首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
New data on metasomatic processes in the lithospheric mantle in the central part of the Arkhangelsk diamondiferous province (ADP) are presented. We studied the major- and trace-element compositions of minerals of 26 garnet peridotite xenoliths from the V. Grib kimberlite pipe; 17 xenoliths contained phlogopite. Detailed mineralogical, petrographic, and geochemical studies of peridotite minerals (garnet, clinopyroxene, and phlogopite) have revealed two types of modal metasomatic enrichment of the lithospheric-mantle rocks: high temperature (melt) and low-temperature (phlogopite). Both types of modal metasomatism significantly changed the chemical composition of the peridotites. Low-temperature modal metasomatism manifests itself as coarse tabular and shapeless phlogopite grains. Two textural varieties of phlogopite show significant differences in chemical composition, primarily in the contents of TiO2, Cr2O3, FeO, Ba, Rb, and Cs. The rock-forming minerals of phlogopite-bearing peridotites differ in chemical composition from phlogopite-free peridotites, mainly in higher FeO content. Most garnets and clinopyroxenes in peridotites are the products of high-temperature mantle metasomatism, as indicated by the high contents of incompatible elements and REE pattern in these minerals. Fractional-crystallization modeling gives an insight into the nature of melts (metasomatic agents). They are close in composition to picrites of the Izhmozero field, basalts of the Tur’ino field, and carbonatites of the Mela field of the ADP. The REE patterns of the peridotite minerals make it possible to determine the sequence of metasomatic enrichment of the lithospheric mantle beneath the V. Grib kimberlite pipe.  相似文献   

2.
The petrography and mineral composition of a mantle-derived garnet peridotite xenolith from the V. Grib kimberlite pipe (Arkhangelsk Diamond Province, Russia) was studied. Based on petrographic characteristics, the peridotite xenolith reflects a sheared peridotite. The sheared peridotite experienced a complex evolution with formation of three main mineral assemblages: (1) a relict harzburgite assemblage consist of olivine and orthopyroxene porphyroclasts and cores of garnet grains (Gar1) with sinusoidal rare earth elements (REE) chondrite C1 normalized patterns; (2) a neoblastic olivine and orthopyroxene assemblage; (3) the last assemblage associated with the formation of clinopyroxene and garnet marginal zones (Gar2). Major and trace element compositions of olivine, orthopyroxene, clinopyroxene and garnet indicate that both the neoblast and clinopyroxene-Gar2 mineral assemblages were in equilibrium with a high Fe-Ti carbonate-silicate metasomatic agent. The nature of the metasomatic agent was estimated based on high field strength elements (HFSE) composition of olivine neoblasts, the garnet-clinopyroxene equilibrium condition and calculated by REE-composition of Gar2 and clinopyroxene. All these evidences indicate that the agent was a high temperature carbonate-silicate melt that is geochemically linked to the formation of the protokimberlite melt.  相似文献   

3.
This study presents mineralogical and thermobarometric data for equilibrium peridotite assemblages from the V. Grib kimberlite pipe of the Arkhangelsk diamond province. We provided the first constraints on the composition, structure, thermal state, and lower boundary of the lithospheric mantle beneath the V. Grib kimberlite pipe. It was found that phlogopite-free and phlogopite-bearing peridotite xenoliths can be distinguished by their mineral chemistry. The occurrence of phlogopite in peridotites may represent evidence for modal metasomatism responsible for variation in the mineral composition of phlogopite-pyrope and pyrope peridotites. On the basis of P-T estimates, we conclude that modal metasomatism may have affected the entire thickness of the lithospheric mantle beneath the V. Grib kimberlite pipe. Comparison of our results with the available data from the literature shows strong vertical and lateral mantle heterogeneity beneath kimberlite pipes of the Lomonosov deposit and the V. Grib pipe.  相似文献   

4.
The primary garnet (pyrope-almandine)-omphacite (Cpx 1, 6.5–7 wt% Na2O)-sulfide (Fe-Ni-Co mss) assemblage of the two diamondiferous eclogite xenoliths studied (U33/1 and UX/1) experienced two mantle metasomatic events. The metasomatic event I is recorded by the formation of platy phlogopite (~ 10 wt% K2O), prior to incorporation of the xenoliths in the kimberlite. The bulk of the metasomatic alteration, consisting of spongy-textured clinopyroxene (Cpx 2A, 1–3 wt% Na2O), coarser-grained clinopyroxene (Cpx 2B, 2–5 wt% Na2O), pargasitic amphibole (~ 0.8 wt% K2O; 3–3.5 wt% Na2O), kelyphite (Cpx 3, mostly <1 wt% Na2O; and zoned Mg-Fe-Al spinel), sodalite, calcite, K-feldspar, djerfisherite (K5.95Na0.02Fe18.72Ni2.36Co0.01Cu4.08S26Cl ) and a small amount of K-Ca-Fe-Mg glass, is ascribed to the metasomatic event II that occurred also in the upper mantle, but after the xenoliths were incorporated in the kimberlite. A pervasive chloritic alteration (mainly clinochlore + magnetite) that overprints earlier assemblages probably took place in the upper crustal environment. The diamonds are invariably associated with secondary clinopyroxene and chlorite, but the diamonds formed before the entrainment of the xenoliths in the Udachnaya kimberlite.Editorial Responsibility: T.L. Grove  相似文献   

5.
A suite of metasomatised xenoliths from the Letlhakane kimberlite (Botswana) forms a metasomatic sequence from garnet peridotite to garnet phlogopite peridotite to phlogopite peridotite. Before the modal metasomatism, most of the Letlhakane xenoliths were depleted harzburgites that had been subjected to an earlier cryptic metasomatic event. Modal phlogopite and clinopyroxene - Cr-spinel increase at the expense of garnet and orthopyroxene with increasing degrees of metasomatism. The most metasomatised xenolith is a wehrlite. With progressive modal metasomatism, the clinopyroxene becomes enriched in Sr, Sc and the LREE, orthopyroxene becomes depleted in Ca and Ni, but enriched in Al and Mn, and olivine becomes depleted in Al and V. Garnet chemical composition largely remains unchanged. The garnet replacement reaction seen in most xenoliths allows the measurement of the flux of trace elements through detailed modal analysis of the pseudomorphs. Mass balance calculations show that the modally metasomatised rocks became enriched in incompatible elements such as Sr, Na, K, the LREE and the HFSE (Ti, Zr and Nb). Major elements (Al, Cr and Fe) and garnet-compatible trace elements (V, Y, Sc, and the HREE) were removed during this metasomatic process. The modal metasomatism caused a strong depletion in Al, and the results challenge previous suggestions that this metasomatic process merely occurred within an Al-poor environment. The data suggest that the xenoliths represent the mantle wallrock adjacent to a major conduit for an alkaline basic silicate melt (with high contents of volatile and incompatible elements). The volatile and incompatible element-enriched component of this melt percolated into the wallrock along a strong temperature gradient and caused the observed range of metasomatism.  相似文献   

6.
Coarse-grained, granular spinel lherzolites xenoliths from the Premier kimberlite show evidence of melt extraction and metasomatic enrichment, documenting a complex history for the shallow mantle beneath the Bushveld complex. Compositions of orthopyroxene, clinopyroxene and spinel indicate equilibration within the spinel–peridotite facies of the upper mantle, at depths from 80 to 100 km and temperatures from 720 to 850 °C. Bulk compositions have lower Mg-number [atomic 100 Mg/(Mg + Fe*)] than previously studied spinel peridotites from Premier, and have higher Mg/Si than low-temperature coarse grained garnet lherzolites, suggesting shallower melting conditions or metasomatic enrichment. Clinopyroxene in one sample is highly LREE-depleted indicating very minor modification of a residue of 20% melt extraction, whereas the calculated REE pattern for a melt in equilibrium with a mildly LREE-depleted sample is similar to MORB or late Archean basalt, possibly related to the Bushveld Complex. Bulk and mineral compositions suggest minimal refertilization by silicate melts in four out of six samples, but REE patterns indicate introduction of a LIL-enriched component that may be related to kimberlite.  相似文献   

7.
Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia)   总被引:3,自引:0,他引:3  
The megacryst suite of the Grib kimberlite pipe (Arkhangelsk province, Russia) comprises garnet, clinopyroxene, magnesian ilmenite, phlogopite and garnet-clinopyroxene intergrowths. Crystalline inclusions, mainly of clinopyroxene and picroilmenite, occur in garnet megacrysts. Ilmenite is characterized by a wide range in the contents of MgO (10.6–15.5 wt.%) and Cr2O3 (0.7–8.3 wt.%). Megacryst garnets show wide variations in Cr2O3 (1.3–9.6 wt.%) and CaO (3.6–11.0 wt.%) but relatively constant MgO (15.4–22.3 wt.%) and FeO (5.2–9.9 wt.%). The pyroxenes also show wide variations in such oxides as Cr2O3, Al2O3 and Na2O (0.56–2.95; 0.86–3.25; 1.3–3.0 wt.%, respectively). The high magnesium and chromium content of all these minerals puts them together in one paragenetic group. This conclusion was confirmed by studies of the crystalline inclusions in megacrysts, which demonstrate similar variations in composition. Low concentration of hematite in ilmenite suggests reducing conditions during crystallization. PT estimates based on the clinopyroxene geothermobarometer (Contrib. Mineral. Petrol. 139 (2000) 541) show wide variations (624–1208 °C and 28.8–68.0 kbars), corresponding to a 40–45 mW/m2 conductive geotherm. The majority of Gar-Cpx intergrowths differ from the corresponding monomineralic megacrysts in having higher Mg contents and relatively low TiO2. The minerals from the megacryst association, as a rule, differ from the minerals of mantle xenoliths, but garnets in ilmenite-bearing peridotite xenoliths are compositionally similar to garnet megacrysts. The common features of trace element composition of megacryst minerals and kimberlite (they are poor in Zr group elements) suggest a genetic relationship. The origin of the megacrysts is proposed to be genetically connected with kimberlite magma-chamber evolution on the one hand and with associated mantle metasomatism on the other. We suggest that, depending on the primary melt composition, different paragenetic associations of macro/megacrysts can be crystallized in kimberlites. They include: (1) Fe–Ti (Mir, Udachnaya pipes); (2) high-Mg, Cr (Zagadochna, Kusova pipes); (3) high-Mg, Cr, Ti (Grib pipe).  相似文献   

8.
The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ilmenite and clinopyroxene megacrysts.Deformed peridotites contain high-temperature Fe-rich clinopyroxenes,sometimes associated with picroilmenites,which are products of interaction of the lithospheric mantle with protokimberlite related melts.The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe.Coarse granular xenoliths fall on a geotherm of 35 mWm-2 whereas deformed varieties yield a 45 mWm-2)geotherm in the 2-7.5 GPa pressure interval.The chemistry of the constituent minerals including garnet,olivine and clinopyroxene shows trends of increasing Fe~#(=Fe/(Fe+Mg))with decreasing pressure.This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels.Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals,determined by LA-ICP-MS.Orthopyroxenes,some clinopyroxenes and rare garnets are depleted in Ba,Sr,HFSE and MREE and represent relic lithospheric mantle.Re-fertilized garnet and clinopyroxene are more enriched.The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene.Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets.Olivines show decreases in Ni and increases in Al,Ca and Ti from Mg-rich varieties to the more Fe-rich,deformed and refertilized ones.Minerals showing higher Fe~#(0.11-0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels.In P-f(O_2) diagrams,garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at-5 log units below a FMQ buffer.However,Cr-poor clinopyroxenes,together with ilmenite and some Fe-Ca-rich garnets,demonstrate a more oxidized trend in the lower part of lithosphere at-2 to 0 log units relative to FMQ.Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite.The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts,which is greater at the base of the lithosphere.  相似文献   

9.
Distribution of water among the main rock-forming nominally anhydrous minerals of mantle xenoliths of peridotitic and eclogitic parageneses from the Udachnaya kimberlite pipe, Yakutia, has been studied by IR spectroscopy. The spectra of all minerals exhibit vibrations attributed to hydroxyl structural defects. The content of H2O (ppm) in minerals of peridotites is as follows: 23–75 in olivine, 52–317 in orthopyroxene, 29–126 in clinopyroxene, and 0–95 in garnet. In eclogites, garnet contains up to 833 ppm H2O, and clinopyroxene, up to 1898 ppm (~ 0.19 wt.%). The obtained data and the results of previous studies of minerals of mantle xenoliths show wide variations in H2O contents both within different kimberlite provinces and within the Udachnaya kimberlite pipe. Judging from the volume ratios of mineral phases in the studied xenoliths, the water content varies over narrow ranges of values, 38–126 ppm. At the same time, the water content in the studied eclogite xenoliths is much higher and varies widely, 391–1112 ppm.  相似文献   

10.
The chemical compositions of garnets from 58 eclogite, 72 peridotite and 4 pyroxenite xenoliths in kimberlites have been estimated from their unit cell edge length and refractive indices. The samples studied were obtained from 17 kimberlite occurrences and include all those of known source which remain in the famous Williams (1932) collection which is stored at the University of Cape Town. Every suitable sample available to the authors has been examined.A gap in the range of garnet volume percentages occurs in the samples studied between approximately 15 and 30%. Garnet peridotites characteristically have <15% garnet and eclogites >30% garnet. Very rare exceptions occur. Our collection contains no eclogites with olivine and only one with orthopyroxene. All but two of the peridotite-pyroxenite group contain orthopyroxene. The garnets from the peridotites and pyroxenites plot on a pyrope-almandine-uvarovite triangle in a narrow band with a remarkably constant almandine/uvarovite ratio. Garnets from the eclogites are plotted on a pyrope-almandine-grossularite triangle and have a wide spread of compositions. These fall into 4 groups viz. eclogite I, eclogite II, kyanite eclogite and corundum eclogite.The reasons for the differences in garnet chemistry are considered and a tentative evolutionary scheme suggested by partial melting of the garnet peridotite which is assumed to occur in the upper mantle. Recent models of upper mantle composition and the genesis of garnet-bearing xenoliths in kimberlite are briefly and critically examined.S.A. UMP Publication No. 9.  相似文献   

11.
Olivine, orthopyroxene and garnet grains belonging to the peridotitic suite of mineral inclusions in natural diamonds typically show compositions poorer in Ca and Al and richer in Mg and Cr than the same minerals in peridotite nodules in kimberlite. Other features suggest the crystallisation of diamonds from magmas of kimberlitic affinities, and it is suggested that the genesis of peridotitic suite diamonds is linked with that of a CO2-bearing magma. It is shown that the generation of kimberlitic magma from common garnet-peridotite (with 5 wt.% clinopyroxene) in the presence of CO2 may rapidly remove by melting all Ca-rich solid phases (clinopyroxene and/or carbonate). Further melting may form liquids in equilibrium with olivine, orthopyroxene, and garnet with the distinctive compositions of the diamond inclusions. The amount of melting and CO2 necessary for the loss of clinopyroxene (and/or carbonate) are estimated at approximately 5.0 wt.% and 0.5 wt.% respectively.  相似文献   

12.
Six kimberlite pipes of late Cretaceous or Tertiary age occur in Riley Co., east-central Kansas. Within the pipes xenoliths of local sedimentary and exotic igneous rocks are common, especially in the Stockdale pipe. Igneous rocks which occur as xenoliths include granite, gabbro, metagabbro, pyroxenite and eclogite. In the eclogites omphacitic clinopyroxene (approx. Di52Jd24mol%) and pyropic garnet (approx. Py47Al35Gr12mol%) are the predominant minerals with subordinate amounts of rutile and sulphides (pyrrotite-pentlandite (?)-chalcopyrite). Interstitial kaersutitic amphibole is a minor constituent. The eclogites are chemically equivalent to olivine-basalt. The texture, composition and mineralogy of the eclogites from Kansas are similar to those of eclogites from kimberlite pipes in South Africa and Siberia. Whereas the rocks from these latter localities display a range in composition, those examined to date from Kansas are of fairly restricted composition. Furthermore it seems probable that the eclogites from Stockdale formed under limited P-T conditions within the mantle. This is the first record of such eclogites on the North American continent.  相似文献   

13.
Representative diamond-bearing gneisses and dolomitic marble, eclogite and Ti-clinohumite-bearing garnet peridotite from Unit I at Kumdy Kol and whiteschist from Unit II at Kulet, eastern Kokchetav Massif, northern Kazakhstan, were studied. Diamond-bearing gneisses contain variable assemblages, including Grt+Bt+Qtz±Pl±Kfs±Zo±Chl±Tur±Cal and minor Ap, Rt and Zrn; abundant inclusions of diamond, graphite+chlorite (or calcite), phengite, clinopyroxene, K-feldspar, biotite, rutile, titanite, calcite and zircon occur in garnet. Diamond-bearing dolomitic marbles consist of Dol+Di±Grt+Phl; inclusions of diamond, dolomite±graphite, biotite, and clinopyroxene were identified in garnet. Whiteschists carry the assemblage Ky+Tlc+Grt+Rt; garnet shows compositional zoning, and contains abundant inclusions of talc, kyanite and rutile with minor phlogopite, chlorite, margarite and zoisite. Inclusions and zoning patterns of garnet delineate the prograde P–T path. Inclusions of quartz pseudomorphs after coesite were identified in garnet from both eclogite and gneiss. Other ultrahigh-pressure (UHP) indicators include Na-bearing garnet (up to 0.14 wt% Na2O) with omphacitic Cpx in eclogite, occurrence of high-K diopside (up to 1.56 wt% K2O) and phlogopite in diamond-bearing dolomitic marble, and Cr-bearing kyanite in whiteschist. These UHP rocks exhibit at least three stages of metamorphic recrystallization. The Fe-Mg partitioning between clinopyroxene and garnet yields a peak temperature of 800–1000 °C at P >40 kbar for diamond-bearing rocks, and about 740–780 °C at >28–35 kbar for eclogite, whiteschist and Ti-bearing garnet peridotite. The formation of symplectitic plagioclase+amphibole after clinopyroxene, and replacement of garnet by biotite, amphibole, or plagioclase mark retrograde amphibolite facies recrystallization at 650–680 °C and pressure less than about 10 kbar. The exsolution of calcite from dolomite, and development of matrix chlorite and actinolite imply an even lower grade greenschist facies overprint at c. 420 °C and 2–3 kbar. A clockwise P–T path suggests that supracrustal sediments together with basaltic and ultramafic lenses apparently were subjected to UHP subduction-zone metamorphism within the diamond stability field. Tectonic mixing may have occurred prior to UHP metamorphism at mantle depths. During subsequent exhumation and juxtaposition of many other tectonic units, intense deformation chaotically mixed and mylonitized these lithotectonic assemblages.  相似文献   

14.
Here we present new data on the major and trace element compositions of silicate and oxide minerals from mantle xenoliths brought to the surface by the Carolina kimberlite, Pimenta Bueno Kimberlitic Field, which is located on the southwestern border of the Amazonian Craton. We also present Sr-Nd isotopic data of garnet xenocrysts and whole-rocks from the Carolina kimberlite. Mantle xenoliths are mainly clinopyroxenites and garnetites. Some of the clinopyroxenites were classified as GPP–PP–PKP (garnet-phlogopite peridotite, phlogopite-peridotite, phlogopite-K-richterite peridotite) suites, and two clinopyroxenites (eclogites) and two garnetites are relicts of an ancient subducted slab. Temperature and pressure estimates yield 855–1102 °C and 3.6–7.0 GPa, respectively. Clinopyroxenes are enriched in light rare earth elements (LREE) (LaN/YbN = 5–62; CeN/SmN = 1–3; where N = primitive mantle normalized values), they have high Ca/Al ratios (10–410), low to medium Ti/Eu ratios (742–2840), and low Zr/Hf ratios (13–26), which suggest they were formed by metasomatic reactions with CO2-rich silicate melts. Phlogopite with high TiO2 (>2.0 wt.%), Al2O3 (>12.0 wt.%), and FeOt (5.0–13.0 wt.%) resemble those found in the groundmass of kimberlites, lamproites and lamprophyres. Conversely, phlogopite with low TiO2 (<1.0 wt.%) and lower Al2O3 (<12.0 wt.%) are similar to those present in GPP-PP-PKP, and in MARID (mica-amphibole-rutile-ilmenite-diopside) and PIC (phlogopite-ilmenite-clinopyorxene) xenoliths. The GPP-PP-PKP suite of xenoliths, together with the clinopyroxene and phlogopite major and trace element signatures suggests that an intense proto-kimberlite melt metasomatism occurred in the deep cratonic lithosphere beneath the Amazonian Craton. The Sr-Nd isotopic ratios of pyrope xenocrysts (G3, G9 and G11) from the Carolina kimberlite are characterized by high 143Nd/144Nd (0.51287–0.51371) and εNd (+4.55 to +20.85) accompanied with enriched 87Sr/86Sr (0.70405–0.71098). These results suggest interaction with a proto-kimberlite melt compositionally similar with worldwide kimberlites. Based on Sr-Nd whole-rock compositions, the Carolina kimberlite has affinity with Group 1 kimberlites. The Sm-Nd isochron age calculated with selected eclogitic garnets yielded an age of 291.9 ± 5.4 Ma (2 σ), which represents the cooling age after the proto-kimberlite melt metasomatism. Therefore, we propose that the lithospheric mantle beneath the Amazonian Craton records the Paleozoic subduction with the attachment of an eclogitic slab into the cratonic mantle (garnetites and eclogites); with a later metasomatic event caused by proto-kimberlite melts shortly before the Carolina kimberlite erupted.  相似文献   

15.
Daniel J. Schulze 《Lithos》2003,71(2-4):195-213
A new empirical method has been devised for classification of mantle-derived garnets in kimberlite. Simple chemical screens have been developed to distinguish between garnets from different parageneses, based on Mg, Fe, Ca, Cr, Ti and Na values of published analyses of garnets from >2000 ultramafic xenoliths in kimberlite. Although crustal garnets are typically uncommon as xenocrysts in kimberlite, the first step in the classification is to screen these from the mantle population, using data from >600 garnet-bearing crustal rocks. Such a screen may also prove useful in evaluating the source (crust vs. mantle) of garnet in kimberlite exploration samples. Subsequent steps divide mantle garnets into eclogite, peridotite and Cr-poor megacryst groupings, and sub-groups of the peridotite (lherzolite, harzburgite, wehrlite) and eclogite (Groups I and II and A, B, C and grospydite) populations. Important features of this classification include the fact that it is based on distinctions between groups of fundamental geological significance (e.g., peridotite vs. eclogite) and it is based on a large, well-documented and well-understood xenolith database. As it utilizes oxide values and molar ratios of major and minor elements, the rationale for the screens is readily understood and it is simple to use.  相似文献   

16.
《Lithos》2007,93(1-2):175-198
The Neoproterozoic (∼ 820 Ma) Aries micaceous kimberlite intrudes the central Kimberley Basin, northern Western Australia, and has yielded a suite of 27 serpentinised ultramafic xenoliths, including spinel-bearing and rare, metasomatised, phlogopite–biotite and rutile-bearing types, along with minor granite xenoliths. Proton-microprobe trace-element analysis of pyrope and chromian spinel grains derived from heavy mineral concentrates from the kimberlite has been used to define a ∼ 35–40 mW/m2 Proterozoic geotherm for the central Kimberley Craton. Lherzolitic chromian pyrope highly depleted in Zr and Y, and Cr-rich magnesiochromite xenocrysts (class 1), probably were derived from depleted garnet peridotite mantle at ∼ 150 km depth. Sampling of shallower levels of the lithospheric mantle by kimberlite magmas in the north and north-extension lobes entrained high-Fe chromite xenocrysts (class 2), and aluminous spinel-bearing xenoliths, where both spinel compositions are anomalously Fe-rich for spinels from mantle xenoliths. This Fe-enrichment may have resulted from Fe–Mg exchange with olivine during slow cooling of the peridotite host rocks. Fine exsolution rods of aluminous spinel in diopside and zircon in rutile grains in spinel- and rutile-bearing serpentinised ultramafic xenoliths, respectively, suggest nearly isobaric cooling of host rocks in the lithospheric mantle, and indicate that at least some aluminous spinel in spinel-facies peridotites formed through exsolution from chromian diopside. Fe–Ti-rich metasomatism in the spinel-facies Kimberley mantle probably produced high-Ti phlogopite–biotite + rutile and Ti, V, Zn, Ni-enriched aluminous spinel ± ilmenite associations in several ultramafic xenoliths. U–Pb SHRIMP 207Pb/206Pb zircon ages for one granite (1851 ± 10 Ma) and two serpentinised ultramafic xenoliths (1845 ± 30 Ma; 1861 ± 31 Ma) indicate that the granitic basement and lower crust beneath the central Kimberley Basin are at least Palaeoproterozoic in age. However, Hf-isotope analyses of the zircons in the ultramafic xenoliths suggest that the underlying lithospheric mantle is at least late Archean in age.  相似文献   

17.
B. Carter Hearn Jr.   《Lithos》2004,77(1-4):473-491
The Homestead kimberlite was emplaced in lower Cretaceous marine shale and siltstone in the Grassrange area of central Montana. The Grassrange area includes aillikite, alnoite, carbonatite, kimberlite, and monchiquite and is situated within the Archean Wyoming craton. The kimberlite contains 25–30 modal% olivine as xenocrysts and phenocrysts in a matrix of phlogopite, monticellite, diopside, serpentine, chlorite, hydrous Ca–Al–Na silicates, perovskite, and spinel. The rock is kimberlite based on mineralogy, the presence of atoll-textured groundmass spinels, and kimberlitic core-rim zoning of groundmass spinels and groundmass phlogopites.

Garnet xenocrysts are mainly Cr-pyropes, of which 2–12% are G10 compositions, crustal almandines are rare and eclogitic garnets are absent. Spinel xenocrysts have MgO and Cr2O3 contents ranging into the diamond inclusion field. Mg-ilmenite xenocrysts contain 7–11 wt.% MgO and 0.8–1.9 wt.% Cr2O3, with (Fe+3/Fetot) from 0.17–0.31. Olivine is the only obvious megacryst mineral present. One microdiamond was recovered from caustic fusion of a 45-kg sample.

Upper-mantle xenoliths up to 70 cm size are abundant and are some of the largest known garnet peridotite xenoliths in North America. The xenolith suite is dominated by dunites, and harzburgites containing garnet and/or spinel. Granulites are rare and eclogites are absent. Among 153 xenoliths, 7% are lherzolites, 61% are harzburgites, 31% are dunites, and 1% are orthopyroxenites. Three of 30 peridotite xenoliths that were analysed are low-Ca garnet–spinel harzburgites containing G10 garnets. Xenolith textures are mainly coarse granular, and only 5% are porphyroclastic.

Xenolith modal mineralogy and mineral compositions indicate ancient major-element depletion as observed in other Wyoming craton xenolith assemblages, followed by younger enrichment events evidenced by tectonized or undeformed veins of orthopyroxenite, clinopyroxenite, websterite, and the presence of phlogopite-bearing veins and disseminated phlogopite. Phlogopite-bearing veins may represent kimberlite-related addition and/or earlier K-metasomatism.

Xenolith thermobarometry using published two-pyroxene and Al-in-opx methods suggest that garnet–spinel peridotites are derived from 1180 to 1390 °C and 3.6 to 4.7 GPa, close to the diamond–graphite boundary and above a 38 mW/m2 shield geotherm. Low-Ca garnet–spinel harzburgites with G10 garnets fall in about the same T and P range. Most spinel peridotites with assumed 2.0 GPa pressure are in the same T range, possibly indicating heating of the shallow mantle. Four of 79 Cr diopside xenocrysts have PT estimates in the diamond stability field using published single-pyroxene PT calculation methods.  相似文献   


18.
Diamonds and eclogites of the Jericho kimberlite (Northern Canada)   总被引:1,自引:1,他引:0  
We studied diamonds and barren and diamondiferous eclogite xenoliths from the Jericho kimberlite (Northern Slave craton). The majority of the diamonds are non-resorbed octahedral crystals, with moderately aggregated N (IaB < 50%, N < 300 ppm) and δ13C = −5 to −41‰. The diamonds belong to “eclogitic” (90% of the studied samples), “websteritic” (7%) and “peridotitic” (3%) assemblages. The Jericho diamonds differ from the majority of “eclogitic” diamonds worldwide in magnesian compositions of associated minerals and extremely light C isotopic compositions (δ13C = −24 to −41‰). We propose that metasomatism triggered by H2O fluids may have been involved in the diamond formation. Multiple episodes of the metasomatism and associated melt extraction of various ages are evident in Jericho eclogite xenoliths where primary garnet and clinopyroxene have been recrystallized to more magnesian minerals with higher contents of some incompatible trace elements and to hydrous secondary phases. The model is supported by the general similarity of mineral compositions in diamondiferous eclogites to those in diamond inclusions and to secondary magnesian garnet and clinopyroxene in recrystallized barren eclogites. The ultimate products of the metasomatism could be “websteritic” diamond assemblages sourced from magnesian eclogites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Djerfisherite, a Cl-bearing potassium sulfide (K6Na(Fe,Ni,Cu)24S26Cl), is a widespread accessory mineral in kimberlite-hosted mantle xenoliths. Nevertheless, the origin of this sulfide in nodules remains disputable. It is usually attributed to the replacement of primary Fe–Ni–Cu sulfides when xenoliths interact with a K-and Cl-enriched hypothetical melt/fluid. The paper is devoted to a detailed study of the composition and morphology of djerfisherite from a representative collection (22 samples) of the deepest mantle xenoliths—sheared garnet peridotite, taken from the Udachnaya-East kimberlite pipe (Yakutia). Four types of djerfisherite were distinguished in the mantle rocks on the basis of morphology, spatial distribution, and relationships with the rock-forming and accessory minerals in the nodules. Type 1 was found in the rims of polysulfide inclusions in the rock-forming minerals of the xenoliths; there, it was younger than the primary sulfide assemblage pyrrhotite + pentlandite ± chalcopyrite. Type 2 formed rims around large polysulfide segregations (pyrrhotite+ pentlandite) in the xenolith interstices. Type 3 formed individual grains in the xenolith interstices together with other sulfides, silicates, oxides, phosphates, and carbonates. Type 4 was present as a daughter phase in the secondary melt inclusions which occurred in healed cracks in the rock-forming minerals of the xenoliths. Along with djerfisherite, the inclusions contained silicates, oxides, phosphates, carbonates, alkaline sulfates, chlorides, and sulfides. The results indicate that djerfisherite from the xenoliths is consanguine with kimberlite. Djerfisherite both in the sheared-peridotite xenoliths from the Udachnaya-East pipe and in different xenoliths from other kimberlite pipes worldwide formed owing to the interaction between the nodules and kimberlitic melts. Djerfisherite forming individual grains in the melt inclusions and xenolith interstices crystallized directly from the infiltrating kimberlitic melt. Djerfisherite bounding the primary Fe–Ni ± Cu sulfides formed by their replacement as a result of a reaction with the kimberlitic melt.  相似文献   

20.
40Ar/39Ar dating of phlogopite from kelyphitic rims around garnet grains from the Udachnaya–Vostochnaya kimberlite pipe in the Sakha (Yakutia) Republic (Russia) revealed that when this mineral has contact with a kimberlite melt its age corresponds (within error limits) to that of the formation of the kimberlite pipe, thus indicating that the method may be used for dating kimberlites and related rocks. In mantle xenoliths, kelyphitic phlogopites rimming garnet grains partially lose radiogenic Ar, which results in a complex age spectrum. Rejuvenation of the K/Ar system in them is determined by the thermal impact of the kimberlite melt on captured rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号