首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
Abstract

A large sinistral intracontinental transcurrent structure, the Central Anatolian Fault Zone (CAFZ), is located between Erzincan in the northeast and offshore of Anamur county in the southwest of Turkey. Northeastern and southwestern segments of the fault zone are linked to each other by an intervening and approximately N-S-trending transtensional structure, the Erciyes pull-apart hasin (EPB). The Krzihrmak-Erkilet and Dökmeta? segments of the CAFZ bend southwards at about 45°-50° near Kayseri and result in a releasing double bend, which has nucleated both the EPB and its main feature, the Erciyes stratovolcano complex (ESVC) since Middle Pliocene time. The EPB is a ~35-km-wide, 120-km-long, 1.2-km-deep, lazy S-shaped and actively-growing depression with the ESVC forming a high-standing central barrier between the northern and southern parts of the basin. Hence, the EPB appears as two separate basins, namely the ‘Sultansazh?i and Kayseri-Sarimsakli depressions’. However, this is not correct, because development of the EPB and ESVC has been coeval with the volcanic activity producing the ESVC continuing into prehistoric times. Development of the EPB is continuing as indicated by faulted, uplifted and terraced Pleistocene-Early Holocene palaeolake beach deposits, and historical to recent earthquakes. Accumulative throws on the eastern and western margin-bounding faults of the EPB are 1225 m and 720 m respectively and show that basin development has been asymmetrical. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

2.
《Geodinamica Acta》2001,14(1-3):147-158
Central Anatolia has undergone complex Neotectonic deformation since Late Miocene–Pliocene times. Many faults and intracontinental basins in this region were either formed, or have been reactivated, during this period. The eastern part of central Anatolia is dominated by a NE–SW-trending, left lateral transcurrent structure named the Central Anatolian fault zone located between Sivas in the northeast and west of Mersin in the southwest. Around the central part, it is characterized by transtensional depressions formed by left stepping and southward bending of the fault zone.Pre-Upper Miocene basement rocks of the region consist of the central Anatolian crystalline complex and a sedimentary cover of Tertiary age. These rock units were strongly deformed by N–S convergence. The entire area emerged to become the site of erosion and formed a vast plateau before the Late Miocene. A NE–SW-trending extensional basin developed on this plateau in Late Miocene–Early Pliocene times. Rock units of this basin are characterized by a thick succession of pyroclastic rocks intercalated with calcalkaline–alkaline volcanics. The volcanic sequence is unconformably overlain by Pliocene lacustrine–fluviatile deposits intercalated with ignimbrites and tuffs. Thick, coarse grained alluvial/colluvial fan deposits of marginal facies and fine grained clastics and carbonates of central facies display characteristic synsedimentary structures with volcanic intercalations. These are the main lines of evidence for development of a new transtensional Hırka–Kızılırmak basin in Pliocene times. Reactivation of the main segment of the Central Anatolian fault zone has triggered development of depressions around the left stepping and southward bending of the central part of this sinistral fault zone in the ignimbritic plateau during Late Pliocene–Quaternary time. These transtensional basins are named the Tuzla Gölü and Sultansazlığı pull-apart basins. The Sultansazlığı basin has a lazy S to rhomboidal shape and displays characteristic morphologic features including a steep and stepped western margin, large alluvial and colluvial fans, and a huge composite volcano (the Erciyes Dağı).The geometry of faulting and formation of pull-apart basins can be explained within the framework of tectonic escape of the wedge-like Anatolian block, bounded by sinistral East Anatolian fault zone and dextral North Anatolian transform fault zone. This escape may have been accomplished as lateral continental extrusion of the Anatolian Plate caused by final collision of the Arabian Plate with the Eurasian Plate.  相似文献   

3.
《Geodinamica Acta》2001,14(1-3):103-131
We investigate the left-lateral slip on the 240-km-long, NE–SW-trending, Malatya–Ovacık fault zone in eastern Turkey. This fault zone splays southwestward from the North Anatolian fault zone near Erzincan, then follows the WSW-trending Ovacık valley between the Munzur and Yılan mountain ranges. It bends back to a SW orientation near Arapkir, from where we trace its main strand SSW beneath the Plio-Quaternary sediment of the Malatya basin. We propose that this fault zone was active during ∼5–3 Ma, when it took up 29 km of relative motion between the Turkish and Arabian plates; it ceased to be active when the East Anatolian fault zone formed at ∼3 Ma. The geometry of the former Erzincan triple junction, which differs from the modern Karlıova triple junction, where the North and East Anatolian fault zones intersect, suggests a possible explanation for why slip on the Malatya–Ovacık fault zone was unable to continue. We interpret the SW- and SSW-trending segments of the Malatya–Ovacık fault zone as transform faults, which define an Euler pole ∼1 400 km to the southeast. Its central part along the Ovacık valley, which is ∼30° oblique to the adjoining transform faults, is interpreted as the internal fault of a stepover. The adjoining mountain ranges, which now rise up to ∼3 300 m, ∼2 000 m above the surrounding land surface, are largely the result of the surface uplift which accompanied the components of shortening and thickening of the upper crustal brittle layer that occurred around this stepover while the left-lateral faulting was active.  相似文献   

4.
《Quaternary Science Reviews》1999,18(4-5):647-657
The Sultansazlıǧı lake lies in a round-shaped deep basin in the eastern part of Central Anatolia, at the northern end of the ‘Ecemiş, Tectonic Trench’ which is the result of a left lateral horizontal fault belt crossing the Middle Taurus Mountain Chain. The Sultan Basin developed contemporaneously with the Erciyes volcanic cone and the Kayseri Tectonic Basin to the north, at the crossing point of two main fault zones, following the formation of extensive ignimbritic plateaux in the Cappadocian area. The basin was occupied from time to time by lake waters during the Pliocene, but it was open to outward drainage during the early Pleistocene and glacis-type fluvial terraces which were developed around Incesu in the north. According to geomorphological studies and detailed photogeomorphological mapping by the author, the Sultan Lake Basin became closed as the result of the development of the volcanic Aliboren barrier to the north near Incesu town and the first ‘pluvial’ lake developed in the Sultan Basin to the south. This lake is believed to have had an outflow to the north via the Aliboran lava threshold. Two sets of lake coastline traces at 1110–1125 and 1155 m were mapped and are named as Aliboran and Çalbama coastlines. There are some geomorphological arguments to correlate the Çalbama phase lake terraces and shorelines with the moraines and sandur deposits of the Last Glacial Maximum on Mt. Erciyes. It is concluded that the modern lake is not simply a relict of Pleistocene and older lakes but that its water level and coastlines are in equilibrium with modern climatic and environmental conditions.  相似文献   

5.
《Geodinamica Acta》2001,14(1-3):197-212
The Karasu Rift (Antakya province, SE Turkey) has developed between east-dipping, NNE-striking faults of the Karasu fault zone, which define the western margin of the rift and west-dipping, N–S to N20°–30°E-striking faults of Dead Sea Transform fault zone (DST) in the central part and eastern margin of the rift. The strand of the Karasu fault zone that bounds the basin from west forms a linkage zone between the DST and the East Anatolian fault zone (EAFZ). The greater vertical offset on the western margin faults relative to the eastern ones indicates asymmetrical evolution of the rift as implied by the higher escarpments and accumulation of extensive, thick alluvial fans on the western margins of the rift. The thickness of the Quaternary sedimentary fill is more than 465 m, with clastic sediments intercalated with basaltic lavas. The Quaternary alkali basaltic volcanism accompanied fluvial to lacustrine sedimentation between 1.57 ± 0.08 and 0.05 ± 0.03 Ma. The faults are left-lateral oblique-slip faults as indicated by left-stepping faulting patterns, slip-lineation data and left-laterally offset lava flows and stream channels along the Karasu fault zone. At Hacılar village, an offset lava flow, dated to 0.08 ± 0.06 Ma, indicates a rate of left-lateral oblique slip of approximately 4.1 mm·year–1. Overall, the Karasu Rift is an asymmetrical transtensional basin, which has developed between seismically active splays of the left-lateral DST and the left-lateral oblique-slip Karasu fault zone during the neotectonic period.  相似文献   

6.
《Geodinamica Acta》2001,14(1-3):169-175
To the east of the Sea of Marmara, the North Anatolian fault (NAF) branches into two strands, namely the northern and the southern strands. The Adapazarı pull-apart basin is located in the overlapping zone of the Dokurcun and the İzmit–Adapazarı segments of the northern strand. The combined temporal ranges of the arvicolids from the Karapürçek formation (the first unit of the basin fill), deposited in the primary morphology of the Adapazarı pull-apart basin, cover the latest Villanyian (latest Pliocene) and the Biharian (Early Pleistocene) time interval. The Değirmendere fauna collected from the lowermost sediments of this formation suggests that the Adapazarı pull-apart basin started to form in the latest Pliocene. This, in turn, suggests that the dextral movement along the northern strand of the NAF commenced during the latest Pliocene. A new species, Tibericola sakaryaensis is also described.  相似文献   

7.
《Geodinamica Acta》2001,14(1-3):159-167
Pliocene–Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the Kızılırmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of Şarkışla (Sivas–central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region.  相似文献   

8.
《Geodinamica Acta》2001,14(1-3):57-69
There is a N–S lying narrow strip of Neogene outcrop between the towns of Kuşadası and Söke in western Anatolia. It contains remnants of successive Neogene graben basins. The first graben began to form under the control of a N40–70°E-trending oblique fault system during the Early Miocene. At the initial phase of the opening coarse clastic rocks were deposited in front of the fault-elevated blocks as scree deposits and fanglomerates. Later the graben advanced into a large lake basin. Towards the end of the Middle Miocene the lacustrine sediments of the Early–Middle Miocene age underwent an approximately N–S compressional deformation and elevated above the lake level, and were partly eroded. During the Late Miocene a new graben basin began to form as a consequence of the development of E–W-trending normal faults, formed under the N–S extensional regime. This graben also turned later into a lake environment. The lake extended far beyond the limits of the fault zones, and covered the entire regions stretching from the south of Bafa Lake in the south to Kuşadası and beyond in the north. Micritic clayey limestones were predominantly deposited in the lake. A severe erosional phase followed the termination of the lake basin. This corresponds to the cessation of the N–S extension. When the N–S extension regenerated during the Pliocene(?)–Pleistocene, the Büyük Menderes graben system began to form. In the western part of the graben, a conjugated pair of oblique faults, the Priene–Sazlı fault and the Kuşadası fault, have formed. The faults having important strike-slip components, bounded a tectonic wedge, which began to move westward into the Aegean Sea region. Major morphological features of the region were formed under the effective control of these fault zones.  相似文献   

9.
Eastern Marmara region consists of three different morphotectonic units: Thrace–Kocaeli Peneplain (TKP) and Çamdağ–Akçakoca Highland (ÇAH) in the north, and Armutlu–Almacık Highland in the south of the North Anatolian Fault Zone (NAFZ). The geologic‐morphologic data and seismic profiles from the Sakarya River offshore indicate that the boundary between the TKP in the west and ÇAH in the east is a previously unrecognized major NNE–SSW‐trending strike‐slip fault zone with reverse component. The fault zone is a distinct morphotectonic corridor herein named the Adapazarı–Karasu corridor (AKC) that runs along the Sakarya River Valley and extends to its submarine canyon along the southern margin of the Black Sea in the north. It formed as a transfer fault zone between the TKP and ÇAH during the Late Miocene; the former has been experiencing extensional forces and the latter compressional forces since then. East–West‐trending segments of the NAFZ cuts the NE–SW‐trending AKC and their activity has resulted in the formation of a distinct fault‐bounded morphology, which is characterized by alternating E–W highlands and lowlands in the AKC. Furthermore, this activity has resulted in the downward motion of an ancient delta and submarine canyon of the Sakarya River in the northern block of the NAFZ below sea level so that the waters of the Black Sea invaded them. The NE–SW‐trending faults in the AKC were reactivated with the development of the NAFZ in the Late Pliocene, which then caused block motions and microseismic activities throughout the AKC. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Hasandağ and Erciyes stratovolcanoes, which produced both calc-alkaline and alkaline eruptive products, are the two important volcanic complexes in Central Anatolia. There are three geochemical evolution stages in the history of the Hasandağ strato volcanic complex: (1) Keçikalesi tholeiitic, (2) Hasandağ calc-alkaline and (3) Hasandağ alkaline. Volcanologic and petrologic characteristics of the Hasandağ and Erciyes calc-alkaline series show that water played an important role on the genesis of these rocks. These rocks are phenocryst-rich with vesicular texture, and contain hydrous mineral phases. The approximate pressure and temperature estimates obtained from the mineral chemistry studies of the Hasandağ strato volcanic complex indicate crystallization temperature of 1100 °C with 2.5–3.4 kbar pressure interval for the first stage of Keçikalesi tholeiitic volcanism, and about 850 °C temperatures with 4.3–9.6 kbar pressure intervals for the second stage of Hasandağ calc-alkaline volcanism.The geochemical evolution of Erciyes volcanic complex also exhibits three distinct evolutionary stages: (1) Koçdağ alkaline, (2) Koçdağ calc-alkaline and (3) Erciyes calc-alkaline. The temperature of Koçdağ alkaline volcanism is 1097–1181 °C and in a range of 5.1–6.7 kbar pressure, for Koçdağ calc-alkaline volcanism 850–1050 °C temperature to 2.0–6.6 kbar pressure interval, and for Erciyes calc-alkaline volcanism about 950 °C temperature, to 3.2–7.9 kbar pressure intervals were calculated. Polybaric origin of magma chambers for calc-alkaline and alkaline rocks and disequilibrium parameters observed in phenocrysts indicate that the rocks were affected by magma mixing processes in crustal magma chambers. The disequilibrium features of amphibole and plagioclase phenocrysts in these rocks point the latent heat in magma chambers and periodic recharging with mafic magma chambers and also show that magmas reequilibrate before the eruption.  相似文献   

11.
The Ericiyes Basin is a trans‐tensional basin situated 20 km north of the regional Ecemi? Fault Zone. Recently it has been hypothesized that faulting within the Erciyes Basin links with the Ecemi? Fault Zone further south as part of a regional Central Anatolian Fault Zone. New 40Ar/39Ar dating of volcanic and volcaniclastic rocks adjacent to faults, both along the margins and in the centre of the Erciyes Basin, constrains the timing of basin inception and later faulting. Extensional faulting occurred along the eastern and western margins of the basin during the Early Messinian (latest Miocene). Sinistral and minor normal faulting were active along the axis of the basin during the early Pleistocene. These fault timings are similar to those inferred for the Ecemi? Fault Zone further south, and support the hypothesis that faulting within the Erciyes Basin and the Ecemi? Fault Zone are indeed linked.  相似文献   

12.
A morphometric analysis was carried out to describe the topography and drainage characteristics of Papanasam and Manimuthar watersheds. These watersheds are part of Western Ghats, which is an ecologically sensitive region. The drainage areas of Papanasam and Manimuthar watersheds are 163 and 211 km2, respectively and they show patterns of dendritic to sub-dendritic drainage. The slope of both watersheds varied from 0° to 59° and 0° to 55°, respectively. Moreover, the slope variation is chiefly controlled by the local geology and erosion cycles. Each watershed was classified as a fifth-order drainage basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds.  相似文献   

13.
14.
A.S.Meriaux    P.Tapponnier    F.J.Ryerson    Xu Xiwei    Wang Feng    J.Vanderwoerd   《地学前缘》2000,(Z1)
LARGE-SCALE STRAIN PATTERNS,GREAT EARTHQUAKE BREAKS,AND LATE PLEISTOCENE SLIP-RATE ALONG THE ALTYN TAGH FAULT (CHINA)  相似文献   

15.
The Altınekin Complex in south central Turkey forms part of the south‐easterly extension of the Tavşanlı Zone, a Cretaceous subduction complex formed during the closure of the Neo‐Tethys ocean. The protoliths of metamorphic rocks within the Altınekin Complex include peridotites, chromitites, basalts, ferruginous cherts and flysch‐facies impure carbonate sediments. Structurally, the complex consists of a stack of thrust slices, with massive ophiolite tectonically overlying a Cretaceous sediment‐hosted ophiolitic mélange, in turn overlying a sequence of Mesozoic sediments. Rocks within the two lower structural units have undergone blueschist–facies metamorphism. Petrographic, mineral–chemical and thermobarometric studies were undertaken on selected samples of metasedimentary and metabasic rock in order to establish the time relations of deformation and metamorphism and to constrain metamorphic conditions. Microstructures record two phases of plastic deformation, one predating the metamorphic peak, and one postdating it. Estimated peak metamorphic pressures mostly fall in the range 9–11 kbar, corresponding to burial depths of 31–38 km, equivalent to the base of a continental crust of normal thickness. Best‐fit peak metamorphic temperatures range from 375 to 450°C. Metamorphic fluids had high H2O:CO2 ratios. Peak metamorphic temperature/depth ratios (T/d values) were low (c. 10–14°C/km), consistent with metamorphism in a subduction zone. Lawsonite‐bearing rocks in the southern part of the ophiolitic mélange record lower peak temperatures and T/d values than epidote blueschists elsewhere in the unit, hinting that the latter may consist of two or more thrust slices with different metamorphic histories. Differences in peak metamorphic conditions also exist between the ophiolitic mélange and the underlying metasediments. Rocks of the Altınekin Complex were subducted to much shallower depths, and experienced higher geothermal gradients, than those of the NW Tavşanlı Zone, possibly indicating dramatic lateral variation in subduction style. Retrograde PT paths in the Altınekin Complex were strongly decompressive, resulting in localized overprinting of epidote blueschists by greenschist–facies assemblages, and of lawsonite blueschists by pumpellyite–facies assemblages. The observation that the second deformation was associated with decompression is consistent with, but not proof of, exhumation by a process that involved deformation of the hanging‐wall wedge, such as gravitational spreading, corner flow or buoyancy‐driven shallowing of the subduction zone. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
GIS and Remote Sensing have proved to be an indispensible tool in morphometric analysis. The identification of morphometric properties based on a geographic information system (GIS) was carried out in two watersheds in the Thrissur district of Kerala, India. These watersheds are parts of Western Ghats, which is an ecologically sensitive area. Quantitative geomorphometric analysis was carried out for the Chimmini and Mupily watersheds independently by estimating their (a) linear aspects like stream number, stream order, stream length, mean stream length, stream length ratio, bifurcation ratio, length of overland flow, drainage pattern (b) aerial aspects like circulatory ratio, elongation ratio, drainage density and (c) relief aspects like basin relief, relief ratio, relative relief and ruggedness number. The drainage areas of Chimmini and Mupily watersheds are 140 and 122 km2 respectively and show patterns of dendritic to sub-dendritic drainage. The Chimmini watershed was classified as a sixth order drainage basin, whereas Mupily watershed was classified as a fifth order basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in the stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds. The slope of both watersheds varied from 0° to 50° and 0° to 42° respectively and the slope variation is chiefly controlled by the local geology and erosion cycles. Moreover, these studies are useful for planning rain water harvesting and watershed management.  相似文献   

17.
A morphostructural analysis of a Pliocene flood basalt formation in the southern Neuquén basin (40°S) shows evidence of contractional deformation less than 3.5 Ma ago. This formation exhibits a general dip towards the south‐east, with relict outcrops located 100 m higher than the main source volcano, which suggests a local tilting of the lava flow. This tilt has been brought about by Plio‐Quaternary reactivation of the eastern border of the Sañico Massif along two thrusts that offset the lava flow. Another long‐wavelength bulge in the southern part of the lava flow unit indicates a possible Pliocene uplift of the North Patagonian Massif. These results provide new evidence of continuing shortening in the Neuquén basin during the Plio‐Quaternary, challenging the hypothesis that an extensional regime has existed since the end of the Miocene in this basin.  相似文献   

18.
A geomorphic unit Usri drainage basin (latitude: 24° 04′00″ N to 24° 34′00″ N and longitude 86°05′00″E to 86°25′00″E) lies in north-eastern parts of Chhotanagpur Plateau, India, has been selected for morphometric analysis. Digital elevation model (DEM) has been generated by Cartosat stereo pair data at 10-m resolution. The morphometric parameters considered for the analysis includes the linear, areal, and relief aspects of the basin. Morphometric analysis of the river network and the basin revealed that the Usri Basin has sixth-order river network with a dendritic drainage pattern. The dendritic drainage pattern indicates that the basin has homogeneous lithology, gentle regional slope, and lack of structural control. The bifurcation ratio between different successive orders varies but the mean ratio is low that suggests the higher permeability and lesser structural control. The low drainage density, poor stream frequency, and moderately coarse drainage texture values of the basin indicate that the terrain has gentle slope, is made up of loose material, and hence has good permeability of sub-surface material and significant recharge of ground water. The shape parameters indicate that the basin is elongated in shape with low relief, high infiltration capacity, and less water flow for shorter duration in basin. The 50 % of the basin has altitude below 300 m and gently sloping towards the southeast direction. All the morphometric parameters and existing erosional landforms indicated mature to early old stage topography.  相似文献   

19.
The Wagner basin occupies the northernmost spreading centre in the Gulf of California, located along the Pacific‐North America plate boundary. It is filled with sediments from the Colorado River that obscure its bathymetric expression; therefore it is not as well defined as other basins in the central and southern Gulf of California. To define the geometry and extension of the Wagner basin, a 2D multi‐channel seismic reflection database was used. Data were collected by Petroleos Mexicanos (PEMEX) in 1979–1980. The most important regional structural features identified are the Consag and Wagner normal faults and the Cerro Prieto strike‐slip fault. These structures play an important role in the development of the basin. The Consag fault, described for the first time in this paper, marks the western side of the basin. The eastern and northwest limits are bound by the Cerro Prieto and Wagner faults respectively. The Wagner fault intersects the Cerro Prieto fault at an angle of 130°, bending the depocentre in a NW direction, adjacent to the Cerro Prieto fault zone. The northernmost segment of the Consag fault bends 25° in a NE direction and joins the Cerro Prieto fault at an angle of 110°. Greater subsidence (up to 300 m) takes place along the northern trace of the Cerro Prieto fault, with a downthrown displacement of 400 m. The Consag and Wagner breaks obliquely intersect the Cerro Prieto fault, and, inasmuch as both are normal faults, they have small horizontal slip components which generated oblique displacement. This structural pattern is different relative to the pattern of basins located south of Wagner basin, such as the Upper and Lower Delfin basins. The orientations of the normal faults are perpendicular to the master fault (Ballenas transform fault). The relationship between normal and transform faults in the Wagner basin and the observed ‘S’ shape are typical of a basin that has not yet reached maturity. As a result of this study, the previously uncertain area (~1330 km2) and perimeter (158 km) of the Wagner basin were defined.  相似文献   

20.
The “Bolivian orocline” is the change in trend of the Andes from NW to N near 18°S. Paleomagnetic data have been used to infer that this bend was in part produced by wholesale opposed rotations (15–20° counterclockwise north of the bend and 15–20° clockwise south of it) of the two limbs of the orocline. Besides paleomagnetic data, shortening estimates from balanced cross-sections and variations in crustal cross-sectional area provide quantitative information on rotations and translations. The three sets of data do not agree closely, and therefore only loosely constrain the kinematics of the orocline. A map view kinematic model incorporating the major faults gives a more detailed picture. The resulting displacement field suggests that movement perpendicular to the orogen increases toward the bend, whereas the component of orogen-parallel movement increases away from it. Only weak rotations are indicated for the bend region. It is speculated that large-scale regional rotations of the limbs of the orocline are markedly lower than previously suggested, probably of the order of 5–10°. Stronger rotations are associated with strong lateral shortening gradients or may result from superimposed local phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号