallized plagioclase and calcite. Petrogenetic grid considerations and thermobarometry of the metamorphic assemblages in metadolerites intrusive into granulites and mafic schists within the craton confirm that the rocks across the EGFT experienced prograde heating (Tmax value ∼650–700 °C at P  6–8 kbar) along the prograde arm of a seemingly clockwise PT path. Since the dolerites were emplaced post-dating the granulite facies metamorphism, the prograde heating is correlated with renewed metamorphism of the granulites proximal to the EGFT. A review of available age data from rocks neighboring the EGFT suggests that the prograde heating of the cratonic granites and the re-heating of the Eastern Ghats granulites are Pan – African in age. The re-heating may relate to an Early Paleozoic Pan-Gondwanic crustal amalgamation of older terrains or reactivation along an old suture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号