首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
As groundwater becomes an increasingly important water resource worldwide, it is essential to understand how local geology affects groundwater quality, flowpaths and residence times. This study utilized multiple tracers to improve conceptual and numerical models of groundwater flow in the Middle San Pedro Basin in southeastern Arizona (USA) by determining recharge areas, compartmentalization of water sources, flowpaths and residence times. Ninety-five groundwater and surface-water samples were analyzed for major ion chemistry (water type and Ca/Sr ratios) and stable (18O, 2H, 13C) and radiogenic (3H, 14C) isotopes, and resulting data were used in conjunction with hydrogeologic information (e.g. hydraulic head and hydrostratigraphy). Results show that recent recharge (<60 years) has occurred within mountain systems along the basin margins and in shallow floodplain aquifers adjacent to the San Pedro River. Groundwater in the lower basin fill aquifer (semi confined) was recharged at high elevation in the fractured bedrock and has been extensively modified by water-rock reactions (increasing F and Sr, decreasing 14C) over long timescales (up to 35,000 years BP). Distinct solute and isotope geochemistries between the lower and upper basin fill aquifers show the importance of a clay confining unit on groundwater flow in the basin, which minimizes vertical groundwater movement.  相似文献   

2.
This study describes the hydrogeochemistry and distributions of As in groundwater from a newly investigated area of Burkina Faso. Groundwaters have been sampled from hand-pumped boreholes and dug wells close to the town of Ouahigouya in northern Burkina Faso. Although most analysed groundwaters have As concentrations of less than 10 μg L−1, they have a large range from <0.5 to 1630 μg L−1. The highest concentrations are found in borehole waters; all dug wells analysed in this study have As concentrations of <10 μg L−1. Skin disorders (melanosis, keratosis and more rare skin tumour) have been identified among the populations in three villages in northern Burkina Faso, two within the study area. Although detailed epidemiological studies have not been carried out, similarities with documented symptoms in other parts of the world suggest that these are likely to be linked to high concentrations of As in drinking water. The high-As groundwaters observed derive from zones of Au mineralisation in Birimian (Lower Proterozoic) volcano-sedimentary rocks, the Au occurring in vein structures along with quartz and altered sulphide minerals (pyrite, chalcopyrite, arsenopyrite). However, the spatial variability in As concentrations in the mineralised zones is large and the degree of testing both laterally and with depth so far is limited. Hence, concentrations are difficult to predict on a local scale. From available data, the groundwater appears to be mainly oxic and the dissolved As occurs almost entirely as As(V) although concentrations are highest in groundwaters with dissolved-O2 concentrations <2 mg L−1. The source is likely to be the oxidised sulphide minerals and secondary Fe oxides in the mineralised zones. Positive correlations are observed between dissolved As and both Mo and W which are also believed to be derived from ore minerals and oxides in the mineralised zones. The discovery of high As concentrations in some groundwaters from the Birimian rocks of northern Burkina Faso reiterates the need for reconnaissance surveys in mineralised areas of crystalline basement.  相似文献   

3.
Three wells in New Hampshire were sampled bimonthly over three years to evaluate the temporal variability of arsenic concentrations and groundwater age.All samples had measurable concentrations of arsenic throughout the entire sampling period and concentrations in individual wells had a mean variation of more than 7 μg/L.The time series data from this sampling effort showed that arsenic concentrations ranged from a median of 4 μg/L in a glacial aquifer well(SGW-65)to medians of 19μg/L and37 μg/L in wells(SGW-93 and KFW-87)screened in the bedrock aquifer,respectively.These high arsenic concentrations were associated with the consistently high pH(median≥8)and low dissolved oxygen(median0.1 mg/L)in the bedrock aquifer wells,which is typical of fractured crystalline bedrock aquifers in New Hampshire.Groundwater from the glacial aquifer often has high dissolved oxygen,but in this case was consistently low.The pH also is generally acidic in the glacial aquifer but in this case was slightly alkaline(median = 7.5).Also,sorption sites may be more abundant in glacial aquifer deposits than in fractured bedrock which may contribute to lower arsenic concentrations.Mean groundwater ages were less than 50 years old in all three wells and correlated with conservative tracer concentrations,such as chloride;however,mean age was not directly correlated with arsenic concentrations.Arsenic concentrations at KFW-87 did correlate with water levels,in addition,there was a seasonal pattern,which suggests that either the timing of or multiple sampling efforts may be important to define the full range of arsenic concentrations in domestic bedrock wells.Since geochemically reduced conditions and alkaline pHs are common to both bedrock and glacial aquifer wells in this study,groundwater age correlates less strongly with arsenic concentrations than geochemical conditions.There also is evidence of direct hydraulic connection between the glacial and bedrock aquifers,which can influence arsenic concentrations.Correlations between arsenic concentrations and the age of the old fraction of water in SGW-65 and the age of the young fraction of water in SGW-93 suggest that water in the two aquifers may be mixing or at least some of the deeper,older water captured by the glacial aquifer well may be from a similar source as the shallow young groundwater from the bedrock aquifer.The contrast in arsenic concentrations in the two aquifers may be because of increased adsorption capacity of glacio-fluvial sediments,which can limit contaminants more than fractured rock.In addition,this study illustrates that long residence times are not necessary to achieve more geochemically evolved conditions such as high pH and reduced conditions as is typically found with older water in other regions.  相似文献   

4.
Groundwater with high geogenic arsenic (As) is extensively present in the Holocene alluvial aquifers of Ghazipur District in the middle Gangetic Plain, India. A shift in the climatic conditions, weathering of carbonate and silicate minerals, surface water interactions, ion exchange, redox processes, and anthropogenic activities are responsible for high concentrations of cations, anions and As in the groundwater. The spatial and temporal variations for As concentrations were greater in the pre-monsoon (6.4–259.5 μg/L) when compared to the post-monsoon period (5.1–205.5 µg/L). The As enrichment was encountered in the sampling sites that were close to the Ganges River (i.e. south and southeast part of Ghazipur district). The depth profile of As revealed that low concentrations of NO3 are associated with high concentration of As and that As depleted with increasing depth. The poor relationship between As and Fe indicates the As release into the groundwater, depends on several processes such as mineral weathering, O2 consumption, and NO3 reduction and is de-coupled from Fe cycling. Correlation matrix and factor analysis were used to identify various factors influencing the gradual As enrichment in the middle Gangetic Plain. Groundwater is generally supersaturated with respect to calcite and dolomite in post-monsoon period, but not in pre-monsoon period. Saturation in both periods is reached for crystalline Fe phases such as goethite, but not with respect to poorly crystalline Fe phases and any As-bearing phase. The results indicate release of arsenic in redox processes in dry period and dilution of arsenic concentration by recharge during monsoon. Increased concentrations of bicarbonate after monsoon are caused by intense flushing of unsaturated zone, where CO2 is formed by decomposition of organic matter and reactions with carbonate minerals in solid phase. The present study is vital considering the fact that groundwater is an exclusive source of drinking water in the region which not only makes situation alarming but also calls for the immediate attention.  相似文献   

5.
Geologic and geochemical variations across a 4200 km2 area of south-central Wisconsin (USA) were used to examine their relationship to phosphorus concentrations in groundwater from more than four hundred private water supply wells. Surficial geology in the study area ranged from Cambrian sandstones to Ordovician dolomites. Groundwater phosphorus concentrations were higher in aquifers of older Cambrian age compared to the concentrations in aquifers of younger Cambrian and Ordovician age. Because iron concentrations were relatively low in these waters and agricultural land use was similar in all geologic regions, we propose that the differences in bedrock phosphorus and anthropogenic geochemical impacts explain the differences in phosphorus concentrations between aquifers. Within the older Cambrian aquifers, groundwater phosphorus concentrations were elevated in groundwater with higher nitrate-nitrogen concentrations. This finding is consistent with the presence of phosphorus within sediment in these strata and geologic conditions that weakly buffered pH reduction from anthropogenic acidification. In contrast, groundwater phosphorus concentrations in younger Cambrian and Ordovician aquifers were not elevated in samples with higher nitrate. Anthropogenic acidification in these carbonate-rich aquifers was neutralized through increased carbonate weathering, which led to higher groundwater calcium and alkalinity and would limit the dissolution of phosphate-rich minerals, such as apatite, where present. Low iron concentrations observed in most samples suggest that the phosphorus release in the Cambrian strata occurs beyond the zone of secondary mineral retention in the soil. These results have important implications for the eutrophication of inland surface waters in areas with bedrock phosphorus and anthropogenic acidity that is not neutralized before it contacts phosphatic rock.  相似文献   

6.
Twenty-nine wells were selected for groundwater sampling in the town of Shahai, in the Hetao basin, Inner Mongolia. Four multilevel samplers were installed for monitoring groundwater chemistry at depths of 2.5–20 m. Results show that groundwater As exhibits a large spatial variation, ranging between 0.96 and 720 μg/L, with 71% of samples exceeding the WHO drinking water guideline value (10 μg/L). Fluoride concentrations range between 0.30 and 2.57 mg/L. There is no significant correlation between As and F concentrations. Greater As concentrations were found with increasing well depth. However, F concentrations do not show a consistent trend with depth. Groundwater with relatively low Eh has high As concentrations, indicating that the reducing environment is the major factor controlling As mobilization. Low As concentrations (<10 μg/L) are found in groundwater at depths less than 10 m. High groundwater As concentration is associated with aquifers that have thick overlying clay layers. The clay layers, mainly occurring at depths <10 m, have low permeability and high organic C content. These strata restrict diffusion of atmospheric O2 into the aquifers, and lead to reducing conditions that favor As release. Sediment composition is an additional factor in determining dissolved As concentrations. In aquifers composed of yellowish-brown fine sands at depths around 10 m, groundwater generally has low As concentrations which is attributed to the high As adsorption capacity of the yellow–brown Fe oxyhydroxide coatings. Fluoride concentration is positively correlated with pH and negatively correlated with Ca2+ concentration. All groundwater samples are over-saturated with respect to calcite and under-saturated with respect to fluorite. Dissolution and precipitation of Ca minerals (such as fluorite and calcite), and F adsorption–desorption are likely controlling the concentration of F in groundwater.  相似文献   

7.
Widespread agricultural activity may threaten water quality in fractured bedrock aquifers having little overburden protection. A study in Canada improves the understanding of the potential impact of agriculture on water quality in bedrock aquifers, focusing on spatial and temporal variability of nitrate and bacteria. A research site was developed in and adjacent to a hay field where a gneissic aquifer is overlain by a thin veneer of unconsolidated glacial material. Ten wells were installed, hydraulically tested and completed as multilevel piezometers. Results of monthly sampling for nitrate, dissolved organic carbon, and E. coli show significant temporal and spatial variation in concentrations. Intensive 5-day sampling rounds conducted during baseflow and recharge conditions indicate that bacterial concentrations vary daily, with higher concentrations during recharge periods. The location of the impacted monitoring wells is correlated to an upgradient cattle pasture that is used periodically each summer. It is evident that periodic upgradient sources, dilution from recharge, and heterogeneous flow systems lead to varied and unpredictable contaminant concentrations. The temporal and spatial variability of contaminants in bedrock aquifers with minimal overburden must be considered for the protection of human health, as annual or even monthly groundwater monitoring may not capture unsafe concentrations.  相似文献   

8.
The assessment of groundwater quality in shallow aquifers is of high societal relevance given that large populations depend directly on these water resources. The purpose of this study was to establish links between groundwater quality, groundwater residence times, and regional geology in the St. Lawrence Lowlands fractured bedrock aquifer. The study focuses on a 4500 km2 watershed located in the St. Lawrence Lowlands of the province of Quebec in eastern Canada. A total of 150 wells were sampled for major, minor, and trace ions. Tritium (3H) and its daughter element, 3He, as well as radiocarbon activity (A14C) were measured in a subset of wells to estimate groundwater residence times. Results show that groundwater evolves from a Ca–HCO3 water type in recharge zones (i.e., the Appalachian piedmont) to a Na–HCO3 water type downgradient, toward the St. Lawrence River. Locally, barium (Ba), fluoride (F), iron (Fe), and manganese (Mn) concentrations reach 90, 2, 18, and 5.9 mg/L respectively, all exceeding their respective Canadian drinking water limits of 1, 1.5, 0.3, and 0.05 mg/L. Release of these elements into groundwater is mainly controlled by the groundwater redox state and pH conditions, as well as by the geology and the duration of rock–water interactions. This evolution is accompanied by increasing 3H/3He ages, from 4.78 ± 0.44 years upgradient to more than 60 years downgradient. Discrepancies between calculated 3H/3He and 14C water ages (the latter ranging from 280 ± 56 to 17,050 ± 3410 years) suggest mixing between modern water and paleo-groundwater infiltrated through subglacial recharge when the Laurentide Ice Sheet covered the study area, and during the following deglaciation period. A linear relationship between 3H activity and corrected 14C versus Mg/Ca and Ba support a direct link between water residence time and the chemical evolution of these waters. The Ba, F, Fe, and Mn concentrations in groundwater originate from Paleozoic rocks from both the St. Lawrence Platform and the Appalachian Mountains. These elements have been brought to the surface by rising hydrothermal fluids along regional faults, and trapped in sediment during their deposition and diagenesis due to reactions with highly sulfurous and organic matter-rich water. Large-scale flow of meltwater during subglacial recharge and during the subsequent retreat of the Laurentide Ice Sheet might have contributed to the leaching of these deposits and their enrichment in the present aquifers. This study brings a new and original understanding of the St. Lawrence Lowlands groundwater system within the context of its geological evolution.  相似文献   

9.
Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site in Raymond, New Hampshire, USA, showed evidence of locally enhanced As mobilization in relatively reducing (mixed oxic-anoxic to anoxic) conditions as determined by redox classification and other lines of evidence. Redox classification was determined from geochemical indicators based on threshold concentrations of dissolved oxygen (DO), nitrate (NO 3 ), iron (Fe2+), manganese (Mn2+), and sulfate (SO 4 2– ). Redox conditions were evaluated also based on methane (CH4), excess nitrogen gas (N2) from denitrification, the oxidation state of dissolved As speciation (As(III) and As(V)), and several stable isotope ratios. Samples from the residential-supply wells primarily exhibit mixed redox conditions, as most have long open boreholes (typically 50–100?m) that receive water from multiple discrete fractures with contrasting groundwater chemistry and redox conditions. The methods employed in this study can be used at other sites to gauge redox conditions and the potential for As mobilization in complex fractured crystalline-rock aquifers where multiple lines of evidence are likely needed to understand As occurrence, mobility, and transport.  相似文献   

10.
Hydrogeologic framework of the Maku area basalts, northwestern Iran   总被引:1,自引:0,他引:1  
The Maku area in northwestern Iran is characterized by young lava flows which erupted from Mount Ararat in Turkey. These fractured volcanic rocks overlie alluvium associated with pre-existing rivers and form a good basalt-alluvium aquifer over an area of 650 km2. Groundwater discharge occurs from 12 large springs, ranging from 20 to 4,000 L s?1, and from some extraction wells. Permian and Oligo-Miocene age limestones along the northern boundary of the Bazargan and Poldasht Plains basalts are intensively karstified and groundwater from these high lands easily enters the basalt-alluvium aquifers. The transmissivity of the basalt-alluvium aquifer ranges from 24 to 870 m2 d?1, indicating heterogeneity. Groundwater of the aquifer is a sodium-bicarbonate and mixed cation-bicarbonate type and the concentration of fluoride is higher than the universal maximum admissible concentrations for drinking. In order to determine the chemical composition and identify the source of the high fluoride concentrations in the groundwater of the basaltic area, water samples from the springs, wells and rivers were analyzed. The results indicate that the high fluoride water enters the study area from the Sari Su River.  相似文献   

11.
The Silurian bedrock aquifer constitutes a major aquifer system for groundwater supply across the Ontario province in Canada. The application of natural and industrial fertilizers near urban centers has led to groundwater NO3-N concentrations that sometimes have exceeded the drinking water limit, posing a threat to the usage of groundwater for the human consumption. Therefore, there is a growing interest and concern about how nitrate is being leached, transported and potentially attenuated in bedrock aquifers. This study assesses the local distribution of groundwater NO3 in the up-gradient area of two historically impacted municipal wells, called Carter Wells, in the City of Guelph, Canada, in order to evaluate the potential nitrate attenuation mechanisms, using both groundwater geochemical and isotopic analysis (3H, δ15N-NO3, δ18O-NO3, δ18O-SO4, δ34S-SO4) and a detailed vertical hydrogeological and geochemical bedrock characterization. The results indicate that probably the main source of nitrate to the Carter Wells is the up-gradient Arkell Research Station (ARS), an agricultural research facility where manure has been historically applied. The overburden and bedrock groundwater with high NO3 concentrations at the ARS exhibits a manure-related δ15N and δ18O signature, isotopically similar to the high nitrate in the down-gradient groundwater from domestic wells and from the Carter Wells. The nitrate spatial distribution appears to be influenced and controlled by the geology, in which more permeable rock is found in the Guelph Formation which in turn is related to most of the high NO3 groundwater. The presence of an underlying low permeability Eramosa Formation favors the development of oxygen-depleted conditions, a key factor for the occurrence of denitrification. Groundwater with low NO3-N concentrations associated with more oxygen-limited conditions and coincident with high SO42− concentrations are related to more enriched δ15N and δ18O values in NO3 and to more depleted δ34S and δ18O values in SO42−, suggesting that denitrification coupled with pyrite oxidation is taking place. The presence of macro crystalized and disseminated pyrite especially in the Eramosa Formation, can support the occurrence of this attenuation process. Moreover, based on tritium analysis, some denitrification can occur in shallow bedrock and within relatively short residence times, associated with less permeable conditions in depth which facilitates oxygen consumption through sulfide oxidation. The role of denitrification mediated by organic carbon cannot be discarded at the study site. This study suggests that the geological configuration and particularly the presence of low permeability Eramosa Formation can play an important role on nitrate natural attenuation, which may serve as a decision factor on defining the bedrock water supply system for both domestic and municipal purposes.  相似文献   

12.
It is necessary to understand the presence, movement, and persistence of contaminants in aquifers to develop adequate groundwater protection plans. Fractured bedrock aquifers with thin overburden cover are very sensitive to contamination, and little is known about transport processes from the ground surface to depth in this setting. This study was undertaken to investigate the potential of groundwater contamination by polybrominated diphenyl ethers (PBDEs), which are flame retardants, in a natural fractured bedrock aquifer in Canada proven to be sensitive to contamination. PBDEs, which had not been previously measured in groundwater in detail, were detected in the study aquifer at concentrations greater than those observed in surface-water bodies. Potential sources include manure, septic tanks, and the atmosphere. From this scoping study, it is evident that additional surveys of PBDE concentrations in groundwater are warranted, especially in settings with high potential source concentrations coupled with sensitive aquifers.  相似文献   

13.
Increased groundwater withdrawals for the growing population in the Rio Grande Valley and likely alteration of recharge to local aquifers with climate change necessitates an understanding of the groundwater connection between the Jornada del Muerto Basin and the adjoining and more heavily used aquifer in the Mesilla Basin. Separating the Jornada and Mesilla aquifers is a buried bedrock high from Tertiary intrusions. This bedrock high or divide restricts and/or retards interbasin flow from the Jornada aquifer into the Mesilla aquifer. The potentiometric surface of the southern Jornada aquifer near part of the bedrock high indicates a flow direction away from the divide because of a previously identified damming effect, but a groundwater outlet from the southern Jornada aquifer is necessary to balance inputs from the overall Jornada aquifer. Differences in geochemical constituents (major ions, δD, δ18O, δ34S, and 87Sr/86Sr) indicate a deeper connection between the two aquifers through the Tertiary intrusions where Jornada water is geochemically altered because of a geothermal influence. Jornada groundwater likely is migrating through the bedrock high in deeper pathways formed by faults of the Jornada Fault Zone, in addition to Jornada water that overtops the bedrock high as previously identified as the only connection between the two aquifers. Increased groundwater withdrawals and lowering of the potentiometric surface of the Jornada aquifer may alter this contribution ratio with less overtopping of the bedrock high and a continued deeper flowpath contribution that could potentially increase salinity values in the Mesilla Basin near the divide.  相似文献   

14.
Groundwater recharge and agricultural contamination   总被引:21,自引:1,他引:20  
Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water–rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agricultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3 , N2, Cl, SO4 2–, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well as a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3 , a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge. Electronic Publication  相似文献   

15.
Groundwater is the major source of water and a critical resource for socioeconomic development in semi-arid environments like the Johannesburg area. Environmental isotopes are employed in this study to characterise groundwater recharge and flow mechanisms in the bedrock aquifers of Johannesburg, which is known for polluted surface water. With the exception of boreholes near the Hartbeespoort Dam, groundwater in the study area was derived from meteoric water that has undergone some degree of evaporation before recharge, possibly via diffuse mechanisms. Boreholes that tap groundwater from the Transvaal Supergroup Formation show depletion in δ18O and δ2H values. This is attributed to diffuse recharge through weathering fractures at high elevation that are undergoing deep circulation or recharge from depleted rainfall from the high-latitude moisture sources. The influence of focused recharge from the Hartbeespoort Dam was observed in the boreholes north of the dam, possibly as a result of the north–south trending fault lines and the north-dipping fractures in the bedding planes of quartzites. This is also supported by a reservoir water budget method which indicated a mean annual net flux of 2,084,131 m3 from Hartbeespoort Dam recharging groundwater per annum. Using tritium in the dam and boreholes located at 750 m and 5400 m downstream, average groundwater flow velocity was estimated as 202 m/year. An open system was observed in shale, andesite and granitic-gneiss aquifers indicating soil CO2 as a dominant source of carbon (δ13C) in groundwater. A closed system was also observed in dolomitic aquifers indicating carbonate dissolution as the predominant source of carbon.  相似文献   

16.
Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7?×?10?4 cm3 (STP) g–1?±?2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ~107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids.  相似文献   

17.
Groundwater pumped from the semi-confined Complex Terminal (CT) aquifer is an important production factor in irrigated oases agriculture in southern Tunisia. A rise in the groundwater salinity has been observed as a consequence of increasing abstraction from the aquifer during the last few decades. All sources of contamination were investigated using hydrochemical data available from the 1990s. Water samples were taken from wells tapping both the CT and the shallow aquifers and analyzed with regard to chemistry tracers. Hydrochemical and water quality data obtained through a sampling period (December 2010) and analysis program indicate that nitrate pollution can be a serious problem affecting groundwater due to the use of nitrogen (N) fertilizers–pesticides in agriculture. The concentration of nitrate in an groundwater-irrigated area in Gafsa oases basin was studied, where abstraction from an unconfined CT aquifer has increased threefold over 25 years to 34 million m3/year; groundwater levels are falling at up to 0.7 m/year; and groundwater is increasingly mineralised (TDS increase from 500 to 4,000 mg/L), with nitrate concentrations ranging from 16 to 320 mg/L.  相似文献   

18.
Groundwater is a precious resource for humankind not only in Nepal but also across the globe due to its diverse functions. A total of 48 groundwater samples were collected from three villages of Nawalparasi district, Nepal, during pre-monsoon and monsoon to estimate the overall groundwater quality and to identify the sources of contamination with emphasis on arsenic (As). The average concentrations of all tested groundwater quality parameters (temp., pH, EC, ORP, Ca2+, Mg2+, Na+, K+, Cl?, F?,SO4 2?, PO4 3?, HCO3 ?, NO3 ?, Cu, Ni, Mn, Cd, Pb, Fe, Zn, Cr, and As) were well within permissible limits of WHO for drinking water, except for Ni, Cd, Pb, Cr, and As. Concentration of As ranged from 60 to 3,100 μg L?1 and 155 to 1,338 μg L?1 in pre-monsoon and monsoon, respectively. The Piper diagram of the groundwater chemistry showed groundwater of Nawalparasi belongs to Ca–Mg–HCO3 and Mg–HCO3 water type with HCO3 ? as dominant ions. As content in the study area was negatively correlated with Fe in pre-monsoon, while it was positively correlated in monsoon. Furthermore, As was negatively correlated with oxidation reduction potential suggesting reducing condition of groundwater. Principal component analysis revealed seven major factors that explained 81.996 and 83.763 % of total variance in water quality in pre-monsoon and monsoon, respectively. The variance of water quality was related mainly with the degree of water–rock interaction, mineralization, and anthropogenic inputs.  相似文献   

19.
Grasslands of north-central Kansas are underlain by carbonate aquifers and shale aquitards. Chemical weathering rates in carbonates are poorly known, and, because large areas are underlain by these rocks, solute fluxes are important to estimating global weathering rates. Grasslands exist where the amount of precipitation is extremely variable, both within and between years, so studies in grasslands must account for changes in weathering that accompany changes in precipitation. This study: (1) identifies phases that dominate chemical fluxes at Konza Prairie Biological Station (KPBS) and Long-Term Ecological Research Site, and (2) addresses the impact of variable precipitation on mineral weathering. The study site is a remnant tallgrass prairie in the central USA, representing baseline weathering in a mid-temperate climate grassland.Groundwater chemistry and hydrology in the 1.2 km2 watershed used for this study suggest close connections between groundwater and surface water. Water levels fluctuate seasonally. High water levels coincide with periods of precipitation plus low evapotranspiration rather than during precipitation peaks during the growing season. Precipitation is concentrated before recharging aquifers, suggesting an as yet unquantified residence time in the thin soils.Groundwater and surface water are oversaturated with respect to calcite within limitations of available data. Water is more dilute in more permeable aquifers, and water from one aquifer (Morrill) is indistinguishable from surface water. Cations other than Ca co-vary with each other, especially Sr and Mg. Potassium and Si co-vary in all aquifers and surface water, and increases in concentrations of these elements are the best indicators of silicate weathering at this study site. Silicate-weathering indices correlate inversely to aquifer hydraulic conductivity.87Sr/86Sr in water ranges from 0.70838 to 0.70901, and it decreases with increasing Sr concentration and with increasing silicate-weathering index. Carbonate extracted from aquifer materials, shales, soil, and tufa has Sr ranging from about 240 (soil) to 880 ppm (Paleozoic limestone). 87Sr/86Sr ranges from 0.70834 ± 0.00006 (limestone) to 0.70904 ± 0.00019 (soil). In all cases, 87Sr/86Sr of aquifer limestone is lower than 87Sr/86Sr of groundwater, indicating a phase in addition to aquifer carbonate is contributing solutes to water.Aquifer recharge controls weathering: during periods of reduced recharge, increased residence time increases the total amount of all phases dissolved. Mixing analysis using 87Sr/86Sr shows that two end members are sufficient to explain sources of dissolved Sr. It is proposed that the less radiogenic end member is a solution derived from dissolving aquifer material; longer residence time increases its contribution. The more radiogenic end member solution probably results from reaction with soil carbonate or eolian dust. This solution dominates solute flux in all but the least permeable aquifer and demonstrates the importance that land-surface and soil-zone reactions have on groundwater chemistry in a carbonate terrain.  相似文献   

20.
In this study, analysis of hydrogeological conditions, as well as hydrochemistry and isotopic tools were used to get an insight into the processes controlling mineralization, recharge conditions, and flow pattern of groundwater in a typical arid alluvial-lacustrine plain in Qaidam Basin, northwest China. Analysis of the dissolved constituents reveals that groundwater evolves from fresh water (TDS =300–1000 mg/l) to saline water (TDS ≥5000 mg/l) along the flow paths, with the water type transiting from HCO 3?Cl–Na ?Mg to HCO 3?Cl–Na, and eventually to Cl–Na. Groundwater chemical evolution is mainly controlled by water–rock interaction and the evaporation–crystallization process. Deuterium and oxygen-18 isotopes in groundwater samples indicate that the recharge of groundwater is happened by meteoric water and glacier melt-water in the Kunlun Mountains, and in three different recharge conditions. Groundwater ages, estimated by the radiogenic (3H and 14C) isotope data, range from present to Holocene (~28 ka). Based on groundwater residence time, hydrogeochemical characteristics, field investigation, and geological structure distribution, a conceptual groundwater flow pattern affected by uplift structure is proposed, indicating that shallow phreatic water is blocked by the uplift structure and the flow direction is turned to the northwest, while high pressure artesian water is formed in the confined aquifers at the axis of the uplift structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号